苯环/甲基 的红外吸收峰值范围是多少?
酚羟基一般在3200-3400左右
甲基伸缩振动在2900附近,变形振动在1380,1430附近
酯基在1600-1700有极强的吸收,主要是羰基的吸收峰
苯环骨架振动在1600,1580附近有吸收
紫外吸收峰在237.5nm
一般不会,只要这个红外线没有加热的功效就行,楼主还在用TDI啊,一般都用MDI了,TDI毒性比较大,在受热的情况下有可能分解出剧毒物质
参考:甲苯二异氰酸酯为无色或淡黄色有刺激性臭味的透明液体,在紫外线照射下变黄;在合金钢容器中加热易聚合;能与羟基化合物中的羟基、水、胺及具有活泼氢的化合物反应生成氨基甲酸酯、脲、氨基脲及双缩脲等
鉴别方法:
加入高锰酸钾,能使之褪色的是甲苯和二甲苯,不能褪色的是苯;然后蒸馏,先蒸馏出来的是甲苯,后出来的是二甲苯。
原因:
1、苯环无碳碳双键,而是一种介于单键与双键的独特的键;不能使酸性高锰酸钾褪色。
2、甲苯沸点110.6℃,二甲苯沸点137~140℃。
扩展资料
1、苯参加的化学反应大致有3种:一种是其他基团和苯环上的氢原子之间发生的取代反应;一种是发生在苯环上的加成反应。
2、二甲苯广泛用于涂料、树脂、染料、油墨等行业做溶剂;用于医药、炸药、农药等行业做合成单体或溶剂;也可作为高辛烷值汽油组分,是有机化工的重要原料。还可以用于去除车身的沥青。医院病理科主要用于组织、切片的透明和脱蜡。
3、化学性质活泼,与苯相像。可进行氧化、磺化、硝化和歧化反应,以及侧链氯化反应。甲苯能被高锰酸钾氧化成苯甲酸。
参考资料来源:百度百科-苯
参考资料来源:百度百科-甲苯
参考资料来源:百度百科-二甲苯
红外测油仪实质就是根据特殊情况的需要,限定了波长范围的红外光谱仪。具有专业性强、稳定性好、快速、简便等特点。因此如何认识红外测油仪先要对红外光谱仪有所了解。
红外光谱仪的主要原理:由于物质在红外光照射下,只能吸收与其分子振动、转动频率相一致的红外光线,因此不同物质只能吸收一定波长的入射光而形成各自特征的红外光谱,而对一定波长红外线吸收的强弱则与物质的浓度有关。根据这一原理可进行物质定性、定量分析及复杂分子的结构研究。
真正意义上对光谱的研究是从英国科学家牛顿(Newton) 开始的。1666 年牛顿证明一束白光可分为一系列不同颜色的可见光,而这一系列的光投影到一个屏幕上出现了一条从紫色到红色的光带。牛顿导入“光谱”(spectrum)一词来描述这一现象。牛顿的研究是光谱科学开端的标志。
1881年Abney 和Festing 第一次将红外线用于分子结构的研究。他们Hilger光谱仪拍下了46个有机液体的从0.7到1.2微米区域的红外吸收光谱。由于这种仪器检测器的限制,所能够记录下的光谱波长范围十分有限。
1908 年Coblentz 制备和应用了用氯化钠晶体为棱镜的红外光谱议;1910 年Wood 和Trowbridge6 研制了小阶梯光栅红外光谱议;1918 年Sleator 和Randall 研制出高分辨仪器。 20 世纪40 年代开始研究双光束红外光谱议。1950 年由美国PE 公司开始商业化生产名为Perkin-Elmer 21 的双光束红外光谱议。与单光束光谱仪相比,双光束红外光谱议不需要由经过专门训练的光谱学家进行操作,能够很快的得到光谱图。Perkin-Elmer 21 的问世大大的促进了红外光谱仪的普及。
现代红外光谱议是以傅立叶变换为基础的仪器。该类仪器不用棱镜或者光栅分光,而是用干涉仪得到干涉图,采用傅立叶变换将以时间为变量的干涉图变换为以频率为变量的光谱图。傅立叶红外光谱仪的产生是一次革命性的飞跃。
大家对于红外光谱仪的发展已有所了解,那么现在了解一下三波数红外光谱法。
矿物油是由烷烃、环烷烃及芳香烃组成的混合物。早期的各种定量方法都是测量混合组分中部分化合物某一特性基团的特殊吸收(发射),进而推算混合组分总量;一旦具有该特性基团的化合物的相对含量发生变化,吸收系数必然相应变化,所以都存在“标准油”的选择问题,长期以来未能统一。
GB/T 16488-1996的颁布首选了三波长红外光谱法作为统一方法,同时兼顾国情,保留了非分散红外法。
下文主要摘自红外光度法测定水中矿物油的技术和应用 韩子兴,肖丽
1、 非分散红外法的原理及技术局限性
非分散红外法以石油类物质的CH3、 CH2在3.3~3.6 µm 的特征吸收作为测定油含量的基础。该法只利用了矿物油中CH3、 CH2两个特性基团的红外吸收进行测定,没有参考其中芳环的响应,存在“以偏概全”之不足。为考察应用中的局限性,用不同配比甚至极端比例的混合烃进行试验,结果见表1。
No 烃组成 烷烃%(V) 实测值mg/L 回收率%
1 10:0:0 100 156 142
2 7:3:0 100 137 125
3 6.5:2.5:1 90 136 124
4 9:10:1 95 123 112
5 3:7:0 100 122 111
6 9:2:1 91.7 116 105
7 5:3:1 88.9 110 100
8 4:2:1 85.7 109 99.1
9 7:0:3 70 105 95.5
10 0:10:0 100 104 94.5
11 1:2:1 75 86 78.2
12 1:8:4 69.2 79 71.8
13 0:7:3 70 78 70.9
14 3:0:7 30 52 47.3
15 0:3:7 30 36 32.7
16 0:0:10 0 10 9.1
表1
注:烃组成为正十六烷:姥鲛烷:甲苯(V/V);校准油配制值为110mg/L(5:3:1V/V)
由表1可见,非分散红外测油仪对标准油的依赖性确实太大,其所响应的只是烃组成中的CH3、 CH2。回收率对烷烃%(V)的相关性非常显著,P%=4.5+0.79*烷烃%(V),r=0.94;对芳环的响应则未给予应有的考虑,随着样品与校准油中芳烃含量差异的加大,误差也相应增大。
2 、三波长红外光谱法
2.1 三波长红外光谱法的技术路线
矿物油是多种烃的混合物,烃类又存在同系物,无法获得各结构单元、组成比例完全一样的标样,没有常规定量方法的计量关系可以利用。ISO组织用“毋需标准样品的红外光谱定量法”-官能团分析法[1,2]推出了全新的红外分光光度法[3]。
矿物油从化学结构上看主要含CH3、 CH2、芳环三种基团。其组成中的“任一化合物”均可由这三种基团“拼装”而成,因此可分别测定矿物油中的上述三种基团的量,全部基团累加后可得总量。
2.2 数学模型建立及其参数标定
溶液在某一波数处的吸收强度正比于其中某种基团的浓度,且吸收具有加和性[2]。各种基团有不同的吸收强度,所以基团累加时应以各类基团的吸光系数为权,吸光度为权重,加权累计[2]。CH2、 CH3、芳环的C-H键伸缩振动吸收分别在2930cm-1、2960 cm-1、3030cm-1处。由吸收的加和性可知,三波数处的吸光度A2930、A2960、A3030分别为三类基团吸收的分类汇总值,所以其原始数学模型为:
C=x* A2930+y* A2960+z* A3030 (1)
C为溶剂中矿物油的浓度,x、y、z 分别为CH2、 CH3、芳环的C-H键的吸光度系数。因脂烃基对芳环的吸收有叠加,尽管很小,但芳环的吸光度系数大[2],易引起大的误差,需引入校正系数F对A3030修正:
C=x* A2930+y* A2960+ z*( A3030- A2930/F) (2)
此即“三波长红外光谱法”的基本数学模型。
理论上,吸收系数为特定值,但随仪器精度、操作条件有差别,可借助模型化合物的纯物质标定本仪器的值[4]。分别配制富含CH2(如正十六烷)、 CH3(如姥鲛烷或异辛烷)、芳环(如甲苯或苯)基团的单一标准溶液以标定x,y,z:在3400-1~2400cm-1之间进行红外光谱扫描,模型化合物的红外光谱见图1。
图1
逐个量取3030 cm-1、2960 cm-1、2930 cm-1三处的吸光度,依次代入(2)式,得三联方程组,其中F为正十六烷的A2930/ A3030值。
对一特定仪器,在特定条件下,x、y、z、F保持稳定,Nicolet 750Ⅱ红外光谱仪的响应系数见表2。
表2 Nicolet 750 Ⅱ 红外光谱仪的响应系数
光源 溶剂 x y z f
近红外 CCL4 114.19 259.44 1582.5 82.5
中红外 CCL4 143.31 199.2 964.5 85.2
中红外 TTE 177.16 230.65 1015.1 78.0
2.3 系数验证及适应性检验
为验证校正系数,分别用国标样及自配B重油标样进行了回收率试验,结果见表3。
表3 国际样及B重油的测定结果
标样名称 标准值(mg/L) 测定值(mg/L) P% RE%
国际矿物油7330103 15.5±1.4 14.7 94.8 -5
国际矿物油7330401 20.4±2.4 19.5 95.6 -4
国际矿物油7330104 24.9±2.1 24.1 96.8 -3
B重油 10.0 9.95 99.5 -0.5%
试验结果表明,本校正系数的平均回收率为96.7%,相对误差在-0.5%~-5%之间,能满足实用测定要求。
三波长红外光谱法充分兼顾了链烷、环烷及芳香烷的共同影响,能适应各种组成比例混合烃的测定,避开了“标准油”问题,具有很大的优越性。其对烃组成比例变化的适应性验证见表4。
表4表明,三波长红外光谱法对各种烃类组成比例,甚至极端比例的样品均具有很好的响应,不需在每次测定样品前提取或配制“标准油”,充分显示出该法对样品中烃类组成变化所特有的适应性。
表4 烃组成变化对三波长法的影响(配制值105mg/L)
烃组成 9:2:1 4:2:1 1:2:4 1:8:4 9:10:1 10:0:0 0:10:0 0:0:10
实测值mg/L 113.4 111.6 104.9 113.2 115.2 110.7 109.4 99.3
回收率% 108 106.3 99.9 107.8 109.7 105.4 104.2 94.6
芳烃%(V) 8.3 14.3 57.1 30.8 5 0 0 100
注:烃组成为正十六烷:姥鲛烷:甲苯(V/V).
事实证明,三波数红外光谱法是最能反应客观事实。无论实际水样中存在的矿质油是不是“标准油”,红外三波数法都能客观的检测出来。
现在回来文章的主题,真正的红外三波数测油仪是扫描2930cm-1、2960 cm-1、3030cm-1
三个波数,检测这三点的吸光度值,通过吸光度值来计算油的浓度。
不是真正三波数测油仪,只测一或两个点,然后根据这个点的吸光度值和“标准油”的组份比例来推到出的油的浓度。
区分真伪三波数测油仪:
1、是否做标准曲线。真正的三波数测油仪是不用做标准曲线的,因为三波数测油仪是分别测2930cm-1、2960 cm-1、3030cm-1的吸光度值。所以不用做标准曲线。
2、有的测油仪也声称不做标准曲线,做校正系数。其实是把标准曲线隐藏起来了,并不是真正意义上的三波数。实质还是非分散测油仪。
3、最有力的证据证明真正三波数测油仪的方法就是改变油中物质的成分比例,比如表1。然后测量,如果是三波数的就完全可以测出油的实际含量,如果不是三波数测出来的值就不准了。
1、吸收的波长不一样。红外吸收光谱法中,样品吸收的是红外波段的电磁辐射;紫外可见光谱法中,样品吸收的是紫外-可见波段的电磁辐射。
2、仪器原理有区别。红外光谱法应用的是傅立叶变换红外光谱,红外光经过迈克尔逊干涉仪发生干涉后照射样品,采集到样品的干涉图再经过傅立叶变换得到样品的光谱; 而紫外-可见吸收光谱是用双光路分别检测样品和参比的透过光强,然后做差得到的样品光谱。
3、光谱反映的意义不同。红外吸收光谱能给出样品分子的振-转结构信息,可以用于鉴定分子结构; 紫外-可见光谱给出的是分子的电子态跃迁信息,用于确定分子的激发性质。
扩展资料:
物质的紫外吸收光谱基本上是其分子中生色团及助色团的特征,而不是整个分子的特征。如果物质组成的变化不影响生色团和助色团,就不会显著地影响其吸收光谱,如甲苯和乙苯具有相同的紫外吸收光谱。
另外,外界因素如溶剂的改变也会影响吸收光谱,在极性溶剂中某些化合物吸收光谱的精细结构会消失,成为一个宽带。所以,只根据紫外光谱是不能完全确定物质的分子结构,还必须与红外吸收光谱、核磁共振波谱、质谱以及其他化学、物理方法共同配合才能得出可靠的结论。
参考资料来源:百度百科-紫外可见吸收光谱法
参考资料来源:百度百科-红外吸收光谱法
1800年英国天文学家赫谢尔(Hershl)用温度计测量太阳光可见光区内\外温度时,发现红色光以外黑暗部分的温度比可见光部分高,这种人类视觉看不见的红外光,称为红外辐射或红外线。
图9.2.1 地下污染区的探地雷达检测剖面图
红外线被发现后,逐渐被应用到各个方面,在化学上,利用不同物质对不同波长红外辐射的吸收程度不同,用来推断物质分子的组成和结构。这种方法称之为红外分子吸收光谱法,简称红外吸收光谱法或红外光谱法。常以IR(Infrared)为缩写。例如1892年就发现凡是含有甲基的物质,都会强烈地吸收3.4 μm波长的红外光。当不同波长(波数)的红外辐射依次照射到样品时。某些波长的辐射能被样品选择吸收而减弱,于是形成红外吸收光谱。一般纵坐标以百分透过率标度,定性分析多用这种标度,定量分析多用吸光度(A)标度。横坐标以波数ν(cm-1)标度。波数是指每cm长度上波的数目,它与波长成倒数关系,见如下关系式
环境地球物理学概论
由于不同物质具有不同的分子结构,就会吸收不同的红外辐射能量而产生相应的红外吸收光谱,用仪器测量物质的红外吸收光谱,然后根据这种物质的红外特征吸收峰位置、数目、相对强度和形状(峰宽)等参数,就可推断样品中有哪些基团,并确定其分子结构,这就是红外光谱的定性和结构分析的依据。同一物质不同浓度时,在同一吸收峰位置具有不同的吸收峰强度,在一定条件下,试样物质的浓度与吸收峰的强度成正比关系,这就是红外吸收光谱定量分析的依据。
红外光谱的范围很广,为0.75~1000 μm(13 300~10 cm-1)。按应用波段不同,红外光谱划分为三个区域,括号内数字为波数范围。
近红外(NIR)区:0.75~2.5 μm(13 300~4000 cm-1);
中红外(MIR)区:2.5~25 μm(4000~400 cm-1);
远红外(FIR)区:25~1000 μm(400~10 cm-1)。
近红外区是可见光红色末端的一段,只有X-H或多键振动的倍频和合频出现在该区,其应用有限,仅在研究含氢原子的官能团,如O-H,N-H和C-H的化合物,特别是醇、酚、胺和碳氢化合物上,以及研究末端亚甲基、环氧基和顺反双键等时比较重要。在研究化合物的氢键方面也很有用。
中红外区是红外光谱中应用最早和最广的一个区。波数范围在4000~1000 cm-1区内的吸收峰为化合物中各个键的伸缩和弯曲振动,故为双原子构成的官能团的特征吸收。伸缩和弯曲振动都是基团内部原子间化学键的振动。波数范围1400~650 cm-1区的吸收峰大多是整个分子中多个原子间键的复杂振动,可以得到官能团周围环境的信息,用于化合物的鉴定。
远红外区应是200~10 cm-1。由于一般红外仪的中红外范围是5000~650 cm-1或5000~400 cm-1,所以,650~200 cm-1也包括在远红外区。含重原子的化学键伸缩振动和弯曲振动的基频在远红外光区,如C-X键的伸缩振动频率为650~450 cm-1,弯曲振动频率为350~250 cm-1,均是强峰。
不同物质对红外光谱的吸收,是基于分子受到红外光的辐射,产生振动能级跃迁,在振动时伴有偶极距改变者就吸收红外光子,形成红外吸收光谱,若用单色的可见光照射,入射光被样品散射,在入射光垂直面方向测到的散射光,构成拉曼光谱。所以说,只有分子在振动时有偶极距(双键)改变时,才会产生明显的吸收峰。图9.2.2是水和二氧化碳的吸收光谱。分子吸收一定频率的红外光后,其振动能级由基态(υ=0)跃迁到第一激发态时产生的吸收峰称为基峰。而由基态跃迁到第二激发态、第三激发态所产生的吸收峰,称为二倍频峰、三倍频峰等。三倍频峰以上因其跃迁几率很小,一般都很弱而不能被检测。
图9.2.2 水和二氧化碳的吸收光谱
吸收峰的强度:分子吸收光谱的吸收峰强度,可用摩尔吸光系数ε表示。吸收峰的强弱取决于基团偶极距改变的难易程度。基团的极性越大,吸收峰越强。在红外光谱中,吸收峰的强度有以下4种表达式。
(1)透过率(percent transmission)
环境地球物理学概论
式中:T为透射比(transmittance);I0为入射光强度;I为透过光强度。
(2)吸收率(percent absorption)100-T
(3)吸光度(absorbance)
环境地球物理学概论
式中:A为吸光度;T0为波数υ处吸收峰基线的透射比;T为峰顶的透射比。
图9.2.3给出了甲苯的芳香烃吸收峰(3050 cm-1)强度的图。
图9.2.3 甲苯的芳香烃吸收峰(3050 cm-1)强度
(4)摩尔吸光系数(molar absorptivity)
根据比耳定律吸收强度与样品浓度和光穿透的距离成比例。
环境地球物理学概论
式中:c为溶液浓度,mol/L;l为吸收池厚度,cm;
lg(及lg(是在波数υ(cm-1)处的吸光度。
下面介绍一种非色散红外(NDIR)对大气中CO2的测量原理及方法
NDIR(Non-DispersiveInfraRed)非扩散红外气体分析方法是基于吸收光谱原理的一种分析方法。是一种先进的红外分析法,如图9.2.4所示为一般吸收光谱方法的基本原理图。
图9.2.4 一般吸收光谱法示意图
当激光发射一束光强为I0激光到吸收池,由于气体吸收使光强变小为I,探测器可以探测到这一变化。气体的吸收公式为
环境地球物理学概论
γ(ν)为吸收系数,C为吸收池内气体组分的浓度,L为吸收池长度。
γ(ν)当吸收池内的压力比较小的时候,γ(υ)近似为一洛仑兹线型(Lorentzian profile),严格来说为福依特线型(Voigt profile)。激光束到达探测器,探测器产生电信号,电信号可以被微机采集处理。经过对采集数据的Levenberg-Marquardt拟合,又由于L为已知量,可以求得吸收池内气体的浓度。非扩散红外气体分析方法正是基于上式来测量吸收池中气体组分浓度。
1. 取5mL甲苯+苯甲酸+苯胺混合物于100ml分液漏斗中,加入2mol/L HCl至pH=3,充分摇动,此时苯胺与HCl反应生成易溶于水的苯胺盐酸盐。加入10mL乙醚萃取(5~8))min,静置,分离水层和醚层。
2. 于水层中加入5%NaOH至pH=10,充分摇动,此时苯胺游离出来,再加入10mL乙醚萃取 (5~8) min,静置,分离水层和醚层。此时苯胺进入乙醚层,将乙醚挥发除去,剩余物即为苯胺,采用KBr涂片法测其红外光谱,解析谱图并与萨特勒标准红外谱图相对照,鉴定其结构。
3. 将第一次分离的乙醚层水洗除去残余HCl,再用1mol/L NaHCO3调至pH 8~9,并适当过量,使水相的体积约为10mL。此时苯甲酸生成溶于水的苯甲酸钠,加入10 mL乙醚,萃取 (5~8) min,分离乙醚层和水层。
4. 将乙醚层常压蒸馏,截取甲苯馏分,用KBr涂片法,测其红外光谱。
5. 水层用4mol/L HCl酸化至pH2~3,此时苯甲酸钠转变为苯甲酸,过滤得苯甲酸粗品,用水重结晶得苯甲酸纯品,于110℃恒温烘箱干燥2h,用固体压片法,测定红外光谱,鉴定其结构。
甲醛去除方法主要有:
物理吸附
汉紫是以凹凸棒土及海泡石为基础,加入硅藻土、电气石等其它天然矿物质,经过特殊加工工艺制作而成,其内部孔隙的孔径在0.27-0.98纳米之间,呈晶体排列。同时具有弱电性,甲醛、氨、苯、甲苯、二甲苯的分子直径都在0.4-0.62纳米之间,且都是极性分子,因此它具有优先吸附甲醛、苯、TVOC等有害气体的特点,达到净化室内空气的效果。
通风法
通过室内空气的流通,可以降低室内空气中有害物质的含量,从而减少此类物质对人体的危害。冬天,人们常常紧闭门窗,室内外空气不能流通,不仅室内空气中甲醛的含量会增加,氡气也会不断积累,甚至达到很高的浓度。
优点:效果好,无成本 缺点:时间长,一般要三年以上甲醛才可以去除。
传统法
300克红茶泡热茶两脸盆水,放入居室中,并开窗透气,48小时内室内甲醛含量将下降90%以上,刺激性气味基本消除。还有就是选择在室内放一些菠萝等水果。
优点:感官上好像气味小了。 缺点:只是用一种气味把装修的气味遮盖了,有害气体一直还存在于房间中。