建材秒知道
登录
建材号 > 乙醇 > 正文

(S)-2-(2-萘)乙醇酸的合成路线有哪些

乐观的鲜花
风趣的电灯胆
2022-12-21 19:07:07

(S)-2-(2-萘)乙醇酸的合成路线有哪些?

最佳答案
年轻的啤酒
帅气的方盒
2025-12-04 09:52:03

基本信息:

中文名称

(S)-2-(2-萘)乙醇酸

英文名称

(S)-2-(2-NAPHTHYL)GLYCOLIC

ACID

CAS号

144371-23-3

合成路线:

1.通过2-萘乙酮合成(S)-2-(2-萘)乙醇酸

更多路线和参考文献可参考http://baike.molbase.cn/cidian/1544778

最新回答
沉静的御姐
优美的八宝粥
2025-12-04 09:52:03

叶绿体

乙醇酸循环 glycolate pathway

乙醇酸循环 glycolate pathway 由N.E.Tolbert(1963)提出的,为绿叶内的)乙二醇酸的代谢途径。在乙醇酸代谢循环中,乙醇酸通过乙醇酸氧化酶[图(2)]的作用而变成乙醛酸。在这个氧化反应中,一分子的乙醇酸结合1/2分子的氧,然后乙醛酸通过转氨酶(Transminase)(3)的作用,变成甘氨酸。由此产生的两个分子的甘氨酸在转羟甲基酶(transhydroxymethylase)(4)的作用下生成一个分子的丝氨酸。在这个过程中,伴随一分子丝氨酸的生成而产生一分子的CO2。因此,作为起点的每一分子乙醇酸能发生1/2分子的CO2。丝氨酸进一步经由羟基丙酮酸酸和D-甘油酸变成3-磷酸甘油酸(PGA)。PGA在光照下通过还原型戊糖磷酸循环而用于糖的合成.Tolbert等认为,在光呼吸中O2的吸收和CO2的发生是分别通过反应(2)和反应(1)而进行的。许多研究者都认为乙醇酸氧化和光呼吸之间是密切相关的。但是由反应(4)产生的CO2,是代表了光呼吸CO2的发生,关于这一点也有许多不同见解。Tolbert等发现,酶(2)、(3)、(5)、(7)等的活性只局限于乙醛酸循环体(glyoxysome)上,但酶(4)的活性存在于线粒体中。基于这些见解,他们认为乙醇酸的循环是通过叶绿体和乙醛酸循环体及线粒体的协同作用而进行的。首先,在叶绿体中形成的乙醇酸,再转移到乙醛酸循环体上,在这里变成甘氨酸。甘氨酸又转移到线粒体上而变成丝氨酸。丝氨酸再回到乙醛酸循环体上,在这里变成甘油酸,甘油酸再转移到叶绿体上,而被用于糖的形成。乙醇酸是光合成初期的产物之一,因而它是从还原型戊糖磷酸循环的中间体而产生的,这一点是没有疑问的。现在关于乙醇酸的形成途径,认为是二羟基硫胺焦磷酸被氧化而变成乙醇酸和核酮糖-1,5-二磷酸(RuDP或RuBP),通过RuDP加氧酶的作用而变成磷酸乙醇酸和3-磷酸甘油酸,最后磷酸乙醇酸受磷酸脂酶作用而变成乙醇酸,在实验中证明,这两种形式的可能性都是存在的。

健忘的海燕
优秀的楼房
2025-12-04 09:52:03

乙醛酸,为醛酸之一。由乙醇酸在肝脏或叶的乙醇酸氧化酶作用下,或在叶中在乙醇酸氧化酶(依赖NAD+)作用下而产生。在肝脏或肾脏中甘氨酸及甲氨基(代)乙酸,在甘氨酸氧化酶作用下氧化也可产生。另外,瞟呤代谢的中间产物的尿囊酸在尿囊酸酶的作用下分解,产生尿素和乙醛酸。乙醛酸循环的中间产物异柠檬酸在裂解酶的作用下产生琥珀酸和乙醛酸,后者与乙酰CoA合成苹果酸。在微球菌属(Micrococcus)作为乙醛酸代谢的中间产物,与甘氨酸结合,经羟基天门冬氨酸而成草酰乙酸。在假单胞菌属(Pseudomonas)或大肠杆菌中,二分子缩合经酒石酸半醛而转变成甘油。在乙醛酸脱羧酶作用下脱羧则转变成蚁酸,在丝状菌中乙醛酸氧化可产生草酸。

化工上一般有两种制备方法:一、草酸电解法,草酸水溶液经电解还原,生成乙醛酸稀溶液,然后经蒸发、浓缩、冷冻、过滤逐渐提浓,最后得合格品包装。

二、乙二醛氧化法乙二醛在催化剂作用下经空气或氧气氧化,生成乙醛酸,然后经精制提纯得成品。另外,二氯乙酸与甲醇钠缩合得到二甲氧基乙酸钠,再用盐酸水解就生成乙醛酸。

着急的黄豆
刻苦的大象
2025-12-04 09:52:03
能反应,反应式如下:SnCl2+Cl2===SnCl4.氯化亚锡晶体常是二水合物,在水中易水解生成碱式盐沉淀。氯化亚锡缉耽光甘叱仿癸湿含溅是实验室中的还原剂,它可被空气中的氧氧化。四氯化锡与氯化亚锡之间的反应式如下:2Sn(2+)+O2+4H(+)===2Sn(4+)+2H2OSn+Sn(4+)===2Sn(2+),但氯气是强氧化剂,所以SnCl2+Cl2===SnCl4不会可逆。

笑点低的书本
碧蓝的羊
2025-12-04 09:52:03
乙醇酸是一种有机物,化学式为C2H4O3,无色易潮解的晶体。溶于水,溶于甲醇、乙醇、乙酸乙酯等有机溶剂,微溶于乙醚,不溶于烃类。兼有醇与酸的双重性,加热至沸点时分解。用于有机合成等。[1]

中文名

乙醇酸[1]

外文名

Glycolic acid[2]

别名

羟基乙酸;甘醇酸[3]

化学式

C2H4O3[4]

分子量

76.05[4]

快速

导航

理化性质

制备方法

安全信息

用途

医学应用

使用注意事项

毒理资料

贮存方法

发展过程

羟基乙酸是最简单的羟基酸。1848年通过用亚硝酸处理甘氨酸,首次得到了羟基乙酸,到1851年被确认。羟基乙酸在自然界广泛存在,如甘蔗、甜菜及未成熟的葡萄汁等中都含有少量的羟基乙酸,但其含量较低,而且与其他有机酸共存,难以分离回收。在工业中都采用合成法生产。[4]

1974年,意大利首次提出以甲醛、一氧化碳为原料,在强酸催化下通过甲醛的羰基化合成乙醇酸的方法。[6]

理化性质

乙醇酸为无色晶体,略有吸湿性。熔点78-79℃。溶于水、甲醇、乙醇、丙酮、乙皮、乙酸乙酯和醚,但几乎不溶于碳氧化合物溶剂。腐蚀性低,不易燃,无臭,毒性低,生物分解性强,水溶性高,是几乎不挥发的有机合成物。[3]

乙醇酸含有一个羧基和一个羟基,具有羧酸和醇的双重性质。作为酸,可以生成盐、酯、酰胺等;作为醇,能与其他有机酸生成酯,本身亦能酯化生成乙交酯,也能生成醚或缩醛。[4]

结构式:HOCH2COOH[4]

密度(g/mL):1.27[2]

沸点(℃,常压):112[

激动的镜子
缥缈的汽车
2025-12-04 09:52:03
乙醇酸又名乙醇酸、甘醇酸,是最简单的α-羟基酸,。乙醇酸在自然界尤其是甘蔗、甜菜以及未成熟的葡萄汁中存在,但其含量很低,且与其他物质共存,难以分离提纯,工业生产都采用合成方法。乙醇酸是一种无色、无味、半透明的固体,熔点80℃,沸点分解,溶于水、甲醇、乙醇、丙醇、乙酸和醚,但几乎不溶于碳氢化合物溶剂。乙醇酸毒性低,腐蚀性小,气味低,不易燃,可生物分解,有高水溶性、金属螯合剂以及有效的中和性能。

满意的裙子
外向的发夹
2025-12-04 09:52:03
还有一些滋养保湿美白霜,如果含有提取自水果中的乙醇酸,或含有提取自牛奶中的乳酸,因为它们都是一种温和酸类产品,主要提取自天然物质,能减少皮肤表面细纹,使皮肤看起来更光滑明亮。这两种物质都有使皮肤白嫩的功效。

追寻的自行车
喜悦的荔枝
2025-12-04 09:52:03
在高等植物中,光合碳同化主要有3种类型:C3途径,C4途径和景天酸代谢途径(CAM)。C3植物中,CO2的固定主要取决于1,5-二磷酸核酮糖羧化酶(RuBPCase)的活化状态,因为该酶是光合碳循环的入口钥匙。它催化1,5-二磷酸核酮糖(RuBP)羧化,将大气中的CO2同化,产生两分子磷酸甘油酸,可见RuBPCase在C3植物中同化CO2的重要性。C4植物是从C3植物进化而来的一种高光效种类。与C3植物相比,它具有在高光强,高温及低CO2浓度下,保持高光效的能力。C4植物固定CO2的酶为磷酸烯醇式丙酮酸羧化酶(PEPCase),与C3作物中RuBPCase相比,PEPCase对CO2的亲和力高。C4植物的细胞分化为叶肉细胞和鞘细胞,而光合酶在两类细胞中的分布不同,如PEPCase在叶肉细胞固定CO2,生成草酰乙酸(OAA),OAA进一步转化为苹果酸(Mal),Mal进入鞘细胞,脱羧,被位于鞘细胞内的RuBPCase羧化,重新进入卡尔文循环。这种CO2的浓缩机理导致了鞘细胞内的高浓度的CO2,一方面提高RuBPCase的羧化能力,另一方面又大大抑制了RuBPCase的加氧活性,降低了光呼吸,从而使C4植物保持高的光合效率。正是因为C4途径具有高光合能力,自60年代以来,试图利用C4光合特性来改进C3植物的光合效率,一直是一个引人注目的研究问题。多年来,人们希望通过C3植物与C4植物杂交,将C4植物同化CO2的高效特性转移到C3植物中去,但至今尚未取得令人满意的结果,其杂种F1和F2代的光合效率均比任何一个亲本都低,基于上述情况,试图通过杂交将具有C3途径的许多作物(如水稻、小麦,大豆)改造为具有C4途径植株的可能性极微。但却可能从C3植物中筛选出有PEPCase及C4途径表达较高的变异株,并加以遗传改进,从而提高C3植物的光合效率。所以几十年来,人们设想在那些利用杂种优势不明显的品种内,如C3作物大豆、小麦中筛选高光效品种。Winter(1974)指出C3植物(如小麦、大麦)不同的绿色器官中,PEPCase,RUBPase的活性存在显著差异。这不仅表现在碳同化速率上,同时也表现在碳素同化的途径上。随着人们发现C3植物中存在C4途径,根据这一特点,寻找C4途径表达强的C3植物逐渐成为光合研究的一个侧重点。为此,大量的工作已经被开展并已取得许多令人欣喜的成果。不仅证明了在C3植物中C4途径的存在,而且发现同种植物中不同品系间C4途径的强弱有较大差异。但是有关C4途径在C3植物中的表达方式及途径的研究开展还很少,人们仅发现C3植物中C4途径的客观存在,至于C4途径在C3植物中的作用机理及在植物光合作用中所占的比例,均有争议,但无论如何,有关C3植物中C4途径存在的发现及由此进行的筛选高光效品系工作,为基因工程改造培育新品种和高产农作物提供了理论依据。

过时的发箍
美满的大米
2025-12-04 09:52:03
基本信息:

中文名称

2-[(2,6-二氯-4-吡啶)硫代]乙酸

英文名称

2-(2,6-dichloropyridin-4-yl)sulfanylacetic

acid

英文别名

2-[(2,6-Dichloropyridin-4-yl)thio]acetic

acid[(2,6-dichloropyrid-4-yl)thio]acetic

acidHMS520M222-[(2,6-dichloro-4-pyridinyl)sulfanyl]acetic

acid

CAS号

80542-50-3

合成路线:

1.通过2,4,6-三氯吡啶和硫代乙醇酸合成2-[(2,6-二氯-4-吡啶)硫代]乙酸

2.通过2,6-二氯吡啶合成2-[(2,6-二氯-4-吡啶)硫代]乙酸

更多路线和参考文献可参考http://baike.molbase.cn/cidian/1081294