建材秒知道
登录
建材号 > 乙酸 > 正文

肝乙酸高是什么

细心的耳机
爱笑的冰淇淋
2022-12-22 17:27:46

肝乙酸高是什么?

最佳答案
失眠的老师
结实的期待
2026-02-09 17:14:26

肝脏生成乙酰乙酸的直接前体是羟甲基戊二酸单酰辅酶A(HMGCoA)

两个乙酰辅酶A在乙酰乙酸硫激酶的作用下生产乙酰乙酰辅酶A,后者在HMGCOA合成酶的作用下与另一乙酰辅酶A生成HMGCOA,然后HMGCOA在其裂解酶的作用下生成乙酰乙酸,乙酰乙酸脱氢脱羧分别生成B-羟丁酸和丙酮

最新回答
直率的狗
温柔的薯片
2026-02-09 17:14:26

乙酰CoA 参与的反应:

糖的分解:TCA循环中作为酰基的供体,和草酰乙酸一起进入TCA循环。

糖的生成:不能逆向变成丙酮酸等糖代谢中间产物,只能合成脂肪酸,在变成甘油,再变成磷酸二羟丙酮,在糖原异生成葡萄糖。

脂类的分解:软脂酸的分解,在脂酰CoA的代谢中作为酰基的受体。

酮体的生成:在肝脏的线粒体内,被硫解酶等酶催化生成乙酰乙酸,乙酰乙酸进一步生成丙酮和β-羟丁酸,而酮体可作为能量进入肌肉组织的细胞当中变成乙酰CoA 供能,也可以穿过血脑屏障,进入脑细胞变成乙酰CoA 供能。

脂类的合成:乙酰CoA 为“底物”,合成重要的中间产物,丙二酸单酰CoA,进一步由ACP等催化合成软脂酸。

总的来说肝脏生成的乙酰CoA 有几个代谢途径:

1.进入TCA循环,彻底氧化。

2.脂肪合成的前体

3.作为类固醇的前体,合成胆固醇;3个乙酰CoA 合成一个甲羟戊酸(MVA)

4. 转化为酮体:乙酰乙酸,丙酮,β-羟丁酸

精明的绿草
霸气的火龙果
2026-02-09 17:14:26
酮体(acetone bodies)是脂肪酸在肝脏进行正常分解代谢所生成的特殊中间产物,包括有乙酰乙酸(acetoacetic acid约占30%),β-羟丁酸(β�hydroxybutyric acid约占70%)和极少量的丙酮(acetone)。正常人血液中酮体含量极少(约为0.8?.0mg/dl,0.2�2mM),这是人体利用脂肪氧化供能的正常现象。但在某些生理情况(饥饿、禁食)或病理情况下(如糖尿病),糖的来源或氧化供能障碍,脂动员增强,脂肪酸就成了人体的主要供能物质。若肝中合成酮体的量超过肝外组织利用酮体的能力,二者之间失去平衡,血中浓度就会过高,导致酮血症(acetonemia)和酮尿症(acetonuria)。乙酰乙酸和β-羟丁酸都是酸性物质,因此酮体在体内大量堆积还会引起酸中毒。� 1.酮体的生成过程:� 酮体是在肝细胞线粒体中生成的,其生成原料是脂肪酸β-氧化生成的乙酰CoA。首先是二分子乙酰CoA在硫解酶作用下脱去一分子辅酶A,生成乙酰乙酰CoA。在3-羟-3-甲基戊二酰CoA(hydroxy methyl glutaryl�CoA,HMG�CoA)合成酶催化下,乙酰乙酰CoA再与一分子乙酰CoA反应,生成HMG�CoA,并释放出一分子辅酶。这一步反应是酮体生成的限速步骤。 HMG-CoA裂解酶催化HMG-CoA生成乙酰乙酸和乙酰CoA,后者可再用于酮体的合成。 线粒体中的β-羟丁酸脱氢酶催化乙酰乙酸加氢还原(NADH+H+作供氢体),生成β-羟丁酸,此还原速度决定于线粒体中[NADH+H+]/[NAD+]的比值,少量乙栈酸可自行脱羧生成丙酮。 上述酮体生成过程实际上是一个循环过程,又称为雷宁循环(lynen cycle),两个分子乙酰CoA通过此循环生成一分子乙酰乙酸� 酮体生成后迅速透过肝线粒体膜和细胞膜进入血液,转运至肝外组织利用。� 2.酮体的利用过程� 骨骼肌、心肌和肾脏中有琥珀酰CoA转硫酶(succinyl�CoA thiophorase),在琥珀酰CoA存在时,此酶催化乙酰乙酸活化生成乙酰乙酰CoA。��心肌、肾脏和脑中还有硫激酶,在有ATP和辅酶T存在时,此酶催化乙酰化酸活化成乙酰乙酰CoA。 经上述两种酶催化生成的乙酰乙酰CoA在硫解酶作用下,分解成两分子乙酰CoA,乙酰CoA主要进入三羧酸循环氧化分解。丙酮除随尿排出外,有一部分直接从肺呼出,代谢上不占重要地位肝细胞中没有琥珀酰CoA转硫酶和乙酰乙酸硫激酶,所以肝细胞不能利用酮体。� 肝外组织利用酮体的量与动脉血中酮体浓度成正比,自中酮体浓度达70mg/dl时,肝外组织的利用能力达到饱和。肾酮阈亦为70mg/dl,血中酮体浓度超过此值,酮体经肾小球的滤过量超过肾小管的重吸收能力,出现酮尿症。脑组织利用酮体的能力与血糖水平有关,只有血糖水平降低时才利用酮体。酮体生成的意义� (1)酮体易运输:长链脂肪酸穿过线粒体内膜需要载体肉毒碱转运,脂肪酸在血中转运需要与白蛋白结合生成脂酸白蛋白,而酮体通过线粒体内膜以及在血中转运并不需要载体。� (2)易利用:脂肪酸活化后进入β-氧化,每经4步反应才能生成一分子乙酰CoA,而乙酰乙酸活化后只需一步反应就可以生成两分子乙酰CoA,β-羟丁酸的利用只比乙酰乙酸多一步氧化反应。因此,可以把酮体看作是脂肪酸在肝脏加工生成的半成品。� (3)节省葡萄糖供脑和红细胞利用:肝外组织利用酮体会生成大量的乙酰CoA,大量乙酰CoA 抑制丙酮酸脱氢酶系活性,限制糖的利用。同时乙酰CoA还能激活丙酮酸羧化酶,促进糖异生。肝外组织利用酮体氧化供能,就减少了对葡萄糖的需求,以保证脑组织、红细胞对葡萄糖的需要。脑组织不能利用长链脂肪酸,但在饥饿时可利用酮体供能,饥饿5?周时酮体供能可多达70%。� (4)肌肉组织利用酮体,可以抑制肌肉蛋白质的分解,防止蛋白质过多消耗,其作用机理尚不清楚。� (5)酮体生成增多常见于饥饿、妊娠中毒症、糖尿病等情况下。低糖高脂饮食也可使酮体生成增多

大方的小懒虫
傻傻的夏天
2026-02-09 17:14:26
糖代谢和脂代谢都可生成乙酰coA,然后进入TCA循环进一步分解,其中就都有a酮戊二酸生成.

至于乙酰COA合成酮体我认为是主要存在于脂肪代谢中,是肝脏向肝外供能的方式,葡萄糖没必要大费周折转化为酮体向外供能,虽然理论上行得通

疯狂的苗条
犹豫的曲奇
2026-02-09 17:14:26

临床执业医师考点:脂类代谢

消化主要在小肠上段经各种酶及胆汁酸盐的作用,水解为甘油、脂肪酸等。 脂类的吸收含两种情况: 中链、短链脂肪酸构成的甘油三酯乳化后即可吸收——>肠粘膜细胞内水解为脂肪酸及甘油——>门静脉入血。长链脂肪酸构成的甘油三酯在肠道分解为长链脂肪酸和甘油一酯,再吸收——>肠粘膜细胞内再合成甘油三酯,与载脂蛋白、胆固醇等结合成乳糜微粒——>淋巴入血。

第一节 概述

一、生理功能

(一)储存能量,是水化糖原的6倍

(二)结构成分,磷脂、胆固醇等

(三)生物活性物质,如激素、第二信使、维生素等

二、消化吸收

(一)消化:主要在十二指肠,胰脂肪酶有三种:甘油三酯脂肪酶,水解生成2-单脂酰甘油需胆汁和共脂肪酶激活,否则被胆汁酸盐抑制胆固醇酯酶,生成胆固醇和脂肪酸磷脂酶A2,生成溶血磷脂和脂肪酸。食物中的脂肪主要是甘油三酯,与胆汁结合生成胆汁酸盐微团,其中的甘油三酯70%被胰脂肪酶水解,20%被肠脂肪酶水解成甘油和脂肪酸。微团逐渐变小,95%的胆汁酸盐被回肠重吸收。

(二)吸收:水解产物经胆汁乳化,被动扩散进入肠粘膜细胞,在光滑内质网重新酯化,形成前乳糜微粒,进入高尔基体糖化,加磷脂和胆固醇外壳,形成乳糜微粒,经淋巴系统进入血液。甘油和小分子脂肪酸(12个碳以下)可直接进入门静脉血液。

(三)转运:甘油三酯和胆固醇酯由脂蛋白转运。在脂蛋白中,疏水脂类构成核心,外面围绕着极性脂和载脂蛋白,以增加溶解度。载脂蛋白主要有7种,由肝脏和小肠合成,可使疏水脂类溶解,定向转运到特异组织。

1. 乳糜微粒转运外源脂肪,被脂肪酶水解后成为乳糜残留物。

2. 极低密度脂蛋白转运内源脂肪,水解生成中间密度脂蛋白,(IDL或LDL1),失去载脂蛋白后转变为低密度脂蛋白,

3. 低密度脂蛋白又称β脂蛋白,转运胆固醇到肝脏。β脂蛋白高易患动脉粥样硬化。

4. 高密度脂蛋白由肝脏和小肠合成,可激活脂肪酶,有清除血中胆固醇的作用。

LDL/HDL称冠心病指数,正常值为2.0+_0.7

5. 自由脂肪酸与清蛋白结合,构成极高密度脂蛋白而转运。

第二节 甘油三酯的分解代谢

一、甘油三酯的水解

(一)组织脂肪酶有三种,脂肪酶、甘油二酯脂肪酶和甘油单酯脂肪酶,逐步水解R3、R1、R2,生成甘油和游离脂肪酸。

(二)第一步是限速步骤,肾上腺素、肾上腺皮质激素、高血糖素通过cAMP和蛋白激酶激活,胰岛素和前列腺素E1相反,有抗脂解作用。

二、甘油代谢

脂肪细胞没有甘油激酶,所以甘油被运到肝脏,由甘油激酶磷酸化为3-磷酸甘油,再由磷酸甘油脱氢酶催化为磷酸二羟丙酮,进入酵解或异生,并生成NADH。

三、脂肪酸的氧化

(一)饱和偶数碳脂肪酸的氧化

1. 脂肪酸的活化:脂肪酸先生成脂酰辅酶A才能进行氧化,称为活化。由脂酰辅酶A合成酶(硫激酶)催化,线粒体中的酶作用于4-10个碳的脂肪酸,内质网中的酶作用于12个碳以上的长链脂肪酸。生成脂酰AMP中间物。乙酰acetyl脂酰acyl

2. 转运:短链脂肪酸可直接进入线粒体,长链脂肪酸需先在肉碱脂酰转移酶I催化下与肉碱生成脂酰肉碱,再通过线粒体内膜的移位酶穿过内膜,由肉碱转移酶II催化重新生成脂酰辅酶A。最后肉碱经移位酶回到细胞质。

3. β-氧化:在线粒体基质进行,每4步一个循环,生成一个乙酰辅酶A。

l脱氢:在脂酰辅酶A脱氢酶作用下,α、β位生成反式双键,即Δ2反式烯脂酰辅酶A。酶有三种,底物链长不同,都以FAD为辅基。生成的FADH2上的氢不能直接氧化,需经电子黄素蛋白(ETF)、铁硫蛋白和辅酶Q进入呼吸链。

l水化:由烯脂酰辅酶A水化酶催化,生成L-β-羟脂酰辅酶A。此酶只催化Δ2双键,顺式双键生成D型产物。

l再脱氢:L-β-羟脂酰辅酶A脱氢酶催化生成β-酮脂酰辅酶A和NADH,只作用于L型底物。

l硫解:由酮脂酰硫解酶催化,放出乙酰辅酶A,产生少2个碳的脂酰辅酶A。酶有三种,底物链长不同,有反应性强的巯基。此步放能较多,不易逆转。

4. 要点:活化消耗2个高能键,转移需肉碱,场所是线粒体,共四步。每个循环生成一个NADH和一个FADH2,放出一个乙酰辅酶A。软脂酸经β-氧化和三羧酸循环,共产生5*7+12*8-2=129个ATP,能量利用率为40%。

(二)不饱和脂肪酸的氧化

1. 单不饱和脂肪酸的氧化:油酸在9位有顺式双键,三个循环后形成Δ3顺烯脂酰辅酶A。在Δ3顺Δ2反烯脂酰辅酶A异构酶催化下继续氧化。这样一个双键少2个ATP。

2. 多不饱和脂肪酸的氧化:亚油酸在9位和12位有两个顺式双键,4个循环后生成Δ2顺烯脂酰辅酶A,水化生成D-产物,在β-羟脂酰辅酶A差向酶作用下转变为L型,继续氧化。

(三)奇数碳脂肪酸的氧化

奇数碳脂肪酸经β氧化可产生丙酰辅酶A,某些支链氨基酸也生成丙酸。丙酸有下列两条代谢途径:

1. 丙酰辅酶A在丙酰辅酶A羧化酶催化下生成D-甲基丙二酸单酰辅酶A,并消耗一个ATP。在差向酶作用下生成L-产物,再由变位酶催化生成琥珀酰辅酶A,进入三羧酸循环。需腺苷钴胺素作辅酶。

2. 丙酰辅酶A经脱氢、水化生成β-羟基丙酰辅酶A,水解后在β-羟基丙酸脱氢酶催化下生成丙二酸半醛,产生一个NADH。丙二酸半醛脱氢酶催化脱羧,生成乙酰辅酶A,产生一个NADPH。

(四)脂肪酸的α-氧化

存在于植物种子、叶子,动物脑和肝脏。以游离脂肪酸为底物,涉及分子氧或过氧化氢,对支链、奇数和过长链(22)脂肪酸的降解有重要作用。哺乳动物叶绿素代谢时,经过水解、氧化,生成植烷酸,其β位有甲基,需通过α氧化脱羧才能继续β氧化。

α氧化有以下途径:

1. 脂肪酸在单加氧酶作用下α羟化,需Fe2+和抗坏血酸,消耗一个NADPH。经脱氢生成α-酮脂肪酸,脱羧生成少一个碳的脂肪酸。

2. 在过氧化氢存在下,经脂肪酸过氧化物酶催化生成D-α-氢过氧脂肪酸,脱羧生成脂肪醛,再脱氢产生脂肪酸或还原。

(五)ω-氧化

12个碳以下的脂肪酸可通过ω-氧化降解,末端甲基羟化,形成一级醇,再氧化成醛和羧酸。一些细菌可通过ω-氧化将烷烃转化为脂肪酸,从两端进行ω-氧化降解,速度快。

四、酮体代谢

乙酰辅酶A在肝和肾可生成乙酰乙酸、β-羟基丁酸和丙酮,称为酮体。肝通过酮体将乙酰辅酶A转运到外周组织中作燃料。心和肾上腺皮质主要以酮体作燃料,脑在饥饿时也主要利用酮体。平时血液中酮体较少,有大量乙酰辅酶A必需代谢时酮体增多,可引起代谢性酸中毒,如糖尿病。

(一)合成

1. 两个乙酰辅酶A被硫解酶催化生成乙酰乙酰辅酶A。β-氧化的`最后一轮也生成乙酰乙酰辅酶A。

2. 乙酰乙酰辅酶A与一分子乙酰辅酶A生成β-羟基-β-甲基戊二酰辅酶A,由HMG辅酶A合成酶催化。

3. HMG辅酶A裂解酶将其裂解为乙酰乙酸和乙酰辅酶A。

4. D-β-羟丁酸脱氢酶催化,用NADH还原生成β羟丁酸,反应可逆,不催化L-型底物。

5. 乙酰乙酸自发或由乙酰乙酸脱羧酶催化脱羧,生成丙酮。

(二)分解

1. 羟丁酸可由羟丁酸脱氢酶氧化生成乙酰乙酸,在肌肉线粒体中被3-酮脂酰辅酶A转移酶催化生成乙酰乙酰辅酶A和琥珀酸。也可由乙酰乙酰辅酶A合成酶激活,但前者活力高且分布广泛,起主要作用。乙酰乙酰辅酶A可加入β-氧化。

2. 丙酮代谢较复杂,先被单加氧酶催化羟化,然后可生成丙酮酸或乳酸、甲酸、乙酸等。大部分丙酮异生成糖,是脂肪酸转化为糖的一个可能途径。

第三节 甘油三酯的合成代谢

一、软脂酸的合成

(一)乙酰辅酶A的转运

合成脂肪酸的碳源来自乙酰辅酶A,乙酰辅酶A是在线粒体形成的,而脂肪酸的合成场所在细胞质中,所以必需将乙酰辅酶A转运出来。乙酰辅酶A在线粒体中与草酰乙酸合成柠檬酸,通过载体转运出线粒体,在柠檬酸裂解酶催化下裂解为乙酰辅酶A和草酰乙酸,后者被苹果酸脱氢酶还原成苹果酸,再氧化脱羧生成丙酮酸和NADPH,丙酮酸进入线粒体,可脱氢生成乙酰辅酶A,也可羧化生成草酰乙酸。

(二)丙二酸单酰辅酶A的生成

乙酰辅酶A以丙二酸单酰辅酶A的形式参加合成。乙酰辅酶A与碳酸氢根、ATP反应,羧化生成丙二酸单酰辅酶A,由乙酰辅酶A羧化酶催化。此反应是脂肪酸合成的限速步骤,被柠檬酸别构激活,受软脂酰辅酶A抑制。此酶有三个亚基:生物素羧化酶(BC)、生物素羧基载体蛋白(BCCP)和羧基转移酶(CT)。

(三)脂肪酸合成酶体系

有7种蛋白,以脂酰基载体蛋白为中心,中间产物以共价键与其相连。载体蛋白含巯基,与辅酶A类似,可由辅酶A合成。

(四)脂肪酸的合成

1. 起始:乙酰辅酶A在ACP-酰基转移酶催化下生成乙酰ACP,然后转移到β-酮脂酰-ACP合成酶的巯基上。

2. ACP与丙二酸单酰辅酶A生成丙二酸单酰ACP,由ACP:丙二酸单酰转移酶催化。

3. 缩合:β-酮脂酰ACP合成酶将乙酰基转移到丙二酸单酰基的α-碳上,生成乙酰乙酰ACP,并放出CO2。所以碳酸氢根只起催化作用,羧化时储存能量,缩合时放出,推动反应进行。

4. 还原:NADPH在β-酮脂酰ACP还原酶催化下将其还原为D-β-羟丁酰ACP。β-氧化的产物是L-型。

5. 脱水:羟脂酰ACP脱水酶催化生成Δ2反丁烯酰ACP,即巴豆酰ACP。

6. 再还原:烯脂酰ACP还原酶用NADPH还原为丁酰ACP。β-氧化时生成FADH2,此时是为了加速反应。

7. 第二次循环从丁酰基转移到β-酮脂酰ACP合成酶上开始。7次循环后生成软脂酰ACP,可被硫酯酶水解,或转移到辅酶A上,或直接形成磷脂酸。β-酮脂酰ACP合成酶只能接受14碳酰基,并受软脂酰辅酶A反馈抑制,所以只能合成软脂酸。

(五)软脂酸的合成与氧化的区别有8点:部位、酰基载体、二碳单位、辅酶、羟脂酰构型、对碳酸氢根和柠檬酸的需求、酶系、能量变化。

二、其他脂肪酸的合成

(一)脂肪酸的延长

1. 线粒体酶系:在基质中,可催化短链延长。基本是β-氧化的逆转,但第四个酶是烯脂酰辅酶A还原酶,氢供体都是NADPH。

2. 内质网酶系:粗糙内质网可延长饱和及不饱和脂肪酸,与脂肪酸合成相似,但以辅酶A代替ACP。可形成C24。

(二)不饱和脂肪酸的形成

1. 单烯脂酸的合成:需氧生物可通过单加氧酶在软脂酸和硬脂酸的9位引入双键,生成棕榈油酸和油酸。消耗NADPH。厌氧生物可通过β-羟脂酰ACP脱水形成双键。

2. 多烯脂酸的合成:由软脂酸通过延长和去饱和作用形成多不饱和脂肪酸。哺乳动物由四种前体转化:棕榈油酸(n7)、油酸(n9)、亚油酸(n6)和亚麻酸(n3),其中亚油酸和亚麻酸不能自己合成,必需从食物摄取,称为必需脂肪酸。其他脂肪酸可由这四种前体通过延长和去饱和作用形成。

三、甘油三酯的合成:肝脏和脂肪组织

(一)前体合成:包括L-α-磷酸甘油和脂酰辅酶A。细胞质中的磷酸二羟丙酮经α-磷酸甘油脱氢酶催化,以NADH还原生成磷酸甘油。也可由甘油经甘油激酶磷酸化生成,但脂肪组织缺乏有活性的甘油激酶。

(二)生成磷脂酸:磷酸甘油与脂酰辅酶A生成单脂酰甘油磷酸,即溶血磷脂酸,再与脂酰辅酶A生成磷脂酸。都由甘油磷酸脂酰转移酶催化。磷酸二羟丙酮也可先酯化,再还原生成溶血磷脂酸。

(三)合成:先被磷脂酸磷酸酶水解,生成甘油二酯,再由甘油二酯转酰基酶合成甘油三酯。

四、各组织的脂肪代谢

脂肪组织脂解的限速酶是脂肪酶,生成的游离脂肪酸进入血液,可用于氧化或合成,而甘油不能用于合成。肝脏可将脂肪酸氧化或合成酮体或合成甘油三酯。

第四节 磷脂代谢

一、分解:

(一)磷脂酶有以下4类:

1. 磷脂酶A1:水解C1

2. 磷脂酶A2:水解C2

3. 磷脂酶C:水解C3,生成1,2-甘油二酯,与第二信使有关。

4. 磷脂酶D:生成磷脂酸和碱基

5. 磷脂酶B:同时水解C1和C2,如点青霉磷脂酶。

(二)溶血磷脂:只有一个脂肪酸,是强去污剂,可破坏细胞膜,使红细胞破裂而发生溶血。某些蛇毒含溶血磷脂,所以有剧毒。溶血磷脂酶有L1和L2,分别水解C1和C2。

(三)产物去向:甘油和磷酸参加糖代谢,氨基醇可用于磷脂再合成,胆碱可转甲基生成其他物质。

二、合成:

(一)脑磷脂的合成:

1. 乙醇胺的磷酸化:乙醇胺激酶催化羟基磷酸化,生成磷酸乙醇胺。

2. 与CTP生成CDP-乙醇胺,由磷酸乙醇胺胞苷转移酶催化,放出焦磷酸。

3. 与甘油二酯生成脑磷脂,放出CMP。由磷酸乙醇胺转移酶催化。该酶位于内质网上,内质网上还有磷脂酸磷酸酶,水解分散在水中的磷脂酸,用于磷脂合成。肝脏和肠粘膜细胞的可溶性磷脂酸磷酸酶只能水解膜上的磷脂酸,合成甘油三酯。

(二)卵磷脂合成:

1. 节约利用途径:与脑磷脂类似,利用已有的胆碱,先磷酸化,再连接CDP作载体,与甘油二酯生成卵磷脂。

2. 从头合成途径:将脑磷脂的乙醇胺甲基化,生成卵磷脂。供体是S-腺苷甲硫氨酸,由磷脂酰乙醇胺甲基转移酶催化,生成S-腺苷高半胱氨酸。共消耗3个供体。

(三)磷脂酰肌醇的合成

1. 磷脂酸与CTP生成CDP-二脂酰甘油,放出焦磷酸。由磷脂酰胞苷酸转移酶催化。

2. CDP-二脂酰甘油:肌醇磷脂酰转移酶催化生成磷脂酰肌醇。磷脂酰肌醇激酶催化生成PIP,PIP激酶催化生成PIP2。磷脂酶C催化PIP2水解生成IP3和DG,IP3使内质网释放钙,DG增加蛋白激酶C对钙的敏感性,通过磷酸化起第二信使作用。

(四)其他:磷脂酰丝氨酸可通过脑磷脂与丝氨酸的醇基交换生成,由磷酸吡哆醛酶催化。心磷脂的合成先生成CDP-二酰甘油,再与甘油-3-磷酸生成磷脂酰甘油磷酸,水解掉磷酸后与另一个CDP-二脂酰甘油生成心磷脂。由磷酸甘油磷脂酰转移酶催化。

第五节 鞘脂类代谢

一、鞘磷脂的合成

(一)合成鞘氨醇:软脂酰辅酶A与丝氨酸经缩合、还原、氧化等一系列酶促反应形成。

(二)氨基被脂酰辅酶A酰化,生成神经酰胺。由鞘氨醇酰基转移酶。

(三)神经酰胺与CDP-胆碱生成鞘磷脂,由神经酰胺胆碱磷酸转移酶催化。

二、鞘糖脂的合成

(一)脑苷脂:神经酰胺与UDP-葡萄糖生成葡萄糖脑苷脂,由葡萄糖基转移酶催化,是b-糖苷键。也可先由糖基与鞘氨醇反应,再酯化。

(二)脑硫脂:硫酸先与2分子ATP生成PAPS,再转移到半乳糖脑苷脂的3位。由微粒体的半乳糖脑苷脂硫酸基转移酶催化。

(三)神经节苷脂:以神经酰胺为基础合成,UDP为糖载体,CMP为唾液酸载体,转移酶催化。其分解在溶酶体进行,需要糖苷酶等。酶缺乏可导致脂类沉积症,神经发育迟缓,存活期短。

第六节 胆固醇代谢

一、胆固醇的合成

(一)二羟甲基戊酸(MVA)的合成

1. 羟甲基戊二酰辅酶A(HMG CoA)的合成:可由3个乙酰辅酶A合成,也可由亮氨酸合成。

2. 二羟甲基戊酸的合成:由HMG CoA还原酶催化,消耗2分子NADPH,不可逆。是酮体和胆固醇合成的分支点。此反应是胆固醇合成的限速步骤,酶有立体专一性,受胆固醇抑制。酶的合成和活性都受激素控制,cAMP可促进其磷酸化,降低活性。

(二)异戊烯醇焦磷酸酯(IPP)的合成:二羟甲基戊酸经2分子ATP活化,再脱羧。是活泼前体,可缩合形成胆固醇、脂溶性维生素、萜类等许多物质。

(三)生成鲨烯:6个IPP缩合生成鲨烯,由二甲基丙烯基转移酶催化。鲨烯是合成胆固醇的直接前体,水不溶。

(四)生成羊毛固醇:固醇载体蛋白将鲨烯运到微粒体,环化成羊毛固醇,需分子氧和NADPH参加。

(五)生成胆固醇:羊毛固醇经切除甲基、双键移位、还原等步骤生成胆固醇。需固醇载体蛋白,7-脱氢胆固醇是中间物之一。

二、胆固醇酯的合成

胆固醇酯主要存在于脂蛋白的脂类核心中。可由卵磷脂:胆固醇酰基转移酶催化,将卵磷脂C2的不饱和脂肪酸转移到胆固醇3位羟基上。此酶存在于高密度脂蛋白中,在细胞中还有脂酰辅酶A:胆固醇脂酰转移酶,也可合成胆固醇酯。

三、胆汁酸的合成

包括游离胆酸和结合胆酸,前者有胆酸、脱氧胆酸等,后者是他们与牛磺酸或甘氨酸以酰胺键结合的产物。其结构的特点是24位有羧基,3、7、12位有a-羟基,在同侧,形成一个极性面,是很好的乳化剂。

肝脏由胆固醇合成胆酸,先由7a羟化酶形成7a胆固醇,是限速步骤。此酶是单加氧酶,存在于微粒体,需NADPH和分子氧。胆酸先形成胆酰辅酶A,再与牛磺酸等结合。

四、类固醇激素的合成

(一)孕酮的合成:胆固醇先在20位羟化,由20a羟化酶催化,是限速步骤。然后在22位羟化,切除6个碳,生成孕烯醇酮和异己醛。孕烯醇酮在3b脱氢酶催化下生成孕酮,是许多激素的共同前体。

(二)肾上腺皮质有21羟化酶,可合成皮质醇、皮质酮和醛固酮。性腺有碳链裂解酶,可生成雄烯二酮,再经17b脱氢酶生成睾酮。卵巢和胎盘还有芳香酶系,可产生苯环,生成雌酮和雌二醇。

五、维生素D的合成

7-脱氢胆固醇经紫外线照射可生成前维生素D,再生成维生素D3。所以维生素D不是必须的。麦角固醇可转变为维生素D2。

第七节 前列腺素代谢

一、分类

(一)天然的前列腺素有19种,根据五元环的结构可分为A-I等9类,根据双键数可分为1、2、3三类。由花生四烯酸合成的有2个双键,即2系,最常见。前列腺素的功能主要有两个,一是影响平滑肌的收缩强烈作用于肠道、血管、支气管、子宫等:二是改变腺苷酸环化酶的活性,一般是促进,但在脂肪组织是抑制,所以有抗脂解作用。

(二)凝血恶烷酸A2(TXA2):由血小板合成,有一个含氧的六元杂环,环中还有一个氧。可促进血小板凝集,与PGI2相拮抗。

(三)白三烯(LTs):由白细胞制造,有三个共轭双键,故名。其分子中没有环,可有多个双键。可分为ABCDE等类。与化学趋化性、炎症和变态反应有关。

二、合成

主要由花生四烯酸合成。钙浓度升高使磷脂酶A2活化,水解膜磷脂,放出花生四烯酸。脂肪酸环加氧酶在9位和11位引入过氧化物,再环化,生成PGG2,然后酶促形成其他前列腺素和TX。脂加氧酶可由花生四烯酸合成白三烯。

三、调控

脂肪酸环加氧酶可自溶,存在时间短,不依赖反馈调节,而是由酶量调节。其活性被酚类促进,被某些药物及花生四烯酸、乙炔类似物抑制。

第八节 脂类代谢调控

一、脂解的调控

脂解是脂类分解代谢的第一步,受许多激素调控,激素敏感脂肪酶是限速酶。肾上腺素、去甲肾上腺素和胰高血糖素通过环AMP激活,作用快。生长激素和糖皮质激素通过蛋白合成加速反应,作用慢。甲状腺素促进脂解的原因一方面是促进肾上腺素等的分泌,另一方面可抑制cAMP磷酸二酯酶,延长其作用时间。甲基黄嘌呤(茶碱、咖啡碱)有类似作用,所以使人兴奋。

胰岛素、PGE、烟酸和腺苷可抑制腺苷酸环化酶,起抑制脂解作用。胰岛素还可活化磷酸二酯酶,并促进脂类合成,具体是提供原料和活化有关的酶,如促进脂肪酸和葡萄糖过膜,加速酵解和戊糖支路,激活乙酰辅酶A羧化酶等。

二、脂肪酸代谢调控

(一)分解:长链脂肪酸的跨膜转运决定合成与氧化。肉碱脂酰转移酶是氧化的限速酶,受丙二酸单酰辅酶A抑制,饥饿时胰高血糖素使其浓度下降,肉碱浓度升高,加速氧化。能荷高时还有NADH抑制3-羟脂酰辅酶A脱氢酶,乙酰辅酶A抑制硫解酶。

(二)合成:

1. 短期调控:通过小分子效应物调节酶活性,最重要的是柠檬酸,可激活乙酰辅酶A羧化酶,加快限速步骤。乙酰辅酶A和ATP抑制异柠檬酸脱氢酶,使柠檬酸增多,加速合成。软脂酰辅酶A拮抗柠檬酸的激活作用,抑制其转运,还抑制6-磷酸葡萄糖脱氢酶产生NADPH及柠檬酸合成酶产生柠檬酸的过程。乙酰辅酶A羧化酶还受可逆磷酸化调节,磷酸化则失去活性,所以胰高血糖素抑制合成,而胰岛素有去磷酸化作用,促进合成。

2. 长期调控:食物可改变有关酶的含量,称为适应性调控。

三、胆固醇代谢调控

(一)反馈调节:胆固醇抑制HMG辅酶A还原酶活性,长期禁食则增加酶量。

(二)低密度脂蛋白的调节作用:细胞从血浆LDL获得胆固醇,游离胆固醇抑制LDL受体基因,减少受体合成,降低摄取。

名词解释:

β-氧化:碳氧化降解生成乙酰CoA,同时生成NADH 和FADH2,因此可产生大量的ATP。该途径因脱氢和裂解均发生在β位碳原子而得名。每一轮脂肪酸β氧化都由四步反应组成:氧化,水化,再氧化和硫解。

肉毒碱穿梭系统(carnitine shuttle system):脂酰CoA通过形成脂酰肉毒碱从细胞质转运到线粒体的一个穿梭循环途径。

酮体(acetone body):在肝脏中由乙酰CoA合成的燃料分子(β羟基丁酸,乙酰乙酸和丙酮)。在饥饿期间酮体是包括脑在内的许多组织的燃料,酮体过多会导致中毒。

柠檬酸转运系统(citrate transport system):将乙酰CoA从线粒体转运到细胞质的穿梭循环途径。在转运乙酰CoA的同时,细胞质中NADH氧化成NAD﹢,NADP+还原为NADPH。每循环一次消耗两分子ATP。

端庄的歌曲
昏睡的蚂蚁
2026-02-09 17:14:26

4、 氨基酸碳架的去向

20余种aa有三种去路

(1)氨基化还原成氨基酸。

(2)氧化成CO2和水(TCA)。

(3)生糖、生脂。

20余种a.a的碳架可转化成7种物质:丙酮酸、乙酰CoA、乙酰乙酰CoA、α-酮戊二酸、琥珀酰CoA、延胡索酸、草酰乙酸。它们最后集中为5种物质进入TCA:乙酰CoA、α-酮戊二酸、琥珀酰CoA、延胡索酸、草酰乙酸。

1) 转变成丙酮酸的途径

Ala、Gly、Ser、Thr、Cys形成丙酮酸的途径

(1)、 Ala 经与α-酮戊二酸转氨(谷丙转氨酶)

(2)、 Gly先转变成Ser,再由Ser转变成丙酮酸。

Gly与Ser的互变是极为灵活的,该反应也是Ser生物合成的重要途径。

Gly的分解代谢不是以形成乙酰CoA为主要途径,Gly的重要作用是一碳单位的提供者。

Gly + FH4 + NAD+ → N5,N10-甲烯基FH4 + CO2 + NH4+ + NADH

(3)、 Ser 脱水、脱氢,生成丙酮酸(丝氨酸脱水酶)

(4)、 Thr 有3条途径

① 由Thr醛缩酶催化裂解成Gly和乙醛,后者氧化成乙酸 → 乙酰CoA。

(5)、 Cys 有3条途径

① 转氨,生成β-巯基丙酮酸,再脱巯基,生成丙酮酸。

② 氧化成丙酮酸

③加水分解成丙酮酸

2) 转变成乙酰乙酰CoA的途径

Phe、Tyr、Leu

(1)、 Phe → Tyr → 乙酰乙酰CoA

Phe、Tyr分解为乙酰乙酰CoA和延胡索酸的途径

(2)、 Tyr

产物:1个乙酰乙酰CoA(可转化成2个乙酰CoA。),1个延胡索酸,1个CO2 ,

(3)、 Leu

产物:1个乙酰CoA,1个乙酰乙酰CoA,相当于3个乙酰CoA。

反应中先脱1个CO2 ,后又加1个CO2 ,C原子不变 。

(4)、 Lys

产物:1个乙酰乙酰CoA,2个CO2 。

在反应途中转氨:a. 氧化脱氨 , b. 转氨

(5)、 Trp

产物:1个乙酰乙酰CoA,1个乙酰CoA,4个CO2 ,1个甲酸。

3) α-酮戊二酸途径

Arg、His、Gln、Pro、Glu形成α-酮戊二酸的途径

(1)、 Arg 产物:1分子Glu,1分子尿素

(2)、 His 产物:1分子Glu,1分子NH3 ,1分子甲亚氨基

(3)、 Gln 三条途径

①. Gln酶: Gln + H2O → Glu + NH3

② Glu合成酶: . Gln+α-酮戊二酸 + NADPH → 2Glu + NADP+

③ 转酰胺酶:Gln+α-酮戊二酸 → Glu + r-酮谷酰氨酸 → α-酮戊二酸 + NH4+

(4)、 Pro 产物:Pro → Glu

Hpro → 丙酮酸 + 丙醛酸

4) 琥珀酰CoA途径

Met、Ile、Val转变成琥珀酰CoA

(1)、 Met 给出1个甲基,将-SH转给Ser(生成Cys),产生一个琥珀酰CoA

(2)、 Ile 产生一个乙酰CoA和一个琥珀酰CoA

(3)、 Val

5)草酰乙酸途径

Asp和Asn可转变成草酰乙酸进入TCA,Asn先转变成Asp(Asn酶),Asp经转氨作用生成草酰乙酸.

6)延胡索酸途径

Phe、Tyr可生成延胡索酸。

生糖氨基酸与生酮氨基酸

生酮氨基酸:Phe、Tyr、Leu、Lys、Trp。在分解过程中转变为乙酰乙酰CoA,后者在动物肝脏中可生成乙酰乙酸和β-羟丁酸,因此这5种a.a.称生酮a.a.

生糖氨基酸:凡能生成丙酮酸、α-酮戊二酸、琥珀酸、延胡索酸、草酰乙酸的a.a.都称为生糖a.a,它们都能生成Glc。

而Phe、Tyr是生酮兼生糖a.a。

5、 由氨基酸衍生的其它重物质

1)由氨基酸产生一碳单位

一碳单位:具有一个碳原子的基团,包括:亚氨甲基(-CH=NH),甲酰基( HC=O-),羟甲基(-CH2OH),亚甲基(又称甲叉基,-CH2),次甲基(又称甲川基,-CH=),甲基(-CH3)

一碳单位不仅与a.a.代谢密切相关,还参与嘌呤、嘧啶的生物合成,是生物体内各种化合物甲基化的甲基来源。

Gly、Thr、Ser、His、Met 等a.a.可以提供一碳单位。

一碳单位的转移靠四氢叶酸(5,6,7,8-四氢叶酸),携带甲基的部位是N 5、N 10

2) 氨基酸与生物活性物质

(1)、 Tyr与黑色素

(2)、 Tyr与儿茶酚胺类

可生成多巴、多巴胺、去甲肾上腺素、肾上腺素,这四种统称儿茶酚胺类。前二者是神经递质,后二者是激素

Tyr形成多巴、多巴胺、去甲肾上腺素、肾上腺素

(3)、 Trp与5-羟色胺及吲哚乙酸

Trp形成5-羟色胺及吲哚乙酸

5-羟色胺是神经递质,促进血管收缩

(4)、 肌酸和磷酸肌酸(Arg、Gly、Met)

肌酸和磷酸肌酸,在贮存和转移磷酸键能中起重要作用。它们存在于动物的肌肉、脑、血液中。Arg、Gly、Met形成磷酸肌酸

肌酸合成中的甲基化:S-腺苷Met

(5)、 His与组胺

His脱羧生成组胺,是一种血管舒张剂,在神经组织中是感觉神经的一种递质。

(6)、 Arg → 水解 → 鸟氨酸 → 脱羧 → 腐胺 → 亚精胺 → 精胺

(7)、 Glu与r-氨基丁酸

Glu本身就是一种兴奋性神经递质(还有Asp),在脑、脊髓中广泛存在。Glu脱羧形成的r-氨基丁酸是一种抑制性神经递质。

(8)、 牛磺酸和Cys

Cys 的SH氧化成-SO3-,并脱去-COO - 就形成了牛磺酸,牛磺酸与胆汁酸结合,乳化食物。

6、 氨基酸代谢缺陷症

苯丙酮尿症(PKU)

   三、 氨基酸合成代谢

1、 氨基酸合成中的氮源和碳源

1) 氮源(无机氮不行)

(1)生物固氨(微生物)

a.与豆科植物共生的根瘤菌

b.自养固氮菌 兰藻

在固氮酶系作用下,将空气中的N2固定,产生NH3

(2)硝酸盐和亚硝酸盐 (植物、微生物)

(3)各种脱氨基酸作用产生的NH3(所有生物)

2) 碳源

直接碳源是相应的α-酮酸,植物能合成20种a.a.相应的全部碳架或前体。人和动物只能直接合成部分a.a.相应的α-酮酸。

主要来源:糖酵解、TCA、磷酸已糖支路。

必需氨基酸:Ile、Leu、Lys、Met、Phe、Thr、Trp、Val、(Arg、His)

3) 植物、部分微生物a.a.合成方式

①α-酮戊二酸衍生类型 Glu、Gln、Pro、Arg、Lys(蕈类、眼虫)

与a.a.分解进入α-酮酸的途径比较,少了一种a.a.,即His。

②草酰乙酸衍生类型 Asp、Asn、Met、Thr、Ile(也可归入丙酮类)、Lys(植物、细菌)

经TCA中间产物(α-酮戊二酸、草酰乙酸)可合成10种a.a.,即Glu、Gln、Pro、Arg、Asp、Asn、Met、Thr、Ile、Lys。

③丙酮酸衍生类型 Ala、Val(Ile)、Leu

④3-磷酸甘油酸衍生类型 Ser、Gly、Cys

经酵解中间产物(3-磷酸甘油酸、丙酮酸),可合成Ser、Cys、Gly、 Ala、Val、Leu等6种a.a。

⑤经酵解及磷酸戊糖中间产物(磷酸烯醇丙酮酸、4-磷酸赤藓糖),可合成Phe、Tyr、Trp等3种芳香族a.a。

⑥His有自己独特的合成途径,与其它氨基酸之间没有关系

2、 脂肪族氨基酸生物合成途径

1) α-酮戊二酸衍生类型(Glu、Gln、Pro、Arg、Lys(蕈类、眼虫))

(1)、 Glu的合成

由α-酮戊二酸与游离氨,经L-Glu脱氢酸催化。对于植物和微生物,氨的来源是Gln的酰胺基。

(2)、 Gln的合成

由α-酮戊二酸形成Glu,由Glu可以进一步形成Gln,

Gln合酶是催化氨转变为有机含氮物的主要酶,活性受8种含氮物反馈调控:

氨基Glc-6-P、Trp、Ala、 Gly、 His和CTP、 AMP、氨甲酰磷酸。

除Gly、Ala,其余含氮物的氮都来自Gln。

(3)、 Pro的合成 (Glu环化而成)

(4)、 Arg合成

(5)、 Lys合成

① α-酮戊二酸衍生型(蕈类、眼虫)

② 天冬氨酸、丙酮酸衍生型(植物、细菌)

2) 草酰乙酸衍生类型(Asp、Asn、Met、Thr、Ile、Lys(植物、细菌))

(1)、 Asp合成

(2)、 Asn合成(转移酰胺基)

哺乳动物

(3)、 Met合成

(4)、 Thr合成

Lys、Met、Thr合成中,有一段共同途径,即生成Asp-β-半醛,是一个分枝点化合物。

(5)、 Ile合成 (与Val极为相似)

Ile的合成途径与Val极为相似。

6个C中4个来自Asp(Asp → Thr),2个来自丙酮酸,所以也可以归入丙酮酸衍生型。

(6)、 Lys(植物、细菌) P267 图17-5

3) 丙酮酸衍生型(Ala、Val(Ile)、Leu)

4) 3-磷酸甘油酸衍生型(Ser、Gly、Cys)

3、 芳香族氨基酸及His的生成合成

1) Phe、Tyr、Trp的合成

分枝酸 : 2磷酸烯醇丙酮酸,1个赤藓糖4-P

2)His合成

本章重点:脱氨的几种方式氨的去路尿素的合成氨的转运脱氨后碳架的去向a.a.合成中的碳源氮源Gln、Glu合成一碳单位及作用

阔达的羊
小巧的耳机
2026-02-09 17:14:26
体内多种物质代谢可产生乙酰coa,包括:

(1)

糖有氧氧化

(2)

脂肪酸和甘油氧化

(3)

酮体转变生成

(4)

某些氨基酸分解代谢转变生成

体内乙酰coa代谢去路包括:

(1)

经三羧酸循环彻底氧化分解

(2)

合成胆固醇和营养非必需脂肪酸

(3)

在肝细胞线粒体中合成酮体

此外,乙酰coa还可用来合成神经递质乙酰胆碱。故而乙酰coa在物质代谢中起枢纽作用。

风中的哈密瓜
冷傲的鞋垫
2026-02-09 17:14:26
1.酮体是乙酰乙酸、β羟基丁酸、丙酮的总称。: 酮体的生成:酮体主要在肝脏的线粒体中生成,其合成原料为乙酰CoA,关键酶是羟甲戊二酸单酰CoA合酶(HMG-CoA合酶)

其过程为:乙酰CoA→乙酰乙酰CoA →HMG-CoA→乙酰乙酸。生成的乙酰乙酸再通过加氢反应转变为β-羟丁酸或经自发脱羧生成丙酮。

2.酮体的利用:利用酮体的酶有两种,即琥珀酰CoA转硫酶(主要存在于心、肾、脑和骨骼肌细胞的线粒体中,不消耗ATP)和乙酰乙酸硫激酶(主要存在于心、肾、脑细胞线粒体中,需消耗2分子ATP)。

其氧化利用酮体的过程为:β-羟丁酸→乙酰乙酸→乙酰乙酰CoA→乙酰CoA→三羧酸循环。

3.酮体生成及利用的生理意义: ①正常情况下,酮体是肝脏输出能源的一种形式②在饥饿或糖供给不足情况下,为心、脑等重要器官提供必要的能源③酮体利用的增加可减少糖的利用,有利于维持血糖水平恒定,节省蛋白质的消耗