单细胞测序能弄成二维吗
用于单细胞测序的细胞条码化的制作方法
admin 2022-06-16 06:16:13 8次
该技术已申请专利。仅供学习研究,如用于商业用途,请联系技术所有人。
用于单细胞测序的细胞条码化
1.相关申请的交叉引用
2.本技术要求2019年11月4日提交的,题为“用于单细胞测序的细胞条码化”的第62/930,288号美国临时专利申请的优先权,其全文通过引用纳入本文,用于所有目的。
3.发明背景
4.目前的液滴微流体方法实现了数千细胞的通量。然而,更大的数量可能难以实现。使用微流体技术,至少有三个导致细胞悬浮液死体积和因此用于分析的细胞丢失的因素:1)微流体装置的入口处的剩余液体2)微流体通道预划分中的剩余液体和3)未从微流体装置的出口处收集的材料。此外,非常大的液滴乳化体积,对应于高细胞通量实验,很难以及时的方式产生,由于所需的体积。这可能对于细胞活力和细胞内含有的不稳定的核酸底物(如rna)有不利影响。最后,当产生较大的液滴乳液时,其增加的体积使其难以将单个乳液装载入与热循环仪兼容的单管中,从而进一步限制了大乳液体积的实施。
5.单细胞条码化平台需要昂贵的微流体技术(芯片、油和仪器)和条形码珠。仪器还需要昂贵的现场服务工程师来维护和解决硬件问题。
6.虽然液滴微流体技术改进了可扩展性,除非使用更复杂的芯片上(on-chip)液滴合并和皮注射(picoinjection)功能,否则只支持添加一种溶液。
7.用寡核苷酸直接标记细胞是使用寡聚物-偶联珠的选择。然而,在不破坏细胞生理的情况下,装载到细胞上的寡核苷酸的最大数量约为100-1000万。在nl大小的液滴中,寡核苷酸的终浓度往往将不足以驱动分子生物学反应,因此阻止液滴与直接寡核苷酸标记的细胞兼容。
8.发明概述
9.高密度寡核苷酸,范围达到106至107个分子,可以通过各种方法附接至细胞。例如,可以通过细胞特异性寡核苷酸偶联抗体(stoeckius等2018,genome biology)或通过脂质修饰的寡核苷酸(mcginnis等2019,nature methods)标记细胞。寡核苷酸细胞附接创造了直接在细胞上构建细胞条形码的可能性,例如,通过拆分汇集条形码构建(fan等2015,science)。这些细胞条形码反过来可以用于条码化靶向的细胞的核酸底物。
10.以前,这种形式的细胞条码化的一个要求是,在寡核苷酸裂解或从细胞释放之前,细胞与附接细胞条形码寡核苷酸的互补物必须被共同限制在分区中,此时可以发生与细胞核酸底物的附接。虽然液滴提供划分格式用于这种类型的反应,但是存在一些缺点。首先,单个乳液中液滴的数量上限是约100-200万。为了尽量减少多个细胞共同定位于单个液滴中,可以以大约0.05-0.1的λ装载细胞。基于每个乳液的液滴数量,封装的细胞的数量被限制在最大50,000至100,000。这种细胞通量对于某些类型的实验可能是不足够的,且受到向上可扩展性的限制。第二,由于入口处、微流体和液滴中剩余的细胞悬浮液不能从出口处收获,使用液滴微流体技术的细胞损失很难消除,导致细胞利用率为约60-85%。对于珍贵的细胞,这种水平的细胞利用率可能是不足够的。第三,液滴微流体技术需要芯片、油和仪器,都昂贵且难以支持。第四,在已经形成的液滴中加入试剂并在保持液滴的同时洗涤产物,虽然通过皮注射、液滴合并和磁珠捕获方法是可行的,但不容易工程化。这种限制使得单细胞
dna分析困难,因为简单的液滴微流体技术不支持蛋白酶k消化、随后失活然后加入生物化学品。第五,因为只有100-1000万寡核苷酸可以在不破坏膜的情况下被装载到细胞上,液滴必须有几十pl的体积,以提供足够的寡聚物浓度以驱动分子生物学反应。这些小液滴可能很难通过两个水性入口的微流体技术实现。第六,在进行条码化反应之前,细胞通常必须被清洗以除去其培养基。这明显增加了细胞损失。
11.本方法用液滴解决了上述限制,如下:在细胞上建立细胞条形码后,用与细胞密度匹配的水凝胶溶液重悬细胞,使得细胞不沉降。这可以通过用于保持细胞悬浮的常用试剂实现,例如蔗糖缓冲、percoll(西格玛(sigma))和/或optiprep(西格玛)。然后接着发生水凝胶的固化(solidification)。固化背后的机制取决于用于水凝胶的材料。例如,琼脂糖的固化会由温度下降引起。或者,藻酸盐可以使用钙交联。或者,temed启动了聚丙烯酰胺单体的交联。因此,细胞被分散在整个固化的水凝胶基质中。
12.水凝胶可以经或不经修饰以结合细胞条形码寡核苷酸。例如,细胞条形码寡核苷酸可以在5’端用生物素修饰,亲和素类似物(例如链霉亲和素)可以被偶联至水凝胶材料。因此,当在溶液中时,带有结合的寡核苷酸的细胞将自由移动,然而,一旦水凝胶固化,任何释放的寡核苷酸将在细胞膜的直接的附近结合至基质,在细胞膜存在的地方形成壳或皮。例如,0.01至10%重量/体积(wt/vol)的水凝胶对离子和非离子去污剂、以及低分子量蛋白质、酶和辅因子是多孔的。因此,在将细胞捕获在水凝胶基质中之后,细胞裂解剂(例如0.1%np-40)可以被应用于细胞。裂解剂将通过基质扩散并裂解细胞。细胞条形码寡核苷酸裂解或释放将作为细胞裂解和膜溶解的直接结果发生,或通过特异性或非特异性试剂从细胞裂解或释放寡核苷酸。然后释放的细胞底物核酸将结合至细胞条形码寡核苷酸,其已经被固定在细胞膜/水凝胶界面的壳中。
13.通过细胞/水凝胶界面圈起来的区域的体积基本上是细胞的体积。无论细胞条形码寡核苷酸是否被固定在寡核苷酸的壳上,这种最小体积将显著增加细胞条形码寡核苷酸的有效浓度,达到最大值。这可以补偿,例如,对于在不影响细胞生理的情况下可以被装载到细胞上的细胞条形码寡核苷酸数量有限,例如,每个细胞100-1000万寡核苷酸。对于直径约为9微米的细胞,用200万寡核苷酸的有效浓度将是几百个nm,其为足以支持大多数分子生物学反应(例如逆转录)的浓度。低分子量rna或dna依赖性聚合酶可以与裂解剂一起或之后加入,也可以在中间的洗涤之后加入,以除去或灭活细胞裂解剂。
14.一旦细胞底物核酸加细胞条形码寡核苷酸标签,导致细胞条码化发生,在从固化或未固化的水凝胶基质除去材料之后,文库制备的最后步骤可以在水凝胶基质中或溶液中发生。例如,逆转录酶,由于其低分子量,将流经组合物中高达5%的水凝胶。将其与裂解剂一起,或是与或不与寡核苷酸裂解/释放剂一起应用,将导致以下事件。随着裂解剂溶解细胞膜,细胞条形码寡核苷酸将结合至水凝胶以在细胞膜存在的位置形成壳。释放的rna将结合至在细胞膜存在的壳上固定的寡核苷酸,逆转录酶将合成cdna。这就是条码化反应。一旦发生,水凝胶可以被溶解,制备ngs文库的最终步骤就可以批量完成。
15.上述工作流程都不需要微流体技术(芯片、油和仪器),且批量发生。这种形式的一个好处是可支持多步骤反应。例如,如果需要dna基因型信息,流经水凝胶的第一试剂可以是蛋白酶k,例如热敏蛋白酶k。其将消化核小体和染色质辅助蛋白,使dna可及于进一步的分子生物学。通过对细胞膜的破坏,细胞条形码寡核苷酸可以在细胞膜存在的地方结合形
成壳。蛋白酶k可以失活,dna聚合酶与试剂一起流入水凝胶中,例如,可以发生通过模板导向-dna合成条码化。一旦条码化,文库制备的最后步骤可以在水凝胶内部或外部进行。
16.细胞可以在其原始培养基中与水凝胶材料混合。一旦固化,可以洗涤水凝胶以去除培养基。此外,由于每个细胞都会有一组细胞条形码克隆的寡核苷酸,所以水凝胶基质中捕捉的每个细胞会被条码化。这两个因素将细胞利用率从起始材料增加到接近100%。
17.在一些方面,提供个体细胞或个体细胞核和交联水凝胶的混合物。在一些实施方式中,个体细胞包含附接至个体细胞的细胞膜的异源寡核苷酸,或个体细胞核包含附接至个体细胞核的核膜的异源寡核苷酸。
18.在一些实施方式中,个体细胞包含锚定于个体细胞的细胞膜的异源寡核苷酸,或个体细胞核包含锚定于个体细胞核的核膜的异源寡核苷酸。在一些实施方式中,异源条码化寡核苷酸包含脂质部分,其中脂质部分将异源条码化寡核苷酸锚定在细胞膜中。
19.在一些实施方式中,水凝胶被共价连接至对异源寡核苷酸具有结合亲和性的分子。在一些实施方式中,水凝胶被非共价连接至对异源寡核苷酸具有结合亲和性的分子。在一些实施方式中,该分子选自下组:生物素、链霉亲和素、抗体、适配体、镍(ni)、铕(eu)或包含至少6个连续核苷酸的序列的多核苷酸,其与异源条码化寡核苷酸中的序列完全互补。
20.在一些实施方式中,所述细胞是哺乳动物细胞。在一些实施方式中,核或细胞包括片段化的核dna,其中片段化的dna在片段末端包含共有衔接子序列。
21.在一些实施方式中,水凝胶包括藻酸盐、琼脂糖、聚丙烯酰胺、壳聚糖、透明质酸、葡聚糖、胶原、纤维蛋白(fibrin)、聚乙二醇(peg)、聚(甲基丙烯酸羟乙酯)(聚hema)、聚乙烯醇(pva)或聚己内酯(pcl)。
22.在一些实施方式中,异源条码化寡核苷酸包含细胞特异性条形码序列和3’序列。在一些实施方式中,3’序列是至少5个连续的胸腺嘧啶的多聚t序列。在一些实施方式中,3’序列是至少5个(例如至少8个、至少10个、至少12个,例如6-30个)连续核苷酸的随机序列。在一些实施方式中,3’序列是至少5个连续核苷酸的目标基因特异性序列。在一些实施方式中,3’序列是至少5个(例如,5-100个,5-25个)连续核苷酸的衔接子。在一些实施方式中,衔接子可以在例如来自细胞或核的片段化dna的末端于共有衔接子序列互补。
23.在一些实施方式中,异源条码化寡核苷酸还包含5’pcr柄(handle)序列。
24.在一些方面,提供了将细胞特异性条形码加标签到细胞核酸的方法。一些实施方式中,所述方法包括:提供(i)具有附接至细胞的细胞膜的异源条码化寡核苷酸的细胞或分离的细胞核或(ii)包含附接至个体细胞核的核膜的异源寡核苷酸的细胞核;混合该细胞或核与液态水凝胶;在该细胞或核周围交联水凝胶,其中水凝胶形成固体凝胶;从细胞膜或核膜释放异源条码化寡核苷酸以产生释放的异源条码化寡核苷酸;允许该异源条码化寡核苷酸从细胞膜或核膜释放以定位在细胞或核周围的固化的水凝胶上;将异源条码化寡核苷酸附接至细胞多核苷酸或其拷贝或其cdna上,以形成条码化细胞多核苷酸;并溶解固化水凝胶或从固化水凝胶中提取条码化细胞多核苷酸,从而从水凝胶中释放条码化细胞多核苷酸,从而将细胞特异性条形码加标签到细胞核酸上。
25.在一些实施方式中,允许包括将从细胞膜或核膜释放的异源条码化寡核苷酸结合至细胞或核周围的固化的水凝胶。在一些实施方式中,允许包括将从细胞膜或核膜释放的异源条码化寡核苷酸扩散至细胞或核周围的固化的水凝胶,使得异源条码化寡核苷酸定位
苯并三氮唑主要作为水处理剂、金属防锈剂和缓蚀剂。广泛用于循环水处理剂,防锈油、脂类产品中,也应用于铜及铜合金的气相缓蚀剂、润滑油添加剂。在电镀中用以表面纯化银、铜、锌,有防变色作用。
分子式:C6H5N3;水溶性苯并三氮唑
水溶性苯并三氮唑
外观是白色针状结晶;
分子量119.0;
沸点:204℃(压力2KPa);
熔点:100℃;
微溶于水,常温下溶解1.98%,溶于甲醇、乙二醇等有机溶剂;
LD50:500mg/kg(纯度95%)。
国外生产的苯并三氮唑有水性的苯并三氮唑,水溶性苯并三氮唑含量越高,结晶度就越好,辨别含量可以从原厂的COA质检报告获悉,但要注意质检报告上面的杂质的种类。德国洋樱的苯并三氮唑通过了ROHS,美国西格玛奥德里奇和郝氏的标注了具体含量,相当于我们国内的化学试剂化学纯的级别。德国YOUNGING的苯并三氮唑是白色针状结晶,美国Sigma-Aldrich的是粒状,HATCH的是粉状的。德国YOUNGING的含量高一些。国外的生产厂家在google的英文网站上输入苯并三氮唑的英文名字BENZOTRIAZOLE可以搜索到GERMANY YOUNGING GROUP, USA Sigma-Aldrich,HATCH,可以理解为德国洋樱集团,美国西格玛奥德里奇公司,郝氏公司。[
主要作用
苯并三氮唑在国内生产的,有三种形状的,有颗粒状,片状,针状.国外的,大部分做颗粒和片状的.美国生产的苯并三氮唑大部分都做颗粒状.但是颗粒状的不好溶解,需要苯并三氮唑的国内厂家往往需要用溶剂溶解了之后在放到产品里面.近年来越来越多厂家使用德国洋樱集团生产的苯并三氮唑,德国的苯并三氮唑按照欧盟的REACH要求出口,而且是针状的,水油两用,既可以直接溶解在水里面也可以溶解在溶剂里面.使用很方便.
Amperometric phenol biosensor based on
sol–gel silicate/Nafion composite film
Min Ah Kim, Won-Yong Lee∗
自己搜下这篇文献。这里附上一部分翻译,两页足够了。
基于溶胶-凝胶硅酸盐/全氟磺酸复合膜的安培型苯酚
生物传感器
Min Ah Kim, Won-Yong Lee
韩国首尔120-749延世大学化学系
收稿日期:2002.8.9;修回日期:2002.11.18;发表日期:2002.11.28
摘要
基于由硅酸盐/全氟磺酸复合膜固定的酪氨酸酶安培型生物传感器已经被用来测定各种酚类化合物。复合膜中的全氟磺酸聚合物,不仅可以克服纯溶胶-凝胶源性硅酸盐膜的脆性,而且还增强了生物传感器的长期稳定性。酪氨酸酶是通过硅酸盐/全氟磺酸复合薄膜固定在玻碳电极上的。酚类化合物的含量随着游离的具有生物催化活性的醌类物质含量的减少而定,该实验在 200mV的电位下进行,以Ag/AgCl(3MNaCl)作为参比电极。由此法制备的酶电极的工艺参数和各种实验变量,如pH值和工作电位,已经被选定为适合该酶电极操作的最佳优化值。在15s之内,该生物传感器的电流值可以达到稳态电流值的95%。该生物传感器对邻苯二酚和苯酚的灵敏度分别是200 mA∕M和46mA∕M。在信噪比为3的情况下,邻苯二酚的检出限为0.35mM。在pH值为7,浓度为50mM的磷酸盐缓冲溶液储存下,两周之后,酶电极仍保留74 %的初始活性。
© 2002 Elsevier Science科技有限公司保留所有权。
关键词:溶胶-凝胶技术;硅酸盐/全氟磺酸复合膜;酪氨酸酶;酚类化合物;安培型生物传感器
1引言
因其在环境中的毒性和持久性,我们对于酚类化合物的含量测定是十分必要的。由于酚类化合物会对人类健康产生不利影响,我们需要对这类化合物进行一个严格的定性和定量分析。天然水中或土壤中的酚类化合物的浓度在一定程度上可能会有所不同,但总的来说,它们目前都是在ppb级。许多方法都可用于测定酚类化合物,包括气相色谱和分光光度分析法。然而,这些方法都需要进行复杂的样品预处理,并且具有不易控制的实验条件。为了解决这个问题,我们做了大量的努力来寻求一种简单有效的测定酚类化合物的方法。基于酪氨酸酶的安培型苯酚传感器已被证实有望达到这一目标,而各种模型如碳糊,环氧石墨等复合材料也被用来掺入到酪氨酸酶电极表面。
近来,溶胶-凝胶化学为化学传感器和生物传感器的领域提供了一个新的电化学平台。由于其固有的低温进程,溶胶-凝胶技术为那些热敏感生物体(酶,蛋白质和抗体)的固定提供了一种切实可行的方法。这一类的溶胶-凝胶硅酸盐模型具有化学稳定性,物理刚性,生物相容性,孔隙度可调性,高度的对光和对热稳定性和光透性等特点。正是由于这些显著的特点,人们在光学和电化学生物传感器方向上展开了更加深入的研究。如苯酚传感器,Tan和同事们发布了关于由硅溶胶-凝胶固定的安培型苯酚生物传感器的报道。此外,Al2O3溶胶-凝胶也被认为是一个能改进酪氨酸酶固定稳定性的合适的模型。然而,尽管溶胶-凝胶模型有众多优势,但随着时间的流逝,溶胶-凝胶模型的开裂现象仍然是个潜在的问题。为了防止裂缝,将一些聚合物,如聚(环氧乙烷),聚(乙二醇),聚羟基,天然高分子壳聚糖,以及聚(乙烯基吡啶)和聚(乙烯醇)的接枝共聚物等,与溶胶-凝胶源性硅酸盐模型混合,从而形成有机-无机杂化材料,而每种有机-无机杂化材料都有其自身独特的特点。例如,基于壳聚糖的有机-无机杂化材料,具有生物降解性和无毒性,这是因为壳聚糖是一种天然高分子产品。此外,壳聚糖含有氨基,因而提供了一种能与生物大分子相容的亲水环境。基于聚(乙烯基吡啶)和聚(乙烯醇)的接枝共聚物的有机-无机杂化材料,能够防止石英玻璃在溶胶-凝胶过程中的开裂现象,同时也能消除共聚物水凝胶的膨胀性。
在本文中,我们首次对由溶胶-凝胶源性硅酸盐/全氟磺酸(磺酸盐离子交联聚合物)复合膜固定的酪氨酸酶安培型生物传感器进行报道。这种类型的复合膜材料可以克服纯溶胶-凝胶源性硅酸盐模型的脆性,还可以延缓硅酸盐的缩水性。该复合膜的另一个优点是全氟磺酸与酪氨酸酶具有生物相容性,从而为苯酚传感器的长期稳定性能提供了很大的改进。另外,生物传感器的选择性,可通过在制备复合膜过程中,恰当选择硅酸盐与全氟磺酸的比率来确定。这是因为全氟磺酸薄膜中含有带负电荷的磺酸基团,从而能够阻止带负电荷的待测物质迁移而沉积到电极表面。下面,我们将进一步讨论溶胶-凝胶源性硅酸盐/全氟磺酸复合膜的优化条件和影响该生物传感器电化学响应的实验参数,比如工作电位和pH值。此外,对于传感器性能,我们将在响应时间,灵敏度,检出限和长期稳定性方面进行探讨研究。
2实验
2.1试剂
四甲氧基硅酸盐(TMOS, 99%)是从AcrosChemical公司 (比利时)购买的。酪氨酸酶(从蘑菇中提取,EC1.14.18.1, 4400单位/毫克)是从Sigma(圣路易斯,密苏里州,美国)购买 。邻苯二酚,苯酚,甲酚, 4-氯苯酚, 4-乙酸氨基酚 ,从Aldrich(密尔沃基,威斯康星,美国)购买 。工作溶液每次均用pH值为7.0,浓度为0.05M磷酸盐缓冲溶液稀释至所需浓度。全氟磺酸(磺酸盐离子交换树脂,由其5%(W/ V )溶解于配比为90 %脂肪醇/10 %水(体积比)的混合溶液而成)是从Aldrich购买。本实验中所有稀释用的水均用Milli- Q水净化系统(Millipore, Bedford, MA, USA)来净化。本实验所有化学试剂均达到试剂要求,若没有特别说明,使用时无需再进一步纯化。
2.2 仪器
本文所有安培和循环伏安实验均在EG&G 273A电化学工作站上进行(橡树岭,田纳西州,美国)。所有实验都是用的传统的三电极系统。其中玻碳电极作为工作电极( 1.7500000000000002px2,表面被酶层覆盖),铂丝作为对电极,Ag/AgCl( 3MNaCl )作为参比电极(本文提到的所有电位值都是相对此而言的)。一个10mL的小烧杯和磁力搅拌器。
2.3 苯酚生物传感器的制备
将1.0ml的TMOS,200μl的去离子水和10μl的浓度为0.1M的 HCl混合于一个小烧杯中,此溶液在室温下强力分散10分钟,至分散均匀,然后将该溶液在室温下静置12个小时,即可得到溶胶-凝胶储备液。将该储备液与全氟磺酸溶液混合(溶胶-凝胶悬浮液/全氟磺酸= 1/2(体积比)),从而形成溶胶-凝胶硅酸盐/全氟磺酸复合液。同时,用pH为7.0 ,浓度为0.05M的磷酸盐缓冲溶液将酪氨酸酶稀释至浓度为15mg/ml。然后,取上述30μl的硅酸盐/全氟磺酸复合液与30μl的络氨酸酶溶液混合,即可得到悬浮液。取此溶液1.0μl,覆盖在玻碳电极的表面。其中玻碳电极在每次实验前,都需要用0.05μm的α-氧化铝进行抛光,然后用蒸馏水彻底清洗干净。悬浮溶液需要在室温下干燥2分钟成膜。最后,酶电极在首次使用之前,需要用pH为7.0,浓度为0.05M的磷酸盐缓冲溶液于4℃下浸泡一夜,这是为了洗掉电极表面上游离的酪氨酸酶,并同时完善溶胶-凝胶的聚合。该电极在不使用时,需储存在pH为7.0 ,浓度为0.05M的磷酸盐缓冲溶液中,放置于冰箱,温度为4℃。
2.4 实验条件
在对待测液进行安培检测时,此待测液以10ml的pH值为7.0,浓度为0.05M的磷酸盐缓冲溶液为介质,并处于不断搅拌的环境中。磁力搅拌器及搅拌子为安培检测提供了电子迁移动力。相对于Ag/AgCl( 3M NaCl)的参比电极来说,工作电极保持-0.2V的恒电位,在酚类化合物标准溶液的等分试样添加到电化学测试液之前,使背景电流衰减到一个稳定值。
3结果和讨论
3.1溶胶-凝胶硅酸盐/全氟磺酸的影响
组成的影响
众所周知,溶胶-凝胶的制备条件,对溶胶-凝胶源性生物传感器的电化学响应有着重大的影响。特别是,由于酸催化水解效应,在溶胶-凝胶储备液中,醇与水的比率强烈地影响溶胶-凝胶源性生物传感器的穿透性。例如,由葡萄糖氧化酶固定的碳复合电极,由辣根过氧化物酶和尿酸固定的碳糊电极。基于先前的结果,我们用相对较高的TMOS与水的比率为5的溶液来配制硅酸盐凝胶,以形成尺寸较小的相对密集的溶胶-凝胶模型,从而导致更多的酶载入和较大规模的生物反应。
据报道,适度的疏水性对保持最佳的酪氨酸酶活性是十分必要的。全氟磺酸具有疏水性的氟碳骨架和亲水性的阳离子交换场所,从而具有适度的疏水性。因此,全氟磺酸与溶胶-凝胶硅酸盐混合,形成有机-无机杂化材料。通过测定不同比例的全氟磺酸/溶胶-凝胶硅酸盐溶液(体积比)或纯的溶胶-凝胶硅酸盐膜时的电流响应数据,然后进行校准拟合,即可得到标准曲线,图1表明了典型的邻苯二酚校准曲线,同时将其实验特征总结在表1中。据此观察到,当上述两者之比为2时,该生物传感器的电流响应最大。这一结果表明,当全氟磺酸与溶胶-凝胶硅酸盐复合液的比率小于2时,随着全氟磺酸含量的增加,酪氨酸酶的稳定性增强,同时灵敏度也增加。然而,进一步提高全氟磺酸在复合膜中的比率,将会增加复合膜的疏水性,从而会导致酪氨酸酶变性,继而降低其灵敏度。此外,由于全氟磺酸的稳定性是由乙醇作为介质的,提高全氟磺酸在复合膜中的比率,可能会导致由乙醇引起的更多的酪氨酸酶的失活。基于纯溶胶-凝胶硅酸盐膜的生物传感器非常不稳定,很容易破碎,显示出短期的动态范围和低灵敏度。
当邻苯二酚的浓度达到9.9μM时,开始有响应(响应时间少于22s),且在全氟磺酸与溶胶-凝胶硅酸盐溶胶以任何比率混合下,电流响应都随着邻苯二酚浓度的增加而增强。然而,响应时间与全氟磺酸/溶胶-凝胶硅酸盐复合膜的比率有关,但其响应时间比基于纯溶胶-凝胶硅酸盐膜的酪氨酸酶电极(50s)要短得多。由于纯溶胶-凝胶硅酸盐膜和硅酸盐/全氟磺酸复合膜的厚度差不多(小于10μm ) ,相应的,快速响应时间主要取决于溶胶-凝胶硅酸盐复合膜增加的孔径,这同时也导致了底物和产物进出此膜过程中的快速扩散。这种行为同样也发生在由溶胶-凝胶硅酸盐/聚乙烯聚合膜固定的酪氨酸酶电极上。在 Ru(bpy)32+电发光实验中,与纯硅酸盐膜相比,溶胶-凝胶硅酸盐/全氟磺酸复合膜会产生更加开阔的结构,从而使其发光信号增强。故在后续实验中,全氟磺酸与溶胶-凝胶硅酸盐溶胶的最优比率选定为2。另外,关于酶掺杂硅酸盐/全氟磺酸复合膜的微观结构和生物传感特征之间的关系也在进一步的研究当中。
下午好,EMC的数据从它的msds可以查询到蒸气压是12mm Hg(22°C),蒸汽密度是2.94 (vs air),爆炸极限值是1.2%-9.8%(V),沸点107度,闪点为23°C请酌情参考。在sigma和陶氏查不到你要求的分配系数、分解温度和自燃温度(开闭杯闪点?)这三组数据,从物理性质上来说EMC和其他碳酸酯很接近介于DMC和DEC之间,如果需要高极性还可以考虑EC(碳酸乙烯酯)和PC(碳酸丙烯酯)。
下午好,分子筛可以筛除掉DMC或者DEC中的HF(碳酸甲酯是何种分子结构望赐教?我只知道碳酸有二甲酯和二乙酯,DMC和DEC),它们都是微溶于水,300ppm过一遍就没了。HF是极性溶剂,DMC和DEC是非极性溶剂,如果你是准备做GPL或者其他什么分析的直接做分相就可以了不需要动用分子筛的……HF相对来说易剔除因为它属于有特别强表面张力的,稍微有空隙就可以吸附它,如果你用硅酸盐成份分析筛一遍过,HF可以被硅酸盐有效截留。额,顺带一提的是碳酸酯都有个坏毛病就是爱吸二氧化碳返酸,DMC比较低,上头的EC和PC(碳酸乙烯、丙烯酯,其实和烯没任何关系跟石油醚一样瞎乎起名误导人,分子式是乙二醇碳酸酯和丙二醇碳酸酯)吸的厉害,做精确分析时比HF难去多了。希望能帮的上你,分子筛买好点儿比如sigma。
外源DNA片段和线状质粒载体的连接,也就是在双链DNA5'磷酸和相邻的3'羟基之间形成的新的共价链。如质粒载体的两条链都带5'磷酸,可生成4个新的磷酸二酯链。但如果质粒DNA已去磷酸化,则吸能形成2个新的磷酸二酯链。在这种情况下产生的两个杂交体分子带有2个单链切口(图1.8),当杂本导入感受态细胞后可被修复。相邻的5'磷酸和3'羟基间磷酸二酯键的形成可在体外由两种不同的DNA连接酶催化,这两种酶就是大肠杆菌DNA连接酶和T4噬菌体DNA连接酶。实际上在有克隆用途中,T4噬菌体DNA连接酶都是首选的用酶。这是因为在下述反应条件下,它就能有效地将平端DNA片段连接起来。
DNA一端与另一端的连接可认为是双分子反应,在标准条件下,其反应速度完全由互相匹配的DNA末端的浓度决定。不论末端位于同一DNA分子(分子内连接)还是位于不同分子(分子间连接),都是如此。现考虑一种简单的情况,即连接混合物中只含有一种DNA,也就是用可产生粘端的单个限制酶切割制备的磷酸化载体DNA。在加作用的底物。如果反应中DNA浓度低,则配对的两个末端同一DNA分子的机会较大(因为DNA分子的一个末端找到同一分子的另一末端的概率要高于找到不同DNA分子的末端的概率)。这样,在DNA浓度低时,质粒DNA重新环化将卓有成效。如果连接反应中DNA浓度有所增高,则在分子内连接反应发生以前,某一个DNA分子的末端碰到另一DNA分子末端的可能性也有所增大。因此在DNA浓度高时,连接反的初产物将是质粒二聚体和更大一些的寡聚体。Dugaiczyk等(1975同时参见Bethesda Res,Lab.出版的Focus第2卷,第2、3期合刊)从理论上探讨了DNA浓度对连接产物性质的影响。简而言之,环化的连接产物与多联体连接产物的比取决于两个参数:j和i。j是DNA分子的一个末端在同一分子的另一末端附近的有效浓度,j的数值是根据如下一种假设作出的:沉吟液中的DNA呈随机卷曲。这样,j与DNA分子的长度成反比(因为DNA越长,某一给定分子的两末端的越不可能相互作用),因此j对给定长度的DNA分子来说是一个常数,与DNA深度无关。j=[3/(3πlb0)]3/2其中l是DNA长度,以cm计,b是随机卷曲的DNA区段的长度。b的值以缓冲液的离子强度为转移,而后者可影响DNA的刚度。
i是溶液中所有互补末端的深度的测量值,对于具有自身互补粘端的双链dna而言,i=2NoMx10-3末端/ml这里No是阿佛伽德罗常数,M是DNA的摩尔浓度(单位:mol/L)。理论上,当j=i时,给定DNA分子的一个末端与同一分子的另一末端,以及与不同分子的末端相接触的可能性相等。因而在这样的条件下,在反应的初始阶段中,环状分子与多联体分子的生成速率相等。而当j>i时,有利于重新环化;当i>j,则有利于产生多联体。图1.9显示了DNA区段的大小与连接反应混合物中j:i之比分别为0.5、1、2和5时所需DNA浓度之间关系(Dugaiczyk等,1985)。现在考虑如下的连接反应混合物:其中除线状质粒之外,还含有带匹配末端的外源DNA片段。对于一个给定的连接混合物而言,产生单体环状重组基因组的效率不仅受反应中末端的绝对浓度影响,而且还受质粒和外源DNA末端的相对浓度的影响。当i是j的2-3倍(即末端的绝对浓度足以满足分子间连接的要求,而又不致引起大量寡聚体分子的形成时)外源DNA末端浓度的2倍时,有效重组体的产量可达到最大。这些条什下,连接反应终产物的大约40%都是由单体质粒与外源DNA所形成的嵌合体。当连接混合物中线性质粒的量恒定(j:i=3)而带匹配末端的外源DNA的量递增时,这种嵌合体在连接反应之末的理论产量。
涉及带粘端的线状磷酸化质粒DNA的连接反应应包含:
1)足量的载体DNA,以满足j:i>1和j:i<3。对一个职pUC18一般大小的质粒,这意味着连接反应中应含有载体DNA为20-60μg/ml。
2)末端浓度等于或稍高于载体DNA的外源DNA,如外源DNA浓度比载体低得多,在效连接产物的数量会很低,这样就很难别小部分带重组抽粒的转化菌落。这种情况下,可考虑采用一些步骤来减少带非重组质粒的背景菌落。如用磷酸酶处理线状质粒DNA或发迹克隆策略以便通过定向克隆的方法构建重组质粒。
(二)粘端连接
1)用适当的限制酶消化质粒和外源DNA。如有必要,可用凝胶电泳分离片段并(或)用碱性磷酸酶处理质粒DNA。通过酚:氯仿抽提和乙沉淀来纯化DNA,然后用TE(pH7.6)溶液使其浓度为100/ml。
2)按如下所述设立连接反应混合物:
a.将0.1μl载体DNA转移到无菌微量离心管中,加等摩尔量的外源DNA。
b.加水至7.5μl,于45℃加温5分钟以使重新退炎的粘端解链,将混合物冷却到0℃。
c.加入:10xT4噬菌体DNA连接酶缓冲液 1μl
T4噬菌体NDA连接酶 0.1Weiss单位
5mmol/L ATP 1μl
于16℃温育1-4小时
10xT4噬菌体DNA连接酶缓冲液
200mmol/L同Tris.Cl(pH7.6)
50mmol/K MgCl2
50mmol/L二硫苏糖醇
500μg/ml牛血清白蛋白(组分V.Sigma产品)(可用可不用)
该缓训液应分装成小份,贮存于-20℃。
另外,再设立两个对照反应,其中含有(1)只有质粒载体;(2)只有外源DNA片段。如果外源DNA量不足,每个连接反应可用50-100ng质粒DNA,并尽可能多加外源DNA,同时保持连接反应体积不超过10μl。可用至少3种不同方法来测定T4噬菌体DNA连接酶的活性。大多数制造厂商(除New England Biolabs公司外)现在都用Weiss等,11968)对该酶进行标化。1个Weiss单位是指在37℃下20分钏内催化1mmol32P从焦磷酸根置换到[γ,β-32P]ATP所需酶时,1个Weiss单位相当于0.2个用外切核酸酶耐受试验来定义的单位(Modrich和Lehman,1970)或者60个粘端单位(如New England Biolabs公司所定义)。因此,0.015Weiss单位的T4噬菌体DNA连接酶在16℃下30分钟内可使50%的λ噬菌体HindⅢ片段(5μg)得以连接。在本书中,T4噬菌体DNA连接酶一律用Weiss单位表示。\par 目前提供的T4噬菌体DNA连接酶均为浓溶液(1-5单位/μl),可用20mmol/L Tris.Cl(pH7.6)、60mmol/L KCl、5mmol/L二硫苏糖醇、500μg/ml牛血清白蛋白、50%甘稀释成100单位/ml的浓度置存。处于这种浓度并在这种缓冲液中的T4噬体DNA连接酶于-20℃保存3个月可保持稳定。
3)每个样品各取1-2μl转化大肠杆菌感受态细胞。
(三)平端DNA连接
T4噬菌体DNA连接酶不同于大肠杆菌DNA连接酶,它可以催化平端DNA片段的连接(Sgaramella和Khorana,1972Sgaramella和Ehrlich,1978),由于DNA很容易成为平端,所以这是一个极为有用的酶学物性。有了这样的物性,才能使任何DNA分子彼此相连。然而,相对而言,平端连接是低效反应,它要求以下4个条件:
1)低浓度(0.5mmol/L)的ATP(Ferretti和Sgaranekka,1981)。
2)不存在亚精胺一类的多胺。
3)极高浓度的连接酶(50Weiss单位.ml)。
4)高浓度的平端。
1.凝聚剂
在反应混合物中加入一些可促进大分子群聚作用并可导致DNA分子凝聚成集体的物质,如聚乙二醇(Pheiffer和Zimmerman,1983Zimmerman和Pheiffer,1983ZimmermanT Harrison,1985)或氯化六氨全高钴(Rusche和Howard-Flanders,1985),可以使如何取得适当浓度的平端DNA的总是迎刃而解。在连接反应中,这些物质具有两作用:
1)它们可使平端DNA的连接速率加大1-3个数量级,因此可使连接反应在酶DNA浓度不高的条件下进行。
2)它们可以改变连接产物的分布,分子内连接受到抑制,所形成的连接产物一律是分子间连接的产物。这样,即使在有利于自身环化(j:i=10)的DNA浓度下,所有的DNA产物也将是线状多聚体。\par 在设立含凝聚剂的连接反应时,下列资料可供参考。
(1)聚乙二醇(PEG8000)
1)用去离子水配制的PEG8000贮存液(40%)分装成小份,冰冻保存,但加入连接反应混合物之前应将其融化并使其达到室温。在含15%PEG 8000的连接反应混合物中,对连接反刺激效应最为显著。除PEG 800和T4噬菌体DNA连接酶以外,其他所有连接混合物的组分应于0℃混合,然后加适当体积的PEG 8000(处于室温),混匀,加酶后于20℃进行温育。
2)连接混合物中含0.5mmol/L ATP和5mmol/L MgCl2时对连接反应的刺激效应最为显著,甚至ATP浓度略有增加或MgCl2浓度略有降低,都会严重降低刺激的强度(Pheiffer和Zimmerman,1983)。
3)浓度为15%的PEG 8000可刺激带粘端的DNA分子的连接效率提高至原来的10-100倍,反应的主产物是串联的多联体。
4)PEG 8000可刺激短至8个核苷酸的合成寡聚物的平端连接,在这一方面,它与氯化六氨合高钴有所不同。
(2)氯化六氨合高钴
1)氯化六氨合高钴可用水配成10mmol/L贮存液贮存于-20℃,它对连接反应的刺激具有高度的浓度信赖性。当连接反应混合物中盐深度为1.0-1.5μmol/L时,其刺激作用最大。氯化六氨合高钴可使平端连接的效率大约提高到原来的50W部,但只能使端连接的效率提高到原来的5倍(Rusche和Howard-Flanders,1985)。
2)在单价阳离子(30mmol/L KCl)存在下,它对平端连接仍有一定的刺激作用,但此时连接产物的分布有所改变。连接产物不再是清一色的分子间连接产物,相反,环状DNA将点尽优势。
3)与PEG 8000不同,氯化六氨合高钴不能显著提高合成寡核苷酸的连接速率。
(四)质粒载体中的快速克隆
质粒克隆中最慢的步骤是所需的外源DNA片段和相应质粒DNA区段的电泳纯化,下面的操作方案[由S.Michaelis(个人通讯)根据Struhl(1985)的方法修订而成]是从纯化的凝胶中回收琼脂糖块,熔化后直接进行质粒和外源DNA的连接。这一方法寻平端连接和粘端连接都同样奏效,但需大量的连接酶,而且效率要比标准操作方案约低一个数量级。
1)用适当的限制酶消化外源DNA,其量应足以产生约0.2μg的靶片段。反应体积应为20μl或更小。在另一管中,用相应的限制酶消化约0.5μg载体DNA,总反应体积为20μl或更小。如载体DNA带相同的端,应用磷酸处理如下:用限制酶消化完全后,加2.5μl 100mmol/L Tris.Cl(pH8.3)、10mmol/L ZnCl2,加0.25单位牛小肠碱性磷酸酶,于37℃温育30分钟。
2)通过琼脂糖凝胶电泳分离目标片段。务必用低熔点琼脂糖灌制凝胶,务必用含溴化乙锭(0.5μg/ml)的1xTAE作为电泳缓冲液而不是常规的0.5xTBE来配制凝胶并进行电泳。
3)在长波长紫外照射下检查凝胶,根据目标条带的相对荧光强度估计所含DNA的量(见附录E)。用刀片切出目标条带,尽可能少琼脂糖的体积(通常40-50μl)。将切下凝胶片分别放入作好标记的各个微量离心管中。
4)于70℃加热10-15分钏,使琼脂糖熔化。
5)合并熔化的小份凝胶并放到加温至37℃的中一管中,共终体积应不超过10μl,外源DNA与质粒载体的摩尔比应接近2:1。
用另外两个管设立两个对照连反应,一个只含质粒载体,另一个只含外源DNA片段。
6)将3个管于37℃温育5-10分钟,然后每管加10μl用冰预次的2xT4噬体DNA连接酶混合物,在琼脂糖凝固前,充他混匀各管内容物,于16℃温育12-16小时。
2xT4噬菌体DNA连接酶混合物可制备如下:
1mol/L Tris.Cl(pH7.6) 1.0μl
100mmol/L氯化镁 1.0μl
200mmol/L三硫苏糖醇 1.0μl
10mmol/L ATP 1.0μl
水 5.5μl
T4噬菌体DNA连接酶 1Weiss单位
混匀后放置于冰浴上。
7)连接反应行将结束时,取出贮存于-70的3管各200μl的冻存大肠杆菌感受态细胞
8)于70℃中热10-15分钟重新溶化连接混合物中的琼脂糖。
9)立即从每管连接混全物中取出5μl加到200μl大肠杆菌感受态细胞中,小心摇晃,快速地混匀内容物。从剩下每管连接混合物中分别再取5μl重复以上步骤,将转化混合物在冰浴上放置30分钟。
10)完成转化方案的其余各步 分子克隆化是在分子水平上提供一种纯化和扩增特定DNA片段的方法。常含有目的基因,用体外重组方法将它们插入克隆载体,形成重组克隆载体,通过转化与转导的方式,引入适合的寄主体内得到复制与扩增,然后再从筛选的寄主细胞内分离提纯所需的克隆载体,可以得到插入DNA的许多拷贝,从而获得目的基因的扩增。克隆(clone,clon)一词源于希腊文Klon,原意为树木的枝条。在生物学中其名词含义系指一个细胞或个体以无性繁殖的方式产生一群细胞或一群个体,在不发生突变的情况下,具有完全相同的遗传性状,常称无性繁殖(细胞)系;其动词(clone,cloned,cloning)含义指在生物体外用重组技术将特定基因插入载体分子中,即分子克隆技术。将DNA片段(或基因)与载体DNA分子共价连接,然后引入寄主细胞,再筛选获得重组的克隆,按克隆的目的可分为DNA和cDNA克隆两类。cDNA克隆是以mRNA为原材料,经体外反转录合成互补的DNA(cDNA),再与载体DNA分子连接引入寄主细胞。每一cDNA反映一种mRNA的结构,cDNA克隆的分布也反映了mRNA的分布。特点是:①有些生物,如RNA病毒没有DNA,只能用cDNA克隆;②cDNA克隆易筛选,因为cDNA库中不包含非结构基因的克隆,而且每一cDNA克隆只含一个mRNA的信息;③cDNA能在细菌中表达。cDNA仅代表某一发育阶段表达出来的遗传信息,只有基因文库才包含一个生物的完整遗传信息。分子克隆化-方法(1)DNA片段的制备:常用以下方法获得DNA片段:①用限制性核酸内切酶将高分子量DNA切成一定大小的DNA片段;②用物理方法(如超声波)取得DNA随机片段;③在已知蛋白质的氨基酸顺序情况下,用人工方法合成对应的基因片段;④从mRNA反转录产生cDNA。(2)载体DNA的选择:①质粒:质粒是细菌染色体外遗传因子,DNA呈环状,大小为1-200千碱基对(kb)。在细胞中以游离超螺旋状存在,很容易制备。质粒DNA可通过转化引入寄主菌。在细胞中有两种状态,一是“紧密型”;二是“松驰型”。此外还应具有分子量小,易转化,有一至多个选择标记的特点。质粒型载体一般只能携带10kb以下的DNA片段,适用于构建原核生物基因文库,cDNA库和次级克隆。②噬菌体DNA:常用的λ噬菌体的DNA是双链,长约49kb,约含50个基因,其中50%的基因对噬菌体的生长和裂解寄主菌是必需的,分布在噬菌体DNA两端。中间是非必需区,进行改造后组建一系列具有不同特点的载体分子。λ载体系统最适用于构建真核生物基因文库和cDNA库。M13噬菌体是一种独特的载体系统,它只能侵袭具有F基因的大肠杆菌,但不裂解寄主菌。M13DNA(RF)在寄主菌内是双链环状分子,象质粒一样自主制复,制备方法同质粒。寄主菌可分泌含单链DNA的M13噬菌体,又能方便地制备单链DNA,用于DNA顺序分析、定点突变和核酸杂交。③拷斯(Cos)质粒:是一类带有噬菌体DNA粘性末端顺序的质粒DNA分子。是噬菌体-质粒混合物。此类载体分子容量大,可携带45kb的外源DNA片段。也能象一般质粒一样携带小片段DNA,直接转化寄主菌。这类载体常被用来构建高等生物基因文库。(3)DNA片段与载体连接:DNA分子与载体分子连接是克隆过程中的重要环节之一,方法有:①粘性末端连接,DNA片段两端的互补碱基顺序称之为粘性末端,用同一种限制性内切酶消化DNA可产生相同的粘性末端。在连接酶的作用下可恢复原样,有些限制性内切酶虽然识别不同顺序,却能产生相同末端。②平头末端连接,用物理方法制备的DNA往往是平头末端,有些酶也可产生平头末端。平头DNA片段可在某些DNA连接酶作用下连接起来,但连接效率不如粘性末端高;③同聚寡核苷酸末端连接。④人工接头分子连接,在平头DNA片段末端加上一段人工合成的、具有某一限制性内切酶识别位点的寡核苷酸片段,经限制性内切酶作用后就会产生粘性末端。连接反应需注意载体DNA与DNA片段的比率。以λ或Cos质粒为载体时,形成线性多连体DNA分子,载体与DNA片段的比率高些为佳。以质粒为载体时,形成环状分子,比率常为1∶1。(4)引入寄主细胞:常用两种方法:①转化或转染,方法是将重组质粒DNA或噬菌体DNA(M13)与氯化钙处理过的宿主细胞混合置于冰上,待DNA被吸收后铺在平板培养基上,再根据实验设计使用选择性培养基筛选重组子,通常重组分子的转化效率比非重组DNA低,原因是连接效率不高,有许多DNA分子无转化能力,而且重组后的DNA分子比原载体DNA分子大,转化困难。②转导,病毒类侵染宿主菌的过程称为转导,一般转导的效率比转化高。(5)克隆的选择:①直接筛选:有些载体带有可辨认的遗传标记,能有效地将重组分子与本底区分。例如:有些λ噬菌体携带外源基因后形成的噬菌斑就会从原来的混浊变为清亮;还有些载体分子携带外源基因后,形成的菌落或噬菌斑的颜色有明显变化,如蓝色变为无色;有些λ噬菌体能侵染甲菌而不能侵染乙菌,携带外源DNA片段后便能侵染乙菌,因此乙菌释放的噬菌体均为重组分子。②间接筛选:有引起载体分子带有一个或多个抗药性标记基因,当外源DNA插入到抗药基因区后,基因失活,抗性消失。如一质粒有A和B两个抗药性基因,当外源基因插入到B基因区后,便只抗A药而不抗B药。因此能在A药培养基上正常生长而不能在B药培养上生长的便是重组分子。③核酸杂交:广泛用于筛选含有特异DNA顺序的克隆。方法是将菌落或噬菌斑“印迹”到硝酸纤维膜等支持物上,变性后固定在原位,然后与标记的核酸探针进行杂交。阳性点的位置就是所需要的克隆。④免疫学方法:如果重组克隆能在宿主菌中表达,就可以用特异的蛋白质抗体为探针,进行原位杂交,选择特异的克隆。分子克隆化-重要意义分子克隆技术是70年代才发展起来的,它的出现和应用开辟了分子遗传学研究的新领域,打开了人类了解、识别、分离和改造基因,创造新物种的大门。它的成就对于工业、农牧业和医学产生深远影响,并将为解决世界面临的能源、食品和环保三大危机开拓一条新的出路。在医学方面,利用分子克隆技术已将胰岛素,人、牛和鸡的生长激素、人的干扰素、松驰素、促红细胞生长激素、乙型肝炎病毒抗原和口蹄疫病毒抗原的基因制成工程菌,利用发酵工业进行了大规模生产。还可提高微生物本身所产生的蛋白酶类和抗生素类药物的产量。在基因治疗方面。通过遗传工程看到癌细胞具有逆转为正常细胞的可能性,例如SV40病毒引起的小鼠肿瘤细胞,在温度高时可逆转为正常细胞。为治疗半乳糖血症,用带有大肠杆菌乳糖操纵子的λ噬菌体去感染半乳糖血症患者的离体培养细胞,发现这种细胞的半乳糖苷酶达到了正常水平,并确实能代谢半乳糖。在工业生产方面,以分子克隆技术为主体的基因工程、细胞工程、酶工程和发酵工程,四者紧密联系、常综合利用。许多化学试剂如丙烯酸、己二酸、乙二醇、甲醇、环氧乙烷、乌头酸和水杨酸等都可能利用分子克隆技术得到产品。在环境保护方面,人们根据需要进行基因操作,将某种微生物的基因转入另一微生物,创造一些对有害物质降解能力更强的新菌种,以分解工业污水中的有毒物质。在食品工业方面,细菌可为人类生产有价值的蛋白质、氨基酸和糖等。在农业生产方面,植物遗传工程对提高农作物的产量、培育新的农作物品种提供了可能。有许多外源基因导入植物获得成功。
保留时间的理论
保留时间是样品从进入色谱柱到流出色谱柱所需要的时间,不同的物质在不同的色谱柱上以不同的流动相洗脱会有不同的保留时间,因此保留时间是色谱分析法比较重要的参数之一。
保留时间由物质在色谱中的分配系数决定:
tR = t0(1 + KVs / Vm)
式中tR表示某物质的保留时间,t0是色谱系统的死时间,即流动相进入色谱柱到流出色谱柱的时间,这个时间由色谱柱的孔隙、流动相的流速等因素决定。K为分配系数,VsVm表示固定相和流动相的体积。这个公式又叫做色谱过程方程,是色谱学最基本的公式之一。
在薄层色谱中没有样品进入和流出固定相的过程,因此人们用比移值标示物质的色谱行为。比移值是一个与保留时间相对应的概念,它是样品点在色谱过程中移动的距离与流动相前沿移动距离的比值。与保留时间一样,比移值也由物质在色谱中的分配系数决定:
R_f=\frac{V_m+KV_s}
其中Rf是比移值,K表示色谱分配系数,VsVm表示固定相和流动相的体积。
基于热力学的塔板理论
塔板理论是色谱学的基础理论,塔板理论将色谱柱看作一个分馏塔,待分离组分在分馏塔的塔板间移动,在每一个塔板内组分分子在固定相和流动相之间形成平衡,随着流动相的流动,组分分子不断从一个塔板移动到下一个塔板,并不断形成新的平衡。一个色谱柱的塔板数越多,则其分离效果就越好。
根据塔板理论,待分离组分流出色谱柱时的浓度沿时间呈现二项式分布,当色谱柱的塔板数很高的时候,二项式分布趋于正态分布。则流出曲线上组分浓度与时间的关系可以表示为:
C_t=\frac{\sigma\sqrt{2\pi}} e^{-\frac{(t-t_R)^2}{2\sigma^2}}
这一方程称作流出曲线方程,式中Ct为t时刻的组分浓度;C0为组分总浓度,即峰面积;σ为半峰宽,即正态分布的标准差;tR为组分的保留时间。
根据流出曲线方程人们定义色谱柱的理论塔板高度为单位柱长度的色谱峰方差:
H=\frac{\sigma^2}
理论塔板高度越低,在单位长度色谱柱中就有越高的塔板数,则分离效果就越好。决定理论塔板高度的因素有:固定相的材质、色谱柱的均匀程度、流动相的理化性质以及流动相的流速等。
塔板理论是基于热力学近似的理论,在真实的色谱柱中并不存在一片片相互隔离的塔板,也不能完全满足塔板理论的前提假设。如塔板理论认为物质组分能够迅速在流动相和固定相之间建立平衡,还认为物质组分在沿色谱柱前进时没有径向扩散,这些都是不符合色谱柱实际情况的,因此塔板理论虽然能很好地解释色谱峰的峰型、峰高,客观地评价色谱柱地柱效,却不能很好地解释与动力学过程相关的一些现象,如色谱峰峰型的变形、理论塔板数与流动相流速的关系等。
基于动力学的Van Deemter方程
Van Deemter方程是对塔板理论的修正,用于解释色谱峰扩张和柱效降低的原因。塔板理论从热力学出发,引入了一些并不符合实际情况的假设,Van Deemter方程则建立了一套经验方程来修正塔板理论的误差。
Van Deemter方程将峰形的改变归结为理论塔板高度的变化,理论塔板高度的变化则源于若干原因,包括涡流扩散、纵向扩散和传质阻抗等。
由于色谱柱内固定相填充的不均匀性,同一个组分会沿着不同的路径通过色谱柱,从而造成峰的扩张和柱效的降低。这称作涡流扩散
纵向扩散是由浓度梯度引起的,组分集中在色谱柱的某个区域会在浓度梯度的驱动下沿着径向发生扩散,使得峰形变宽柱效下降。
传质阻抗本质上是由达到分配平衡的速率带来的影响。实际体系中,组分分子在固定相和流动相之间达到平衡需要进行分子的吸附、脱附、溶解、扩散等过程,这种过程称为传质过程,阻碍这种过程的因素叫做传质阻抗。在理想状态中,色谱柱的传质阻抗为零,则组分分子流动相和固定相之间会迅速达到平衡。在实际体系中传质阻抗不为零,这导致色谱峰扩散,柱效下降。
在气相色谱中Van Deemter方程形式为:
H=A+\frac{\mu}+C\mu
其中H为塔板数,A为涡流扩散系数,B为纵向扩散系数,C为传质阻抗系数,μ为流动相流速。
在高效液相色谱中,由于流动相粘度远远高于气相色谱,纵向扩散对峰型的影响很小,可以忽略不计算,因而Van Deemter方程的形式为:
H = A + Cμ
【基本技术和方法】
色谱法,又称层析法。根据其分离原理,有吸附色谱、分配色谱、离子交换色谱与排阻色谱等方法。
吸附色谱是利用吸附剂对被分离物质的吸附能力不同,用溶剂或气体洗脱,以使组分分离。常用的吸附剂有氧化铝、硅胶、聚酰胺等有吸附活性的物质。
分配色谱是利用溶液中被分离物质在两相中分配系数不同,以使组分分离。其中一相为液体,涂布或使之键合在固体载体上,称固定相;另一相为液体或气体,称流动相。常用的载体有硅胶、硅藻土、硅镁型吸附剂与纤维素粉等。
离子交换色谱是利用被分离物质在离子交换树脂上的离子交换势不同而使组分分离。常用的有不同强度的阳、阴离子交换树脂,流动相一般为水或含有有机溶剂的缓冲液。
排阻色谱又称凝胶色谱或凝胶渗透色谱,是利用被分离物质分子量大小的不同和在填料上渗透程度的不同,以使组分分离。常用的填料有分子筛、葡聚糖凝胶、微孔聚合物、微孔硅胶或玻璃珠等,可根据载体和试样的性质,选用水或有机溶剂为流动相。
色谱法的分离方法,有柱色谱法、纸色谱法、薄层色谱法、气相色谱法、高效液相色谱法等。色谱所用溶剂应与试样不起化学反应,并应用纯度较高的溶剂。色谱时的温度,除气相色谱法或另有规定外,系指在室温下操作。
分离后各成分的检出,应采用各单体中规定的方法。通常用柱色谱、纸色谱或薄层色谱分离有色物质时,可根据其色带进行区分,对有些无色物质,可在245-365nm的紫外灯下检视。纸色谱或薄层色谱也可喷显色剂使之显色。薄层色谱还可用加有荧光物质的薄层硅胶,采用荧光熄灭法检视。用纸色谱进行定量测定时,可将色谱斑点部分剪下或挖取,用溶剂溶出该成分,再用分光光度法或比色法测定,也可用色谱扫描仪直接在纸或薄层板上测出,也可用色谱扫描仪直接以纸或薄层板上测出。柱色谱、气相色谱和高效液相色谱可用接于色谱柱出口处的各种检测器检测。柱色谱还可分部收集流出液后用适宜方法测定。
【柱色谱法】( Column chromatography)
所用色谱管为内径均匀、下端缩口的硬质玻璃管,下端用棉花或玻璃纤维塞住,管内装有吸附剂。色谱柱的大小,吸附剂的品种和用量,以及洗脱时的流速,均按各单体中的规定。吸附剂的颗粒应尽可能保持大小均匀,以保证良好的分离效果,除另有规定外通常多采用直径为0.07-0.15mm的颗粒。吸附剂的活性或吸附力对分离效果有影响,应予注意。
吸附剂的填装 干法:将吸附剂一次加入色谱管,振动管壁使其均匀下沉,然后沿管壁缓缓加入开始层析时使用的流动相,或将色谱管下端出口加活塞,加入适量的流动相,旋开活使流动相缓缓滴出,然后自管顶缓缓加入吸附剂,使其均匀地润湿下沉,在管内形成松紧适度的吸附层。操作过程中应保持有充分的流动相留在吸附层的上面。湿法:将吸附剂与流动相混合,搅拌以除去空气泡,徐徐倾入色谱管中,然后再加入流动相,将附着于管壁的吸附剂洗下,使色谱柱表面平整。
俟填装吸附剂所用流动相从色谱柱自然流下,液面将柱表面相平时,即加试样溶液。
试样的加入 除另有规定外,将试样溶于层析时使用的流动相中,再沿色谱管壁缓缓加入。注意勿使吸附剂翻起。或将试样溶于适当的溶剂中。与少量吸附剂混匀,再使溶剂挥发去尽后使呈松散状;将混有试样的吸附剂加在已制备好的色谱柱上面。如试样在常用溶剂中不溶解,可将试样与适量的吸附剂在乳钵中研磨混匀后加入。
洗脱 除另有规定外,通常按流动相洗脱能力大小,递增变换流动相的品种和比例,分别分部收集流出液,至流出液中所含成分显著减少或不再含有时,再改变流动相的品种和比例。操作过程中应保持有充分的流动相留在吸附层的上面。
【纸色谱法】(Paper chromatography)
以纸为载体,用单一溶剂或混合溶剂进行分配。亦即以纸上所含水分或其他物质为固定相,用流动相进行展开的分配色谱法。
所用滤纸应质地均匀平整,具有一定机械强度,必须不含会影响色谱效果的杂质,也不应与所用显色剂起作用,以免影响分离和鉴别效果,必要时可作特殊处理后再用。
试样经层析后可用比移值(Rf)表示各组成成分的位置(比移值=原点中心至色谱斑点中心的距离与原点中心至流动相前沿的距离之比),由于影响比移值的因素较多,因此一般采用在相同实验条件下对照物质对比以确定其异同。作为单体鉴别时,试样所显主色谱斑点的颜色(或荧光)与供置,应与对照(标准)样所显主色的谱斑点或供试品-对照品(1∶1)混合所显的主色谱斑点相同。作为质量指标(纯度)检查时,可取一定量的试样,经展开后,按各单体的规定,检视其所显杂质色谱斑点的个数或呈色(或荧光)的强度。作为含量测定时,可将色谱斑点剪下洗脱后,再用适宜的方法测定,也可用色谱扫描仪测定。
1、下行法 所用色谱缸一般为圆形或长方形玻璃缸,缸上有磨口玻璃盖,应能密闭,盖上有孔,可插入分液漏斗,以加入流动相。在近缸顶端有一用支架架起的玻璃槽作为流动相的容器,槽内有一玻璃棒,用以支持色谱滤纸使其自然下垂,避免流动相沿滤纸与溶剂槽之间发生虹吸现象。
取适当的色谱滤纸按纤维长丝方向切成适当大小的纸条,离纸条上端适当的距离(使色谱纸上端能足够浸入溶剂槽内的流动相中,并使点样基线能在溶剂槽侧的玻璃支持棒下数厘米处)用铅笔划一点样基线,必要时色谱纸下端可切成锯齿形,以便于流动相滴下。
将试样溶于适当的溶剂中,制成一定浓度的溶剂。用微量吸管或微量注射器吸取溶剂,点于点样基线上,溶液宜分次点加,每次点加后,俟其自然干燥、低温烘干或经温热气流吹干。样点直径一般不超过0.5cm,样点通常应为圆形。
将点样后的色谱滤纸上端放在溶剂槽内,并用玻璃棒压住,使色谱纸通过槽侧玻璃支持棒自然下垂,点样基线在支持棒下数厘米处。色谱开始前,色谱缸内用各单体中所规定的溶剂的蒸气饱和,一般可在色谱缸底部放一装有流动相的平皿,或将浸有流动相的滤纸条附着在色谱缸的内壁上,放置一定时间,俟溶剂挥发使缸内充满饱和蒸气。然后添加流动相,使浸没溶剂槽内滤纸,流动相即经毛细管作用沿滤纸移动进行展开至规定距离后,取出滤纸,标明流动相前沿位置,俟流动相挥散后按规定方法检出色谱斑点。
2、上行法 色谱缸基本和下行法相似,唯除去溶剂槽和支架,并在色谱缸盖上的孔中加塞,塞中插入玻璃悬钩,以便将点样后的色谱滤纸挂在钩上。色谱滤纸一般长约25cm,宽度则视需要而定。必要时可将色谱滤纸卷成筒形。点样基线距底边约2.5cm,点样方法与下行法相同。色谱缸内加入适量流动相,放置,俟流动相蒸气饱和后,再下降悬钩,使色谱滤纸浸入流动相约0.5cm,流动相即经毛细管作用沿色谱滤纸上升,除另有规定外,一般展开至15cm后,取出晾干,按规定方法检视。
色谱可以向一个方向进行,即单向色谱;也可进行双向色谱,即先向一个方向展开,取出,俟流动相完全挥发后,将滤纸转90°,再用原流动相或另一种流动相进行展。亦可多次展开,连续展或径向色谱等。
【薄层色谱法】(Thin-layer chromatography)
按各单体所规定的载体,放入适当容器,加入适量水以配成悬浮液,在厚度均匀一致的50×200mm或200×200mm平滑玻璃板上将此悬浮液均布成0.25mm的厚度,风干后一般在110℃下干燥0.5-1h(或按单体规定)。
以离薄层板一端约25mm的位置作为点样基线,用微量吸管按规定量吸取试样液和对照(标准)液,点于基线上,点与点之间的距离在10mm以上,液点的直径约3mm,风干后,基线一端向下,将薄层板放入展开溶剂,溶剂层深10mm,并预经开展溶剂的蒸汽饱和。在展开溶剂从基线上升至规定距离(一般为15cm)后,取出薄层板,风干,然后按规定的方法,对斑点的位置和颜色进行检查。
【气相色谱法】(Gas chromatography)
气相色谱法是在以适当的固定相做成的柱管内,利用气体(载气)作为移动相,使试样(气体、液体或固体)在气体状态下展开,在色谱柱内分离后,各种成分先后进入检测器,用记录仪记录色谱谱图。
在对装置进行调试后,按各单体的规定条件调整柱管、检测器、温度和载气流量。进样口温度一般应高于柱温30-50度。如用火焰电离检测器,其温度应等于或高于柱温,但不得低于100℃,以免水汽凝结。色谱上分析成分的峰的位置,以滞留时间(从注入试样液到出现成分最高峰的时间)和滞留容量(滞留时间×载气流量)来表示。这些在一定条件下,就能反应出物质所具有特殊值,并据此确定试样成分。
根据色谱上出现的物质成分的峰面积或峰高进行定量。峰面积可用面积测定仪测定,按半宽度法求得(即以峰1/2处的峰宽×峰高求得)。峰高的测定方法是从峰高的顶点向记录纸横座标准垂线,找出此垂线与峰的两下端联结线的交点,即以此交点至峰顶点的距离长度为峰高。
定量方法可分以下三种:
1、内标准法 取标准被测成分,按依次增加或减少的已知阶段量,各自分别加入各单体所规定的定量内标准物质中,调制标准溶液。分别取此标准液的一定量注入色谱柱,根据色谱图取标准被测成分的峰面积和峰高和内标物质的峰面积和峰高的比例为纵坐标,取标准被测成分量和内标物质量之比,或标准被测成分量为横坐标,制成标准曲线。
然后按单体中所规定的方法调制试样液。在调制试样液时,预先加入与调制标准液时等量的内标物质。然后按制作标准曲线时的同样条件下得出的色谱,求出被测成分的峰面积或峰高和内标物质的峰积或峰高之比,再按标准曲线求出被测成分的含量。
所用的内标物质,应采用其峰面积的位置与被测成分的峰的位置尽可能接近并与被测成分以外的峰位置完全分离的稳定的物质。
2、绝对标准曲线法 取标准被测成分 按依次增加或减少阶段法,各自调制成标准液,注入一定量后,按色谱图取标准被测成分的峰面积或峰高为纵坐标,而以标准被测成分的含量为横坐标,制成标准曲线。然后按单体中所规定的方法制备试样液。取试样液按制标准曲线时相同的条件作出色谱,求出被测成分的峰面积和峰高,再按标准曲线求出被测成分的含量。
3、峰面积百分率法 以色谱中所得各种成分的峰面积的总和为100,按各成分的峰面积总和之比,求出各成分的组成比率。
【气液色谱法】(gas-liquid chromatography)
这时所指的气液色谱法,主要用于各种香料物质的分析,基本条件和参数主要依照美国精油协会(EOA)于1979年所建议的方法。其基本原理、操作、标准状态等均与上述气相色谱法相同。
1、柱 用304号合金所制不锈钢管,长3m,内径2.16-2.57mm,外径3.18mm。底物:极性柱为聚乙二醇20M(Carbowax 20M),分子量约2万;非极性柱为气相色谱级甲基硅氧烷(SE-30),或二甲基硅氧烷(OV-1或OV-101)。底物浓度:重量的105。固体载体:10目或20目熔融煅烧过的硅藻土,经硅烷化和酸洗后,其自由倾落密度为0.2g/cm3,最小120目,最大80目。装填密度每cm3应大于0.24g。
2、载气 氦, 氮。最低流量为每分钟25-50ml。
【分析状态】
极性柱:起始温度,最低75度;最终温度,最高225度。升温速度,每分钟2-8度。
非极性柱:起始温度,最低75度;最终温度,不超过275度;升温速度,每分钟2-8度。
进样温度:225-250度。试样量:0.1-1ul。
检测器:用热导池。检测器的操作条件应维持恒定。
蛋白质主要由氨基酸组成,其含氮量一般不超过30%,而三聚氰胺的分子式含氮量为66%左右。通用的蛋白质测试方法“凯氏定氮法”是通过测出含氮量来估算蛋白质含量,因此,添加三聚氰胺会使得食品的蛋白质测试含量偏高,从而使劣质食品通过食品检验机构的测试。有人估算在植物蛋白粉和饲料中使测试蛋白质含量增加一个百分点,用三聚氰胺的花费只有真实蛋白原料的1/5。三聚氰胺作为一种白色结晶粉末,没有什么气味和味道,掺杂后不易被发现。
奶粉事件:各个品牌奶粉中蛋白质含量为15-20%(晚上在超市看到包装上还有标示为10-20%的),蛋白质中含氮量平均为16%。以某合格牛奶蛋白质含量为2.8%计算,含氮量为0.44%,某合格奶粉蛋白质含量为18%计算,含氮量为2.88%。而三聚氰胺含氮量为66.6%,是牛奶的151倍,是奶粉的23倍。每100g牛奶中添加0.1克三聚氰胺,就能提高0.4%蛋白质。
微溶系指溶质1g(ml)能在溶剂100~不到1000ml中溶解,三聚氰胺在水中微溶,在牛奶这种水包油型的乳液中溶解度未找到实验数据,应该比水的溶解度要好一些,待验证。
检测方案
在现有奶粉检测的国家标准中,主要进行蛋白质、脂肪、细菌等检测。三聚氰胺属于化工原料,是不允许添加到食品中的,所以现有标准不会包含相应内容。亦即三聚氰胺检测目前并无国家标准。因此,德国莱茵TÜV集团参照美国食品化学品法典(FCC)三聚氰胺HPLC-UV定量方法,同时还可采用HPLC/MS检测方法(实验室方法)对婴儿食品,宠物食品,饲料及其原料(包括淀粉,大米蛋白, 玉米蛋白, 谷朊粉、粮油等)开展三聚氰胺的检测业务,检测结果具备权威性。
编辑本段牛奶添加三聚氰胺的作用
奶粉有毒是因为其中含三聚氰胺,可能是在奶粉中直接加入的,也可能是在原料奶中加入的。
牛奶和奶粉添加三聚氰胺,主要是因为它能冒充蛋白质。
食品都是要按规定检测蛋白质含量的。要是蛋白质不够多,说明牛奶兑水兑得太多,说明奶粉中有太多别的东西的粉。
但是,蛋白质太不容易检测,生化学家们就想出个偷懒的办法:因为蛋白质是含氮的,所以只要测出食品中的含氮量,就可以推算出其中的蛋白质含量。
因此添加过三聚氰胺的奶粉就很难检测出其蛋白质不合格了这就是三聚氰胺的假蛋白
编辑本段合成工艺
三聚氰胺最早被李比希于1834年合成,早期合成使用双氰胺法:由电石(CaC2)制备氰胺化钙(CaCN2),氰胺化钙水解后二聚生成双氰胺(dicyandiamide),再加热分解制备三聚氰胺。目前因为电石的高成本,双氰胺法已被淘汰。与该法相比,尿素法成本低,目前较多采用。尿素以氨气为载体,硅胶为催化剂,在380-400℃温度下沸腾反应,先分解生成氰酸,并进一步缩合生成三聚氰胺。
6 (NH2)2CO → C3H6N6 + 6 NH3 + 3 CO2
生成的三聚胺气体经冷却捕集后得粗品,然后经溶解,除去杂质,重结晶得成品。尿素法生产三聚氰胺每吨产品消耗尿素约3800kg、液氨500kg。
按照反应条件不同,三聚氰胺合成工艺又可分为高压法(7-10MPa,370-450℃,液相)、低压法(0.5-1MPa,380-440℃,液相)和常压法(<0.3MPa,390℃,气相)三类。
国外三聚氰胺生产工艺大多以技术开发公司命名,如德国巴斯夫(BASF Process)、奥地利林茨化学法(Chemical Linz Process)、鲁奇法(Lurgi Process)、美国联合信号化学公司化学法(Allied Signal Chemical)、日本新日产法(Nissan Process)、荷兰斯塔米卡邦法(既DSM法)等。这些生产工艺按合成压力不同,可基本划分为高压法、低压法和常压法三种工艺。目前世界上技术先进、竞争力较强的主要有日本新日产Nissan法和意大利Allied-Eurotechnica的高压法,荷兰DSM低压法和德国BASF的常压法。
我国三聚氰胺生产企业多采用半干式常压法工艺,该方法是以尿素为原料0.1MPa以下,390℃左右时,以硅胶做催化剂合成三聚氰胺,并使三聚氰胺在凝华器中结晶,粗品经溶解、过滤、结晶后制成成品。
编辑本段相关致病案例
2007年,美国爆发宠物食品受污染事件。事后调查表明:掺杂了≤6.6%三聚氰胺的小麦蛋白粉是宠物食品导致中毒的原因。
2008年9月,中国爆发三鹿婴幼儿奶粉受污染事件,导致食用了受污染奶粉的婴幼儿产生肾结石病症,其原因也是奶粉中含有三聚氰胺。
国家质检总局近日紧急在全国开展了婴幼儿奶粉三聚氰胺含量专项检查。此次专项检查对其余109家企业进行了排查,共检验了这些企业的491批次产品。阶段性检查结果显示,有22家婴幼儿奶粉生产企业的69批次产品检出了含量不同的三聚氰胺。
检出三聚氰胺婴幼儿配方乳粉企业名单
序号 标称的企业 产品名称 抽样数 不合格数 三聚氰胺最高含量mg/kg
1 石家庄三鹿集团股份有限公司 三鹿牌婴幼儿配方乳粉 11 11 2563.00
2 上海熊猫乳品有限公司 熊猫可宝牌婴幼儿配方乳粉 5 3 619.00
3 青岛圣元乳业有限公司 圣元牌婴幼儿配方乳粉 17 8 150.00
4 山西古城乳业集团有限公司 古城牌婴幼儿配方乳粉 13 4 141.60
5 江西光明英雄乳业股份有限公司 英雄牌婴幼儿配方乳粉 2 2 98.60
6 宝鸡惠民乳品(集团)有限公司 惠民牌婴幼儿配方乳粉 1 1 79.17
7 内蒙古蒙牛乳业(集团)股份有限公司 蒙牛牌婴幼儿配方乳粉 28 4 68.20
8 中澳合资多加多乳业(天津)有限公司 可淇牌婴幼儿配方乳粉 1 1 67.94
9 广东雅士利集团股份有限公司 雅士利牌婴幼儿配方乳粉 30 10 53.40
10 湖南培益乳业有限公司 南山倍益牌婴幼儿配方乳粉 3 1 32.00
11 黑龙江省齐宁乳业有限责任公司 婴幼儿配方乳粉2段基粉 1 1 31.74
12 山西雅士利乳业有限公司 雅士利牌婴幼儿配方乳粉 4 2 26.30
13 深圳金必氏乳业有限公司 金必氏牌婴幼儿配方乳粉 2 2 18.00
14 施恩(广州)婴幼儿营养品有限公司 施恩牌婴幼儿配方乳粉 20 4 17.00
15 广州金鼎乳制品厂 金鼎牌婴幼儿配方乳粉 3 1 16.20
16 内蒙古伊利实业集团股份有限公司 伊利牌儿童配方乳粉 35 1 12.00
17 烟台澳美多营养品有限公司 澳美多牌婴幼儿配方乳粉 6 6 10.70
18 青岛索康营养科技有限公司 爱可丁牌婴幼儿配方乳粉 3 1 4.80
19 西安市阎良区百跃乳业有限公司 御宝牌婴幼儿配方乳粉 3 1 3.73
20 烟台磊磊乳品有限公司 磊磊牌婴幼儿配方乳粉 3 3 1.20
21 上海宝安力乳品有限公司 宝安力牌婴幼儿配方乳粉 1 1 0.21
22 福鼎市晨冠乳业有限公司 聪尔壮牌婴幼儿配方乳粉 1 1 0.09
液态奶检出三聚氰胺的批次表
公司 序号 生产企业 产品名称 规格型号 商标 生产日期/批次 三聚氰胺(mg/kg)
蒙牛 1蒙牛(武汉)友芝友乳业有限公司 核桃牛奶 200ml/袋 友芝友 20080910 0.765
蒙牛 2内蒙古蒙牛乳业(集团)股份有限公司 蒙牛高钙低脂牛奶 250ml/盒 蒙牛 2008.08.07 0.8
蒙牛 3 内蒙古蒙牛乳业(集团)股份有限公司 全脂灭菌纯牛乳 250ml/盒 蒙牛 2008.09.01 1.0
蒙牛 4 内蒙古蒙牛乳业(集团)股份有限公司 高钙低脂牛奶 250ml/盒 蒙牛 2008.08.01 1.5
蒙牛 5 内蒙古蒙牛乳业(集团)股份有限公司 早餐奶(麦香味) 250ml/包 蒙牛 20080814 1.9
蒙牛 6 内蒙古蒙牛乳业(集团)股份有限公司 蒙牛早餐奶 250ml/盒 蒙牛 2008.07.26/x 2.57
蒙牛 7 内蒙古蒙牛乳业(集团)股份有限公司 妙点 250ml/盒 蒙牛 20080728/W206 3.17
蒙牛 8 蒙牛乳业(北京)有限责任公司 木糖醇酸牛奶 2kg/瓶 蒙牛 20080806 3.52
蒙牛 9 内蒙古蒙牛乳业(集团)股份有限公司 高钙低脂牛奶 243ml(250g)/袋 蒙牛 20080908/C206/GAfb 4.2
蒙牛 10 蒙牛乳业(马鞍山)有限公司 蒙牛大粒果实酸牛奶 160克/盒 蒙牛 M20080903 6.8(A样)
蒙牛 11 蒙牛乳业(马鞍山)有限公司 蒙牛大粒果实酸牛奶 160克/盒 蒙牛 M20080903 7(B样)
伊利 1 济南伊利乳业有限责任公司 伊利芒果+黄桃酸牛奶 125g/盒 伊利 2008.09.07 0.69
伊利 2 内蒙古伊利实业集团股份有限公司 酸牛奶(木瓜+甜橙) 125g/瓶 伊利 20080903 1.02
伊利 3 内蒙古伊利实业集团股份有限公司 纯牛奶 220ml/袋 伊利 2008.09.13 2.2
伊利 4 内蒙古伊利实业集团股份有限公司 脱脂奶 250ml/盒 伊利 20080820 2.9
伊利 5 内蒙古伊利实业集团股份有限公司 纯牛奶 220ml/袋 伊利 20080905MIAC6 5.5
伊利 6 内蒙古伊利实业集团股份有限公司 纯牛奶 242ml/袋 伊利 20080906/LIA09 8
伊利 7 内蒙古伊利实业集团股份有限公司 高钙低脂奶 250ml/盒 伊利 20080819 8.4
光明 1 北京光明健能乳业有限公司 光明酸牛奶(原味) 180g/袋 光明 2008.09.12 0.6
光明 2 武汉光明乳品有限公司 原味酸牛奶 180g/盒 光明 2008-09-13 3.41
光明 3 北京光明健能乳业有限公司 原味酸牛奶 100克/杯 光明 20080910A 3.5
光明 4 北京光明健能乳业有限公司 大颗果粒草莓酸奶 450克/盒 光明 20080902BC 4.8
光明 5 光明乳业有限责任公司 益生菌·优乳酪(原味) 190g/罐 光明 B20080908C 5.65
光明 6 北京光明健能乳业有限公司 优酪乳·酸牛奶(原味) 580克/瓶 光明 B20080909A 8.6
三聚氰胺的违法添加案例
2007年深圳检验检疫局从台湾进口的3批“爱族牌”观赏鱼饲料检出三聚氰胺,且三聚氰胺含量较高,分别为0.35 g/kg 、0.47g/kg 、0.51g/kg。这3批鱼饲料共 846千克,货值1016美元。
2007年福建、天津、山东、珠海检验检疫局从进口马来西亚、泰国、秘鲁的鱼粉(HS编码均为2301201000)中检出三聚氰胺阳性,已依法对进口鱼粉作出 退货处理。
据美国食品药品管理局(FDA)官方消息,美国FDA首次在美国国内生产的饲料中发现含有三聚氰胺,有关企业已经开始自动召回相关产品。含有三聚氰胺的饲料添加剂来自俄亥俄州托莱多市Tembec BTLSR公司和科罗拉多州约翰斯敦市Uniscope公司。Tembec公司生产AquaBond和Aqua-Tec II黏合剂,主要用于出口,同时向Uniscope公司提供生产Xtra-Bond黏合剂的原料,Uniscope公司生产的Xtra-Bond黏合剂主要供应美国市场。上述黏合剂主要用于生产牛、绵羊、山羊、鱼、虾的颗粒饲料。Tembec公司确认,为了增加颗粒饲料的黏性,在产品配方中添加了三聚氰胺。但在美国三聚氰胺禁止用来作为动物或鱼/虾饲料添加剂。
2007年北京检验检疫局从进口澳大利亚的宠物食品(HS编码为2309101000)中检出三聚氰胺阳性,并依法对进口宠物食品作出退货处理。
相关毒性试验
1>试验方法:Oral
摄入方式: 3161 mg/kg
测试对象:Rodent - rat
毒性类型:acute
毒性作用: 1.Details of toxic effects not reported other than lethal dose value
2>试验方法:Inhalation
摄入方式: 3248 mg/m3
测试对象:Rodent - rat
毒性类型:acute
毒性作用: 1.Details of toxic effects not reported other than lethal dose value
3>试验方法:Intraperitoneal
摄入方式: 3200 mg/kg
测试对象:Rodent - rat
毒性类型:acute
毒性作用: 1.Sense Organs and Special Senses (Eye) - lacrimation
2.Behavioral - tremor
3.Lungs, Thorax, or Respiration - cyanosis
4>试验方法:Unreported
摄入方式: 6 mg/kg
测试对象:Rodent - rat
毒性类型:acute
毒性作用: 1.Details of toxic effects not reported other than lethal dose value
5>试验方法:Oral
摄入方式: 3296 mg/kg
测试对象:Rodent - mouse
毒性类型:acute
毒性作用: 1.Details of toxic effects not reported other than lethal dose value
6>试验方法:Intraperitoneal
摄入方式: 800 mg/kg
测试对象:Rodent - mouse
毒性类型:acute
毒性作用: 1.Sense Organs and Special Senses (Eye) - lacrimation
2.Behavioral - tremor
3.Lungs, Thorax, or Respiration - cyanosis
7>试验方法:Unreported
摄入方式: 1 mg/kg
测试对象:Rodent - mouse
毒性类型:acute
毒性作用: 1.Details of toxic effects not reported other than lethal dose value
8>试验方法:Administration onto the skin
摄入方式: >1 mg/kg
测试对象:Rodent - rabbit
毒性类型:acute
毒性作用: 1.Details of toxic effects not reported other than lethal dose value
9>试验方法:Oral
摄入方式: 21840 mg/kg/4W-C
测试对象:Rodent - rat
毒性类型:MutipleDose
毒性作用: 1.Behavioral - food intake (animal)
2.Kidney, Ureter, Bladder - other changes
3.Nutritional and Gross Metabolic - weight loss or decreased weight gain
10>试验方法:Oral
摄入方式: 32760 mg/kg/13W-C
测试对象:Rodent - rat
毒性类型:MutipleDose
毒性作用: 1.Kidney, Ureter, Bladder - other changes
2.Related to Chronic Data - death
11>试验方法:Oral
摄入方式: 21 mg/kg/14D-C
测试对象:Rodent - rat
毒性类型:MutipleDose
毒性作用: 1.Kidney, Ureter, Bladder - inflammation, necrosis, or scarring of bladder
2.Nutritional and Gross Metabolic - weight loss or decreased weight gain
12>试验方法:Inhalation
摄入方式: 58 ug/m3/17W-I
测试对象:Rodent - rat
毒性类型:MutipleDose
毒性作用: 1.Liver - other changes
2.Blood - changes in serum composition (e.g. TP, bilirubin, cholesterol)
3.Biochemical - Enzyme inhibition, induction, or change in blood or tissue levels - transaminases
13>试验方法:Oral
摄入方式: 93600 mg/kg/13W-C
测试对象:Rodent - mouse
毒性类型:MutipleDose
毒性作用: 1.Kidney, Ureter, Bladder - other changes
14>试验方法:Oral
摄入方式: 50400 mg/kg/14D-C
测试对象:Rodent - mouse
毒性类型:MutipleDose
毒性作用: 1.Kidney, Ureter, Bladder - inflammation, necrosis, or scarring of bladder
15>试验方法:Administration into the eye
摄入方式: 500 mg/24H
测试对象:Rodent - rabbit
毒性类型:SkinEyeIrrition
毒性作用: 1.Mild
16>试验方法:
摄入方式: 78 ug/well
测试对象:Bacteria - Escherichia coli
毒性类型:Mutation
毒性作用:
17>试验方法:Oral
摄入方式: 1 mg/kg
测试对象:Rodent - mouse
毒性类型:Mutation
毒性作用:
18>试验方法:Oral
摄入方式: 195 mg/kg/2Y-C
测试对象:Rodent - rat
毒性类型:Tumorigenic
毒性作用: 1.Tumorigenic - Carcinogenic by RTECS criteria
2.Kidney, Ureter, Bladder - tumors
19>试验方法:Oral
摄入方式: 197 mg/kg/2Y-C
测试对象:Rodent - rat
毒性类型:Tumorigenic
毒性作用: 1.Tumorigenic - Carcinogenic by RTECS criteria
2.Kidney, Ureter, Bladder - tumors
20>试验方法:Oral
摄入方式: 162 mg/kg/2Y-C
测试对象:Rodent - rat
毒性类型:Tumorigenic
毒性作用: 1.Tumorigenic - equivocal tumorigenic agent by RTECS criteria
2.Kidney, Ureter, Bladder - tumors
21>试验方法:Inhalation
摄入方式: 500 ug/m3,male 17 week(s) pre-mating
测试对象:Rodent - rat
毒性类型:Reproductive
毒性作用: 1.Reproductive - Paternal Effects - spermatogenesis (incl. genetic material, sperm morphology, motility, and count)
2.Reproductive - Fertility - pre-implantation mortality (e.g. reduction in number of implants per femaletotal number of implants per corporalutea)
3.Reproductive - Effects on Embryo or Fetus - fetal death
编辑本段家庭如何检测奶制品中是否含有三聚氰胺
(1) 检测液体奶中是否含有三聚氰胺
三聚氰胺微溶于水,常温下,在水中的溶解度仅为0.33%,也就是说100克奶中仅可以加入0.33克三聚氰胺。而100克牛奶中蛋白质的含量为3克左右,也就是说100克奶中加入三聚氰胺后,如造假加水,只能加入10克水。这对于造假来说,利润太小,风险又大。此外,最重要的是,三聚氰胺的水溶液呈碱性,如果在牛奶中加入三聚氰胺,其PH值会接近8,通过PH计很容易就能测出来。
而三聚氰胺在奶粉制造过程中,要加入就容易多了。这是因为三聚氰胺的溶解度随温度的升高而快速增加,在100℃时,三聚氰胺在水中的溶解度达到5.14%。而奶粉制造过程中,要杀菌和喷雾造粒,温度都在100℃左右。
还有更简单的方法就可以证明三聚氰胺是谁加入的,那就是测一下不同批次和生产日期奶粉中三聚氰胺的含量,如果不同批次和生产日期奶粉中三聚氰胺的含量差别很小,那就可以证明是奶粉生产过程中加的三聚氰胺,因为如果是奶农加入的,这么多奶农,有的加的多,有的加的少,有良心的还可能没有加,那么不同批次的奶粉中三聚氰胺含量波动很大,而如果是奶粉生产过程中加入的,由于有标准的工艺和自动化设备,不同批次的奶粉中三聚氰胺含量波动很小。
教你测试奶粉中是否含三聚氰胺(详细步骤)
由于奶粉安全影响到孩子的健康,这对家长是头等大事。想了一个简易方法给大家,仅供参考。
(2)测试奶粉中是否含三聚氰胺:
1。按比平常浓的分量用热水冲奶粉,充分搅拌到不见固块,然后放入冰箱,待牛奶静置降温。
2。准备黑布一块和空杯一个。把黑布蒙在空杯口上作为过滤器。
3。将冷却的牛奶倒在黑布上过滤。
4。如果有白色固体滤出,则用清水冲洗几次,排除其它可溶物。
5。如果冲洗后发现有白色晶体,可以将晶体放入清水中,该晶体如果沉入水底。那就很可能是三聚氰胺,这种奶粉不能用了。
这种方法可能无法发现微量的三聚氰胺,但微量的三聚氰胺使孩子得结石的可能性也低得多,至少可以把把关。
以上方法仅供参考。
编辑本段专业的化学检测法测试三聚氰胺
GC-MS法测定动物食品中的三聚氰胺
Spectra-Quad实现三聚氰胺含量在线检测
超高效液相色谱_电喷雾串联质谱法测定饲料中残留的三聚氰胺
反相高效液相色谱法测定饲料中三聚氰胺的含量
高效液相色谱-二极管阵列法测定高蛋白食品中的三聚氰胺
高效液相色谱法(HPLC)测定饲料中三聚氰胺的含量
高效液相色谱-四极杆质谱联用测定饲料中三聚氰胺含量
固相萃取与高效液相色谱联用测定宠物食品中三聚氰胺
液相色谱串联质谱法(LC-MSMS)分析宠物食品中三聚氰胺
液相色谱-串联质谱法测定饲料中三聚氰胺残留
GC-MS法测定动物食品中的三聚氰胺
2.1仪器与条件
Agilent1100高效液相色谱仪(美国,Agilent公司)二极管阵列检测器(DAD),检测波长240nm,柱温:40℃。
(1)AgelaVenusilTMASBC18(4.6×250mm)缓冲液:10mM柠檬酸,10mM庚烷磺酸钠流动相:缓冲溶液:乙腈=85:15流速:1.0mL/min。
(2)AgelaVenusilTMASBC8(4.6×250mm)流动相:缓冲液:乙腈=85:15缓冲液:10mM柠檬酸,10mM辛烷磺酸钠,调pH为3.0流速:1.0mL/min
离子交换固相萃取柱AgelaClearnertTMPCX(北京艾杰尔科技有限公司)
2.2试剂与样品
宠物饲料样品(农业部饲料供应中心提供)甲醇、乙腈为北京艾杰尔科技有限公司提供氨水、乙酸铅、三氯乙酸、均购于北京化学试剂公司三聚氰胺标准品、柠檬酸、辛烷磺酸钠(Sigma公司)甲醇为色谱纯,其他均为化学纯。
3实验方法
3.1样品前处理方法
(1)标准样品配制:
取50mg三聚氰胺标准品,以20%甲醇溶解定容至50mL得到1000ppm的标准溶液,使用时,以提取液(0.1%三氯乙酸)稀释至所要的浓度。
(2)提取:
称取饲料样品5g,加入50ml0.1%三氯乙酸提取液,充分混匀,加入2mL2%乙酸铅溶液,超声20min。
然后取部分溶液转移至10mL离心管中,8000rpm/min离心10min,取上清液3mL过混合型阳离子交换小柱(PCX)。
(3)净化(PCX小柱,60mg/3mL):
a)活化及平衡:3mL甲醇,3mL水
b)上样:加入提取液3mL
c)淋洗:3mL水3mL甲醇弃去淋洗液并将小柱抽干。
d)洗脱:5mL5%氨化甲醇(v/v)洗脱。(5%氨化甲醇的配制:5mL氨水+95mL甲醇)。
e)浓缩:50℃,氮气吹干,20%甲醇/水定容至2mL,HPLC分析或衍生后GC/MS分析。
3.2HPLC检测方法
3.2.1三聚氰胺HPLC-UV检测方法
三聚氰胺是强极性化合物,在传统的反相C18柱上保留很差,需要用离子对试剂色谱方法才能有良好的保留与分离,按照美国食品药品监督管理局(FDA)的三聚氰胺检测方法和中国农业部公布的三聚氰胺检测方法,采用艾杰尔(Agela)ASB系列亲水色谱柱,可以得到良好的分离效果,分析色谱图如下:
图2VenusilASB色谱柱分离三聚氰胺的谱图
(a)色谱柱:VenusilASBC84.6×250mm标准:FDA方法流动相:缓冲液:乙腈=85:15缓冲液:10mM柠檬酸,10mM辛烷磺酸钠,调pH为3.0流速:1.0mL/min柱温:40oC波长:240nm
(b)色谱柱:VenusilASB-C184.6×250mm标准:中国农业部颁标准方法缓冲液:10mM柠檬酸,10mM庚烷磺酸钠流动相:缓冲溶液:乙腈=85:15流速:1.0mL/min柱温:40℃波长:240nm
3.2.2三聚氰胺LC-MS检测方法
由于FDA公布的HPLC-UV方法中,流动相添加了离子对试剂,因此限制了液质联用方法的使用但不用离子对试剂色谱方法,三聚氰胺在传统的C18柱上保留很差,不能得到较好的分离定量〔3〕。
基于此问题,艾杰尔科技公司自主开发了新的方法,采用艾杰尔(Agela)ASB系列亲水色谱柱,不用离子对试剂也能得到有效的保留与分离。因此方法中流动相不含离子对试剂,可以用于质谱检测。
与FDA2007年4月公布的《UpdatedFCCDevelopmentalMelamineQuantitation(HPLC-UV)》相比较,该方法大大降低了最低检测限(MSD:0.5ppmUV:2ppm),提高了检测灵敏度。
以该方法分别在ASB-C84.6×250mmASB-C184.6×250mm得到的谱图如下:
图3LC-MS方法检测三聚氰胺的谱图
缓冲液:10mM的NH4AC流动相:Buffer::ACN=95:5流速:1.0mL/min进样量:样品先用70%ACN溶解成约1mg/mL,用ACN稀释成0.1mg/mL,进10uL柱温:40℃波长:240nm
4结果与讨论
4.1阳离子交换柱(PCX)
三聚氰胺呈弱碱性(弱阳离子化合物),净化过程一般应选择阳离子交换柱。混合型的阳离子交换柱(PCX)通过将磺酸基团(-SO3H)键合在极性高聚物聚苯乙烯/二乙烯苯(PEP)吸附剂上,具有阳离子交换和反相吸附两种机理,并具有以下优点:
a)可通过两种不同溶液的洗涤(水/一定pH值的缓冲溶液和有机溶剂),使样品更干净,提高检测的灵敏度。
b)批次重复性好。
c)回收率高,重现性好,即使小柱跑干也可以得到较高回收率。
4.2LC-MS方法优点:
(1)检测过程简便:无须添加离子对试剂,三聚氰胺就可得到良好的保留与分离,避免了配制离子对流动相的复杂过程。
(2)提高了检测的灵敏度:无离子对试剂,可以用于质谱检测器,大大降低了最低检测限(MSD:0.5ppmUV:2ppm)。
(3)降低了检测成本:不用离子对试剂,就不再需要买价格较贵的离子对试剂了,从而降低了检测成本。
(4)延长了色谱柱的使用寿命:避免了使用离子对试剂减少色谱柱寿命的影响。
(5)该方法所使用的色谱柱具有通用性:无论是用FDA方法、中国农业部部颁标准方法和本公司开发的LC-MS方法,使用艾杰尔(Agela)ASB系列亲水色谱柱均能得到一个很好的检测结果,从而给客户提供了多种选择空间。
国家食品质量监督检测中心有关人士说,在现有的国家标准奶粉检测中,主要进行蛋白质、脂肪、细菌等检测。三聚氰胺属于化工原料,是不允许添加到食品中的,所以现有标准不会包含相应内容。也就是说,三聚氰胺不属于常规检测项目,正常情况下,很少有人会想到去检测它。
来源:中科院上海有机化学研究所 化学专业数据库