建材秒知道
登录
建材号 > 甲苯 > 正文

三甲苯和四甲苯哪快干

想人陪的棒棒糖
笨笨的黄豆
2022-12-22 16:31:05

三甲苯和四甲苯哪快干

最佳答案
踏实的饼干
美好的红酒
2026-02-08 21:26:27

根据有机物的 性质,分子量小的 通常易气化,分子量大的 易液化。易气化的 有机物在空气中挥发的 快。挥发的 快,即快干。以苯系物为例,分子量从小到大的顺序为:苯<甲苯<二甲苯<三甲苯<四甲苯<。。。。。挥发速度则相反,相对在空气中干的速度快的以次为:苯.>甲苯>二甲苯>三甲苯>四甲苯。。。。。

最新回答
腼腆的树叶
闪闪的学姐
2026-02-08 21:26:27

有三种三甲苯,我只找到2个

第一部分]化学品名称

化学品中文名称:1,3,5-三甲基苯;均三甲苯

化学品英文名称:1,3,5-Trimethylbenzene;Mesitylene

中文俗名或商品名:

Synonyms:

CAS No.:108-67-8

分子式:C9H12

分子量:120.19

[第二部分]成分/组成信息

[第三部分]危险性概述

危险性类别:第3.3类 高闪点易燃液体

侵入途径:吸入 食入 经皮吸收

健康危害:对皮肤、粘膜有刺激作用,对中枢神经系统有麻醉作用,并对造血系统有抑制作用。

环境危害:

燃爆危险:

[第四部分]急救措施

皮肤接触:脱去污染的衣着,用肥皂水及清水彻底冲洗。

眼睛接触:立即提起眼睑,用大量流动清水或生理盐水冲洗。

吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。呼吸困难时给输氧。呼吸停止时,立即进行人工呼吸。就医。

食入:误服者给充分漱口、饮水,尽快洗胃。就医。

[第五部分]消防措施

危险特性:遇高热、明火或与氧化剂接触,有引起燃烧的危险。若遇高热,容器内压增大,有开裂和爆炸的危险。

有害燃烧产物:

灭火方法及灭火剂:泡沫、二氧化碳、干粉、砂土。用水灭火无效。

消防员的个体防护:

禁止使用的灭火剂:

闪点(℃):

自燃温度(℃):

爆炸下限 [%(V/V)]:

爆炸上限 [%(V/V)]:

最小点火能 (mJ):

爆燃点:

爆速:

最大燃爆压力 (MPa):

建规火险分级:乙

[第六部分]泄露应急处理

应急处理:疏散泄漏污染区人员至安全区,禁止无关人员进入污染区,切断火源。建议应急处理人员戴好防毒面具,穿一般消防防护服。在确保安全情况下堵漏。喷水雾会减少蒸发,但不能降低泄漏物在受限制空间内的易燃性。用沙土或其它不燃性吸附剂混合吸收,然后收集运至废物处理场所处置。也可以用不燃性分散剂制成的乳液刷洗,经稀释的洗水放入废水系统。如大量泄漏,利用围堤收容,然后收集、转移、回收或无害处理后废弃。

[第七部分]操作处置与储存

操作注意事项:操作后淋浴。在通风良好处操作。搬运物品时容器要固定。禁止使用易产生火花的机械设备和工具。避免接触眼睛、皮肤和衣着。不要吸入粉尘、蒸汽、烟雾。空容器要清除残余。禁止挤压、切割、焊接、钻孔、打磨用过的空容器。远离火种和热源。避免食入和吸入。保持容器密封。

储存注意事项:储存于阴凉、通风仓间内。远离火种、热源。仓温不宜超过30℃。防止阳光直射。保持容器密封。应与氧化剂分开存放。储存间内的照明、通风等设施应采用防爆型,开关设在仓外。配备相应品种和数量的消防器材。露天贮罐要有夏季降温措施。

[第八部分]接触控制/个体防护

最高容许浓度:中国MAC:未制定标准

苏联MAC:未制定标准

美国TWA:ACGIH 25ppm,123mg/

前苏联 Mac:

美国TLV—TWA:

监测方法:

工程控制:生产过程密闭,加强通风。

呼吸系统防护:高浓度环境中,佩带防毒面具。

眼睛防护:可采用安全面罩。

身体防护:穿相应的防护服。

手防护:戴防化学品手套。也可使用皮肤防护膜。

其他防护:工作现场禁止吸烟、进食和饮水。工作后,淋浴更衣。保持良好的卫生习惯。

[第九部分]理化特性

外观与性状:无色液体,有特殊气味。

pH:

熔点(℃):-44.8

沸点(℃):164.7

相对密度(水=1):0.86

相对蒸气密度 (空气 = 1):4.1

饱和蒸气压(kPa):1.33/48.2℃

燃烧热 (kJ / mol):5198.2

临界温度 (℃):368

临界压力 (MPa):3.34

辛醇/水分配系数的对数值:

闪点(℃):44

引燃温度(℃):531

爆炸上限% (V / V):无资料

爆炸下限% (V / V):无资料

分子式:C9H12

分子量:120.19

蒸发速率:

粘性:

溶解性:不溶于水,溶于醇、醚、苯等多数有机溶剂。

主要用途:用作分析试剂、溶剂,也用于有机合成等。

[第十部分]稳定性和反应活性

稳定性:稳定

禁配物:强氧化剂。

避免接触的条件:

聚合危害:不能出现

分解产物:一氧化碳、二氧化碳。

[第十一部分]毒理学资料

急性毒性:属微毒类

LD50:

LC50:24000mg/m3 4小时(大鼠吸入)

LC50:

急性中毒:

慢性中毒:

亚急性和慢性毒性:

刺激性:

致敏性:

致突变性:

致畸性:

致癌性:

[第十二部分]生态学资料

生态毒理毒性:

生物降解性:

非生物降解性:

生物富集或生物积累性:

[第十三部分]废弃处置

废弃物性质:

废弃处置方法:处置前应参阅国家或地方法规。

废弃注意事项:

[第十四部分]运输信息

危险货物编号:33536

UN编号:2325

包装标志:

包装类别:3

包装方法:

运输注意事项:

RETCS号:OX6825000

IMDG规则页码:3389

[第十五部分]法规信息

国内化学品安全管理法规:危险化学品安全管理条例(2002年3月15日国务院发布),工作场所安全使用化学品规定([1996]劳部发423号)等,针对化学危险品的安全使用、生产、储存、运输、装卸等方面均作了相应规定。

国际化学品安全管理法规:

[第十六部分]其他信息

参考文献:1.周国泰,化学危险品安全技术全书,化学工业出版社,1997

2.国家环保局有毒化学品管理办公室、北京化工研究院合编,化学品毒性法规环境数据手册,中国环境科学出版社.1992

3.Canadian Centre for Occupational Health and Safety,CHEMINFO Database.1998

4.Canadian Centre for Occupational Health and Safety, RTECS Database, 1989

填表时间:

填表部门:

数据审核单:

修改说明:

其他信息:1

MSDS修改日期:

填写人编号:

第一部分]化学品名称

化学品中文名称:1,2,3-三甲基苯;连三甲苯

化学品英文名称:1,2,3-Trimethylbenzene

中文俗名或商品名:

Synonyms:

CAS No.:526-73-8

分子式:C9H12

分子量:120.19

[第二部分]成分/组成信息

[第三部分]危险性概述

危险性类别:第3.3类 高闪点易燃液体

侵入途径:吸入 食入 经皮吸收

健康危害:蒸气或雾对眼、粘膜和上呼吸道有刺激性。接触后可引起头痛、头晕、恶心和麻醉作用。可引起皮炎。

环境危害:

燃爆危险:

[第四部分]急救措施

皮肤接触:脱去污染的衣着,用大量流动清水彻底冲洗。

眼睛接触:立即提起眼睑,用大量流动清水或生理盐水冲洗。

吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。呼吸困难时给输氧。呼吸停止时,立即进行人工呼吸。就医。

食入:误服者给充分漱口、饮水,尽快洗胃。就医。

[第五部分]消防措施

危险特性:遇明火、高热能引起燃烧爆炸。与强氧化剂发生反应,可引起燃烧。若遇高热,容器内压增大,有开裂和爆炸的危险。

有害燃烧产物:

灭火方法及灭火剂:二氧化碳、泡沫、干粉、砂土。用水灭火无效。

消防员的个体防护:

禁止使用的灭火剂:

闪点(℃):

自燃温度(℃):

爆炸下限 [%(V/V)]:

爆炸上限 [%(V/V)]:

最小点火能 (mJ):

爆燃点:

爆速:

最大燃爆压力 (MPa):

建规火险分级:乙

[第六部分]泄露应急处理

应急处理:疏散泄漏污染区人员至安全区,禁止无关人员进入污染区,切断火源。建议应急处理人员戴好防毒面具,穿一般消防防护服。在确保安全情况下堵漏。喷水雾会减少蒸发,但不能降低泄漏物在受限制空间内的易燃性。用沙土或其它不燃性吸附剂混合吸收,使用无火花工具收集运至废物处理场所处置。也可以用不燃性分散剂制成的乳液刷洗,如大量泄漏,利用围堤收容,然后收集、转移、回收或无害处理后废弃。

[第七部分]操作处置与储存

操作注意事项:

储存注意事项:储存于阴凉、通风仓间内。远离火种、热源。防止阳光直射。保持容器密封。应与氧化剂分开存放。储存间内的照明、通风等设施应采用防爆型,开关设在仓外。配备相应品种和数量的消防器材。罐储时要有防火防爆技术措施。禁止使用易产生火花的机械设备和工具。定期检查是否有泄漏现象,罐装时应注意流速(不超过3m/s),且有接地装置,防止静电积聚。搬运时要轻装轻卸,防止包装及容器损坏。

[第八部分]接触控制/个体防护

最高容许浓度:中国MAC:未制定标准

苏联MAC:未制定标准

美国TWA:ACGIH 25ppm,123mg/

前苏联 Mac:

美国TLV—TWA:

监测方法:

工程控制:生产过程密闭,加强通风。

呼吸系统防护:高浓度环境中,佩带防毒面具。

眼睛防护:一般不需特殊防护,高浓度接触时可戴化学安全防护眼镜。

身体防护:穿相应的防护服。

手防护:戴防化学品手套。也可使用皮肤防护膜。

其他防护:工作现场禁止吸烟、进食和饮水。工作后,淋浴更衣。保持良好的卫生习惯。

[第九部分]理化特性

外观与性状:无色液体。

pH:

熔点(℃):-25.5

沸点(℃):176.1

相对密度(水=1):0.89

相对蒸气密度 (空气 = 1):4.15

饱和蒸气压(kPa):无资料

燃烧热 (kJ / mol):

临界温度 (℃):395

临界压力 (MPa):3.14

辛醇/水分配系数的对数值:

闪点(℃):48

引燃温度(℃):470

爆炸上限% (V / V):无资料

爆炸下限% (V / V):无资料

分子式:C9H12

分子量:120.19

蒸发速率:

粘性:

溶解性:不溶于水,可混溶于乙醇、乙醚、苯、丙酮、四氯化碳、石油醚等。

主要用途:主要用作分析试剂。

[第十部分]稳定性和反应活性

稳定性:稳定

禁配物:强氧化剂。

避免接触的条件:

聚合危害:不能出现

分解产物:一氧化碳、二氧化碳。

[第十一部分]毒理学资料

急性毒性:属微毒类

LC50:

急性中毒:

慢性中毒:

亚急性和慢性毒性:

刺激性:

致敏性:

致突变性:

致畸性:

致癌性:

[第十二部分]生态学资料

生态毒理毒性:

生物降解性:

非生物降解性:

生物富集或生物积累性:

[第十三部分]废弃处置

废弃物性质:

废弃处置方法:用控制焚烧法处置。

废弃注意事项:

[第十四部分]运输信息

危险货物编号:33536

UN编号:

包装标志:

包装类别:3

包装方法:小开口钢桶;螺纹口玻璃瓶、铁盖压口玻璃瓶、塑料瓶或金属桶(罐)外木板箱;安瓿瓶外木板箱。

运输注意事项:

RETCS号:DC3300000

IMDG规则页码:

[第十五部分]法规信息

国内化学品安全管理法规:危险化学品安全管理条例(2002年3月15日国务院发布),工作场所安全使用化学品规定([1996]劳部发423号)等,针对化学危险品的安全使用、生产、储存、运输、装卸等方面均作了相应规定。

国际化学品安全管理法规:

[第十六部分]其他信息

参考文献:1.周国泰,化学危险品安全技术全书,化学工业出版社,1997

2.国家环保局有毒化学品管理办公室、北京化工研究院合编,化学品毒性法规环境数据手册,中国环境科学出版社.1992

3.Canadian Centre for Occupational Health and Safety,CHEMINFO Database.1998

4.Canadian Centre for Occupational Health and Safety, RTECS Database, 1989

填表时间:

填表部门:

数据审核单:

修改说明:

其他信息:1

MSDS修改日期:

填写人编号:

活力的小鸭子
单身的夏天
2026-02-08 21:26:27
请问为什么第一问减压不要减去饱和蒸气压而第二问加压就需要减去?

在相同温度下,毛细管中的饱和蒸气压小于水平面的饱和蒸气压。换句话说,毛细管容易在低的相对湿度下(即使外界空气蒸气压未达到饱和),形成凝聚液。并且毛细管直径越小,这种现象就越明显,这就是毛细凝聚效应。(印象中有种动物的鼻子,就是利用这个效应,在从 干燥的空气中 提取水汽)

毛细管凝聚效应可以很好地解释陶瓷插芯端面的“水珠”污染。以物理接触(PC)陶瓷插芯为例,为了实现物理接触,陶瓷插芯的纤芯是凸出的,两个陶瓷插芯的边界有微小的缝隙。这个缝隙就相当于毛细管。

闪点是可燃性液体性质的主要标志之一,是衡量液体火灾危险性大小的重要参数。闪点越低,火灾危险性越大,反之则越小。闪点与可燃性液体的饱和蒸气压有关,饱和蒸气压越高,闪点越低。

是指在20℃时饱和蒸气压大于等于 0.13 kPa 的有机化合物。其主要来源于石油化工行业废气的排放,储油库、加油站、车辆等油品的挥发和油漆、涂料、包装、印刷、胶黏剂、化妆品等行业有机溶剂的使用。据统计,2009 年我国工业源 VOCs 排放量约为 1206 万吨,并且每年呈约8.6%的递增趋势。到 2030 年,仅加油站 VOCs 的排放量可达 1271.03 千吨,经济损失近十亿元。 VOCs大多数有毒,并且由于饱和蒸气压高,可以在自然状态下挥发到空气中,通过呼吸道进入人体,诱发多种疾病。VOCs还是导致雾霾天气的元凶之一,由 VOCs 经化学转化生成的颗粒物,在一些地区可以占 PM2.5 来源的 21%。由 VOCs 经光化学反应形成的二次气凝胶占 PM10 的 25%~35%,是 PM10 的重要组成部分。

近年来,汽车等制造行业提出了"无油防锈"要求。丽英达气相防锈技术也称VCI技术,它是利用气相缓蚀剂对金属进行防锈保护的一种技术。其原理是利用具有适当饱和蒸气压的气相缓蚀剂在常温下挥发出具有缓蚀作用的特殊气体,这种气体迁移、扩散至金属表面,从而防止金属发生腐蚀。

地球看似庞大,其实在烟波浩瀚的宇宙中,却犹如夜空中的一颗小星星,只有在闪光的时候,宇宙可能才会发觉它的存在。关于地球,有很多的奇闻轶事,也有很多大家未见过的生物,就在前两天,据美国的《科学美国人》网站报道,全球各地的绿色植物生长几乎停滞,新的研究表明,这和全球空气中的水分渐少有很大的关系,而空气水分的减少则是地球气候变化的结果。

催化燃烧设备脱附温度与物质的沸点基本没有关系。以三甲苯为例,其沸点是164.7℃,而采用100℃的水蒸汽,却能够将其很好地脱附下来(脱附率97.01%)。而对于比它的沸点低得多的丙烯酸(沸点141℃),采用100℃的水蒸汽进行脱附时,丝毫不起作用。

对于难以脱附的物质,当采用热氮气脱附时,并不是温度越高脱附的越完全,过高的脱附温度反而使其脱附效率下降。如表中所示,在采用热氮气对甲基异丁酮(沸点115.8℃,20℃时的饱和蒸气压为2.13kpa)进行脱附时发现,当温度升至100℃时,脱附率只有63.10%;为提高脱附率,将氮气温度提高到170℃,此时的脱附率达到76.50%;这时考虑再升温已毫无意义,将温度试着下降,结果发现,脱附率反而逐渐上升。当温度降至110℃时,脱附率达到了峰值99.20%。

时尚的羽毛
风趣的黄蜂
2026-02-08 21:26:27
丙酮常温下易挥发。

丙酮,英文名是acetone,分子式为CH₃COCH₃。,又名二甲基酮,为最简单的饱和酮。是一种无色透明液体,有特殊的辛辣气味。易溶于水和甲醇、乙醇、乙醚、氯仿、吡啶等有机溶剂。易燃、易挥发,化学性质较活泼。

目前世界上丙酮的工业生产以异丙苯法为主。丙酮在工业上主要作为溶剂用于炸药、塑料、橡胶、纤维、制革、油脂、喷漆等行业中,也可作为合成烯酮、醋酐、碘仿、聚异戊二烯橡胶、甲基丙烯酸甲酯、氯仿、环氧树脂等物质的重要原料。也常常被不法分子做毒品的原料溴代苯丙酮。

物理性质

外观与性状:无色透明易流动液体,有芳香气味,极易挥发。

熔点(℃):-94.6

沸点(℃): 56.5

相对密度(水=1):0.788

相对蒸气密度(空气=1):2.00

饱和蒸气压(kPa):53.32(39.5℃)

燃烧热(kJ/mol):1788.7

临界温度(℃):235.5

临界压力(MPa):4.72

辛醇/水分配系数的对数值:-0.24

引燃温度(℃):465

爆炸下限%(V/V):2.5

爆炸上限%(V/V):12.8

溶解性:与水混溶,可混溶于乙醇、乙醚、氯仿、油类、烃类等多数有机溶剂。

化学性质

丙酮是脂肪族酮类具有代表性的的化合物,具有酮类的典型反应。例如:与亚硫酸氢钠形成无色结晶的加成物。与氰化氢反应生成丙酮氰醇。在还原剂的作用下生成异丙醇与频哪酮。

丙酮对氧化剂比较稳定。在室温下不会被硝酸氧化。用酸性高锰酸钾强氧化剂做氧化剂时,生成乙酸、二氧化碳和水。在碱存在下发生双分子缩合,生成双丙酮醇。 2mol丙酮在各种酸性催化剂(盐酸,氯化锌或硫酸)存在下生成亚异丙基丙酮,再与1mol丙酮加成,生成佛尔酮(二亚异丙基丙酮)。3mol丙酮在浓硫酸作用下,脱3mol水生成1,3,5-三甲苯。在石灰。醇钠或氨基钠存在下,缩合生成异佛尔酮(3,5,5-三甲基-2-环己烯-1-酮) 。

在酸或碱存在下,与醛或酮发生缩合反应,生成酮醇、不饱和酮及树脂状物质。与苯酚在酸性条件下,缩合成双酚-A。丙酮的α-氢原子容易被卤素取代,生成α-卤代丙酮。与次卤酸钠或卤素的碱溶液作用生成卤仿。

丙酮与Grignard试剂发生加成作用,加成产物水解得到叔醇。丙酮与氨及其衍生物如羟氨、肼、苯肼等也能发生缩合反应。

此外,丙酮在500~1000℃时发生裂解,生成乙烯酮。 在170~260℃通过硅-铝催化剂,生成异丁烯和乙醛;300~350℃时生成异丁烯和乙酸等。不能被银氨溶液,新制氢氧化铜等弱氧化剂氧化,但可催化加氢生成醇。

工业用途

丙酮是重要的有机合成原料,用于生产环氧树脂,[8] 聚碳酸酯,有机玻璃,医药,农药等。亦是良好溶剂,用于涂料、黏结剂、钢瓶乙炔等。也用作稀释剂,清洗剂,萃取剂。还是制造醋酐、双丙酮醇、氯仿、碘仿、环氧树脂、聚异戊二烯橡胶、甲基丙烯酸甲酯等的重要原料。在无烟火药、赛璐珞、醋酸纤维、喷漆等工业中用作溶剂。在油脂等工业中用作提取剂。

用于制取有机玻璃单体、双酚A、二丙酮醇、己二醇、甲基异丁基酮、甲基异丁基甲醇、佛尔酮、异佛尔酮、氯仿、碘仿等重要有机化工原料。在涂料、醋酸纤维纺丝过程、钢瓶贮存乙炔、炼油工业脱蜡等方面用作优良的溶剂。

自由的小海豚
暴躁的鸡翅
2026-02-08 21:26:27
1.慢性苯中毒主要是对皮肤、眼睛和上呼吸道有刺激作用。经常接触苯,皮肤可因脱脂而变干燥脱屑,有的出现过敏性湿疹。有些患过敏性皮炎、喉头水肿、支气管炎及血小板下降等病症的患者,其病因均与房间装修时室内有害气体超标有关,专家们称之为化合物质过敏症。

2.长期吸入苯能导致再生障碍性贫血。初期时齿龈和鼻粘膜处有类似坏血病的出血症,并出现神经衰弱样症状,表现为头昏、失眠、乏力、记忆力减退、思维及判断能力降低等症状。以后出现白细胞和血小板减少,严重时可使骨髓造血机能发生障碍,导致再生障碍性贫血。若造血功能完全破坏,可发生致命的颗粒性白细胞消失症,并可引起白血病。

3.女性对苯及其同系物的危害较男性敏感,甲苯、二甲苯对生殖功能亦有一定影响。育龄妇女长期吸入苯还会导致月经异常。孕期接触甲苯、二甲苯及苯系混合物时,妊娠高血压综合症、妊娠呕吐及妊娠贫血等妊娠并发症的发病率显著提高。

4.苯可导致胎儿先天性缺陷。这个问题已经引起国内外专家的关注。西方学者曾报道,在整个妊娠期间吸入大量甲苯的妇女所生的婴儿多有小头畸形、中枢神经系统功能障碍及生长期发育迟缓等缺陷。

大意的热狗
明亮的汽车
2026-02-08 21:26:27

自从1914年出现拉西环填料以后,填料塔的发展进入了科学的轨道。

1914年瓷质拉西环的问世,标志着填料塔进入了科学发展的年代。

1914年第一代有规填料拉西环(Raschingring)的出现,使填料塔的发展进入了科学轨道。

1914年Rachig环问世,标志着第一代乱堆填料的诞生,但实际生产效果仍没有很大的提高,人们开始意识到汽液分布性能对填料塔操作的重要性。

1937年斯特曼填料的出现,使填料和填料塔又进入了现代发展时期。

1950年后,填料塔进入了缓慢发展时期,在这个时期内,人们注意了对塔内件的研究,力图解决填料塔的放大问题,但由于各种板式塔的出现及其成功应用,使填料塔倍受冷落。

1951年Danckwerts〔侧针对渗透理论假定旋涡在界面上停留一个固定的时间的不合理性,特别对搅拌槽、乱堆填料塔、鼓泡塔、喷雾塔,其中的气泡和液滴有较宽的尺度分布,对渗透理论进行改进,提出了表面更新理论。

1964年国际蒸馏会议认为是填料塔放大以后液体分布不均所致。

1966年用于分离水和重水的第一个苏尔寿填料塔在法国投产。

自1966年世界上建立起莽一批网波填料塔以来,十多年的实践证明,风波填料具有效率高、负荷大、压降低、滞液星小、几乎无放大效应以及易于机械化加工等优点,因此其应用得到了迅速发展。

1969年,Viviantl将一个填料塔固定在大离心机的旋转臂上,首次测定了离心加速度对传质效率的影响。

1970年,我国建成第一座金属丝网波纹填料塔,20多年来估计有数百座金属丝网波纹填料塔投人生产。

1971年SPAAY等采用不同材质、不同尺寸的拉西环较为详尽地研究了脉冲填料塔的两相流动、轴向混合和传质特性,给出了特性速度、液滴直径的经验关联式。

1972年苏尔寿公司已建造了12个CY型填料塔,并且已成功地运转着。

1972年以来,以欧美为中心的世界硫酸制造所用的填料塔逐渐改换成陶瓷阶梯环,包括新建在内其总数可达100座。

故于1973年5月提出在石灰石填料塔内用水冼涤尾气的方案。

湍球塔不仅可用于乙炔冷却、清净和中和,而且也可用于水洗塔,这在国聚氯乙烯生产上也是首创,对防腐力量薄弱的地区也有很强的适应性。

1977年Simonsl介绍了脉冲填料塔在己内酚胺生产中的应用,并提出脉冲填料塔的传质效率与塔径和塔中是否存在反应无关,因而具有易于放大的优点。

1980年5月开始进行了阶梯环填料塔的试验,获得成功。

1980年,Merchu曾将填料塔作为氧合器,对几种较小尺寸的填料进行了传质性能的测定,并进行了血液氧合过程的尝。

1982年4月在直径5.3米的油洗塔及直径5.1米的水洗塔中,将上段的浮阀塔板改为充填英塔洛克斯金属填料的填料塔。

在推广新技术过程中,天津大学填料塔新技术公司也得到了迅速发展,从1985年资金为零,发展到拥有3000多万元资产的中型企业,成立研究推广中心后的1990年-1995年共创利税3500万元。

1986年底大检修时,对部分设备进行了改造,用填料塔取代了浮阀塔。

1987年元旦试车成功后,投产运行一年证明填料塔确有许多优点,但也存在一些问题。“官、产、学”结合促进科技成果转化天津大学“新型填料塔及高效填料研究推广中心”天津大学填料塔新技术公司天津大学研究开发的“具有新型塔内件的高效填料塔”技术,1987年获国家科技进步三等奖,1989年列为国家科委第一批全国重点推广项目。

1988年将酚精制抽提塔改成新型填料后取得的经验,也将转盘塔改成了阶梯环填料塔。

1989年对苹取塔进行技术改造,由原内驱动转盘塔改为短距阶梯环填料塔。后经论证,1989年大修期间将板式塔改造为高效填料塔。

1990年经中国国家科委和国家教委批准,在天津大学成立了国家级行业性研究推广中心“新型填料塔和高效填料研究推广中心”

1990年的年产8万吨合成氨节能技术改造时,将脱碳的两塔改为填料塔,改后脱碳的生产状况大大改善。

1990年国家科委将国家填料塔及内件技术研究推广中心设在天津大学填料新技术公司,并被列为国家“八五”九五”科技成果重点推广项目依托单位。

1990年,国家科委将国家级化工填料塔及内件技术推广中心设在了天津大学填料新技术公司。

1991年初,填料塔都由于此种原因而发生“液泛”

1991年采用高效填料塔技术改造以后,排放水质达到标准,而且回收了甲醇,保护了环境,降低了甲醇的消耗。

天津大学填料塔新技术公司1991年引进了苏尔寿公司的MELLAPAK自动生产线,并自已开发了碳钢渗铝板波纹填料;清华大学和上海化工研究院分别开发了压延板网波纹填料;中石化洛阳工程公司开发了LH型规整填料。

早在1991年,天津大学依靠化学工程学科在填料技术方面的优势,建立了天津大学填料塔新技术有限公司,在全国改造各类塔器近万个,取得了巨大的经济效益。

1993年三季度末主体设备由制造厂运抵本厂,同时联苯炉,波型截止阀、减速器传动装置、变频器、电器控制箱,铸带槽、工艺管道、计量泵、填料塔等辅助装置也相继到厂。但随着植物油精炼工艺的发展和进步,FH公司自1993年起在植物油脱臭工艺上采用了最新研制的结构填料塔。

1994年后我们又将原填料塔进行改造设计,设计时总结了原老系统设备浮阀,筛板复合塔板的改造和运行情况,并进行了改进,增设了一旋流除雾板。

1996年,经过考察研究,决定采用石家庄正元塔器开发公司的专利技术,利用大修机会,将变换工段饱和热水塔由原来的填料塔改造为新型高效垂直板塔。

1996年初,虽用一台金属孔板我们在粗苯装置的操作上采取了以下措施,取得了波纹填料塔代替了4台木格塔,但由于蒸汽压力低,较好的效果。

1997年9月,天津大学校办企业天财资讯系统工程公司、天津大学填料塔新技术公司、天津华通高新技术公司整体改制,再由天津大学、中国船舶工业总公司707研究所、天津大学事业发展总公司、天津经济建设投资集团、海南琼海农贸产品交易批发中心等7家机构共同筹组发起天大天财公司。

1997年,该公司对此作了改进:尾气经冷却后,经两级缓冲和两级填料塔过滤后进合成炉。

1997年天津大学作为主发起人,将天津大学填料塔新技术公司等公司的经营性净资产6500万元作为出资发起设立了天大天财,其中填料塔新技术公司净资产2780万元,占总投入的42.7%

1997年随天大天财在深交所上市改制成为天津天大天财股份有限公司填料塔新技术分公司,2000年6月改制为天津天大天久科技股份有限公司。

1998年7月对填料塔进行改造,取得了明显的效果。1998年7月,将脱甲烷塔改为填料塔。

1998年8月,由天大天财公司填料塔新技术分公司和天大化工所、茂名石化公司设计院共同设计的我国最大的500万吨/年原油常减压装置,在广东茂名一次开车成功,使茂名石化公司的炼油能力达到每年1350万吨,成为我国第一个千万吨级的炼油基地。

1999年,填料塔中的三相精馏过程在特定的条件下不会显著降低传质效率。

1999年,后洗苯塔阻力逐渐上升特别是花环填料塔阻力最高达到3000Pa使煤气鼓风机负荷增大鼓风机后煤气压升多次超出额定值须频繁停塔清扫等强化操作。

2000年,生产乙苯的填料塔开车成本偏高,分离效率低,原因在于塔体内盘式分离器通透率低,每小时处理量只有4.25吨,没有达到6吨的处理标准,其原因是塔壁流没能得到利用。

2000年,南京炼油厂采用填料塔技术对偏三甲苯精馏塔进行了技术改造,扩大了装置的生产能力,装置处理量得到大幅度的提高。

2000年检修时,对净化系统的循环酸增加一级沉淀,溢流进人另一循环槽,通过泵打人板式冷却器再进入填料塔。

遂于2000年4月对解吸塔进行了全面改造,将原浮阀塔改为填料塔。

2001年首次发现草甘膦生产过程中产生氯甲烷,提出了正确的反应机理,开发了DCS自动补气平衡系统和以新型波纹填料塔为核心的多级水洗、碱洗、吸附、干燥技术,净化回收率达95%以上,成功地解决了回收氯甲烷产气点多、产气不稳定以及含有大量杂质等问题。

2001年杭氧、开空、川空和中国空分设备公司等主要企业以填料塔、全精馏制氩、内压缩流程为代表的新一代大型空分设备占据了国内2万m~3/h以下空分设备市场。

忧伤的猎豹
妩媚的水杯
2026-02-08 21:26:27

控制有机污染物在水-土壤体系中迁移、转化的主要机理是挥发、吸附和生物降解。

(一)挥发

在包气带或饱水带,当溶解的污染物或非水相污染物与气相接触时,会发生挥发作用。影响挥发的因素有化合物的水溶解性、蒸汽压及土壤的吸附作用等,其中,蒸汽压是影响有机污染物挥发的主要参数,其受温度的影响较大。Cohen(1984)证实温度每升高10℃,挥发性将增大4倍。蒸汽压表征了化合物蒸发的趋势,也可以说是有机溶剂在气体中的溶解度。水中溶解的有机溶质的挥发用亨利定律来描述:

河流渗滤系统污染去除机理研究

式中:P为污染物在水面大气中的平衡分压,Pa;KH为亨利常数,Pa·m3/mol;Cw为污染物在水中的平衡浓度,mol/m3。

根据亨利常数的大小,可以初步判断物质从液相向气相转移的速率。当KH<3×10-2 Pa·m3/mol时,认为化合物基本不挥发;KH>3×102 Pa·m3/mol时,挥发作用是主要的物质迁移机理。

胡枭等(1998)从挥发性物质的水溶解性、蒸汽压和吸附系数估算所得的挥发速率与观察到的挥发性有很好的相关性。位于土壤深层的污染物,在其从地表挥发至大气之前,需先迁移至地表,这个过程一般认为属于一维扩散。由于土壤的非均匀性,可用Fick第二定律描述此过程。

(二)吸附作用

土壤和沉积物对有机污染物的吸附作用是影响有机物环境行为的重要作用之一,它使有机物残留于土壤和沉积物中,从而影响其移动性和生物毒性。影响吸附作用的因素主要有:有机污染物的物理和化学特征、土壤的特征及外界因素。

1.污染物的特征

在影响有机化合物环境化学行为的众多因素中,溶解度是最重要的一个因素。由于水是一种极性溶剂,所以有机物在水中的溶解度与其极性强弱有关,一般是极性越强则溶解度越大,反之则小。溶解度越小的有机化合物在土壤-水体系中的分配系数越大,土壤有机质越容易吸收并保留它们,释放的速度也就越慢,它们在环境中的残留时间也就越长。

按照极性特征可将化合物分为三类:离子或带电荷的物质、不带电荷的极性物和不带电荷的非极性物。有机污染物包括所有三种类型,非极性物包括三氯乙烯、四氯乙烯、氯代苯、甲苯和二甲苯;农药和酚在溶液中带电荷或为极性分子。污染物的极性特征影响吸附遵循以下规律:对于带电荷的物质,异性相吸;对于不带电荷的物质,相似相吸,所谓相似,指污染物和土壤的极性相似。

2.土壤的特征

影响吸附的土壤特征包括:矿物组成、渗透性、空隙度、土壤结构、均一性、有机质含量、表面电荷与表面积等。其中土壤有机质含量及其成分是决定土壤对有机污染物吸附量大小的关键性因素。

Lambert(1967)最先认为土壤有机质可能起有机萃取剂的作用,非极性有机化合物在土壤有机质与水之间的分配作用相当于该化合物在水和与水不相溶的有机溶剂之间的分配。

Chiou et al.(1983)应用高分子溶液化学理论,认为土壤有机质对有机污染物是吸收,不是吸附作用,而是一种非竞争性的吸入作用,即分配作用。

对土壤有机质而言,含碳量的增加和氢、氧、氮含量的降低意味着有机质成分中木质化程度高、活性基团少和极性较弱,反之则极性较强。所以常用C/O和C/N来表示土壤有机质活性和极性的强弱,C/O、C/N的比值低,则土壤有机质极性较强,反之则极性较弱。弱极性土壤有机质对有机污染物吸收量较大,而强极性土壤有机质则吸收量较小(丁应祥等,1997)。

3.外界因素

温度、盐度、介质的酸度及共溶剂效应等均对有机化合物的吸附作用产生影响。如五氯酚在溶液的pH值低于4.7时,为不带电的极性分子;在溶液的pH值大于4.7时,为阴离子,其溶解度从14mg/L增加到90mg/L。

关于土壤/沉积物吸附有机污染物的机理,国外学者进行了大量的研究。Leenheer et al.(1971)用杀虫剂对硫磷进行吸附试验时发现,吸附是一个可逆过程。Karickhoff et al.(1979)对芘和甲氢滴滴涕的吸附试验也发现,在较大的浓度范围内,吸附是线性和可逆的。DiToro et al.(1982)以湖泊沉积物为吸附剂吸附多氯联苯类时,发现这些吸附既有可逆的,也有不可逆的。Mingelgrin et al.(1983)观察到非离子型杀虫剂被土壤吸附时的非线性等温线现象。20世纪90年代以来,该方面的研究进入了高潮。Weber et al.(1992)提出了多元反应模型:土壤/沉积物对有机污染物总的吸附反应是由一系列线性的和非线性的吸附反应组合而成的。所观察到的宏观吸附现象实际上是由微观上很多机理各不相同的吸附组成。线性部分的吸附服从相分配机理,而非线性部分则与表面反应有关。Weber et al.(1996)还提出了三端员模式,他们将土壤/沉积物中吸附有机污染物分为无机矿物表面、无定形的土壤有机质和凝聚态的土壤有机质三个部分,其中前二者对有机污染物的吸附以相分配为主,凝聚态的土壤有机质对有机污染物的吸附则表现为非线性。Xing et al.(1996)发现土壤有机质是一个双模式的吸附剂,它以两种不同的机理来吸附有机污染物:分配方式与空隙充填方式,后者符合Langmuir等温吸附,此模型不仅适用于非极性有机化合物,也可用于极性有机化合物。

(三)生物降解

土壤和沉积物中的微生物在许多有机污染物的中间和最终降解过程中起了很大的作用。微生物在其代谢过程中,分解有机化合物,获得生长、繁殖所需的碳及能量。有机物的生物降解是一个氧化还原反应,有机物失去电子被氧化,电子受体得到电子被还原。通常,有机物的氧化总是首先利用氧作为电子受体,其次是、Fe(Ⅲ)、和CO2。

影响有机物生物降解的因素主要有两类:一类是污染物的特性(有机化合物的结构及物理化学性质)和微生物本身的特性。不同的有机化合物其生物可降解性不同。已有的研究表明:①结构简单的有机物一般先降解,结构复杂的后降解。分子量小的有机物比分子量大的有机物易降解。②有机化合物主要分子链上除碳元素外还有其他元素时,不易被氧化。③取代基的位置、数量和碳链的长短也影响化合物的生物降解。如对苯系物生物降解性的研究结果表明,间-和对-二甲苯的降解难易程度相近,间位略优于对位,而邻二甲苯很难降解。苯与甲苯相比,甲基的引入提高了化合物的可生物降解性。与甲苯相比,二甲苯和三甲苯的生物降解性随甲基数量的增加而变得困难。乙苯比甲苯难降解,原因为取代基碳链越长,生物降解越困难。④易溶于水的化合物比难溶于水的化合物易被生物降解,原因是不溶于水的化合物,其代谢反应只限于微生物能接触的水和污染物的界面处,有限的接触面妨碍了难溶化合物的代谢。另外,微生物的分布、密度、种类、群体间的相互作用及驯化程度均影响有机物的生物降解。另一类是控制反应速率的环境因素,如温度、酸碱度、湿度、溶解氧、微生物的营养物和吸附作用等。温度对土壤中微生物的活性影响很大,一般来说,在0~35℃温度范围内,升高温度能促进细菌的活动,适宜温度通常为25~35℃。大多数微生物对pH值的适应范围在4~10之间,最适值为6.5~7.5,过高或过低的pH值对微生物的生长繁殖不利。土壤中湿度的大小影响着氧的水平,溶解氧和Eh值的大小决定着生物降解过程中何种化合物作为电子受体。吸附作用阻碍了有机物的生物降解。

实验室和野外的试验都证明,好氧条件下微生物可以降解BTEX(Wison et al.,1983;Song et al.,1990;Macintvre et al.,1990;Nielsen et al.,1994)。由于氧易消耗,不易补充,地下水污染区多处于微氧或厌氧状态,近年来的研究重点已转向厌氧条件下BTEX的研究。研究表明,硝酸盐还原、铁还原(Lovley et al.,1996;Anderson,1998)、硫酸盐还原(Edwards,1992 a,b;Weiner et al.,1998ab)和产甲烷作用(Edwards et al.,1994;Weiner et al.,1998 a,b)条件下BTEX都能被微生物降解,但反硝化条件下苯是否被降解仍是一个有争议的问题,有的认为苯不降解(Kuhn et al.,1988;Lovley,1997;Alvarez et al.,1995),而有的认为苯能降解(Major et al.,1988;Burland et al.,1999;吴玉成等,1999),李东艳(2000)进行了一系列以未污染的稻田土为接种物的苯和甲苯生物降解微环境试验。试验表明,反硝化条件下苯和甲苯都能被微生物降解,甲苯比苯更易降解,甲苯的存在促使了苯的降解。

关于卤代烃类的生物降解问题,目前有两种说法:①厌氧生物降解。在厌氧条件下,PCE能够通过还原脱氯作用转化为TCE、DCE和VC,部分矿化生成二氧化碳(Timothy et al.,1985;Roberts et al.,1982),TCE转化的半衰期为300d(Timothy et al.,1985);在氯代烃作为各种细菌的电子受体的厌氧环境下,脱氯作用很容易发生(Mohn et al.,1992)。②好氧条件下,氯代烃的生物降解仅发生在和其他化合物,如甲苯共存时,土著微生物在降解甲苯时,氯代烃同时发生降解。这种降解方式称为“共降解”(cometalolism),又称“共氧化”(cooxidation)。在1972年,Horvath(1972)确认了20多种共代谢细菌,从此许多微生物菌种被确认。十多年来,TCE和甲苯之间的共代谢作用得到了广泛的研究(El-Farhan et al.,1993;Fan et al.,1993)。

本试验中苯系物的去除是挥发、吸附和生物降解共同作用的结果。在土柱的表层,试验运行的初期,挥发对苯系物的去除曾起到一定的作用,随着试验的进行,土柱内部逐渐被堵塞,挥发作用渐渐减弱。前已述及,土壤有机质含量及其成分是决定土壤对有机污染物吸附量大小的关键性因素。三柱的有机质含量分别为:柱1,0.2490%;柱2,0.0953%;柱3,0.1553%。而试验结果表明,不管是饱水还是非饱水阶段,柱2对苯系物的去除效果最好,其次是柱3,柱1最差。由此可以推断,吸附对本试验中苯系物的去除发挥了一定的作用,由于土体内的有机质含量有限,吸附总有达到饱和的时候,而生物降解才应该是更为重要的去除机理,而且在土柱内部主要是厌氧条件下苯系物的微生物降解。

本试验中后期的非饱水阶段更加符合长期排污河的实际情况,结果表明苯系物容易穿过粗砂进入地下水,造成对地下水的有机污染。

可爱的向日葵
着急的白昼
2026-02-08 21:26:27
中华人民共和国《安全生产法》、国家安全生产监督管理总局《关于开展重大危险源监督管理工作的指导意见》、《关于认真做好重大危险源监督管理工作的通知》等,极大地推动了重大危险源监督管理工作的深入开展。做好重大危险源监督管理工作已经成为转变安全生产监管方式、创新安全生产监管手段、提高安全生产监管效果的重要途径。

火力发电厂投资巨大,生产工艺复杂,在许多生产环节存在着危险有害因素,有些已经构成重大危险源,对人民生命财产安全构成一定威胁。按照国家规定对火力发电厂的重大危险源进行有效的管理,对安全生产具有重要意义。

1. 重大危险源辨识的依据

重大危险源辨识的依据是《重大危险源辨识》(GB18218-2000)和《关于开展重大危险源监督管理工作的指导意见》(安监管协调字【2004】56号)。

一个(套)生产装置、设施或场所,或同属于一个工厂的且边缘距离小于500m的几个(套)生产装置、设施或场所,叫做一个单元。在这个单元中,如果存在一种或若干种物质的混合物,由于它的化学、物理或毒性特性,使其具有易导致火灾、爆炸或中毒的危险,这些物质称作危险物质。长期地或临时地生产、加工、搬运、使用或储存危险物质,且危险物质的数量等于或超过临界量的单元,构成重大危险源。危险物质的临界量,是对于某种或某类危险物质规定的数量,在上述标准和文件中有明确规定。

重大危险源申报登记的范围是:贮罐区(贮罐)、库区(库)、生产场所、压力管道、压力容器、煤矿(井工开采)、金属非金属地下矿山、尾矿库。贮罐区(贮罐)、库区(库)、生产场所危险物质数量超过临界量包括以下两种情况:

① 单元内现有的任一种危险物品的量达到或超过其对应的临界量;

② 单元内有多种危险物品且每一种物品的储存量均未达到或超过其对应临界量,但满足下面的公式:

式中, ——每一种危险物品的现存量。

——对应危险物品的临界量。

2. 火力发电厂重大危险源的辨识

在火力发电厂中存在的危险有害物质主要有煤粉、乙炔、点火轻柴油、汽轮机油、绝缘油、次氯酸钠、二氧化氯、氢气、盐酸、氢氧化钠、氨、联胺、硫酸、六氟化硫、磷酸三甲苯酯、高温高压水汽、烟气、锅炉灰渣等。此外还有锅炉、压力容器等特种设备和变压器、电缆等电气设备设施。因此,生产过程中存在火灾、爆炸等危险因素,对这些危险有害物质和因素进行分析,从中辨识出重大危险源,并按照有关规定进行管理,对于提升安全生产水平将会起到重大促进作用。

2.1 锅炉重大危险源的辨识

按照安监管协调字[2004]56号文规定,若蒸汽锅炉额定蒸汽压力大于2.5MPa,且额定蒸发量大于等于10 t/h,则为重大危险源。

一般电厂的主机锅炉,都符合重大危险源的标准。而新建工程设有燃油启动锅炉,用来提供机组启动时除氧器、暖风器、燃油雾化、辅助蒸汽等用汽,一般间断使用3~5年时间。有的符合这个标准,有的不符合这个标准,需要根据工程的实际情况确定。如盘山电厂2×500MW进口超临界机组,安装4台50t/h进口启动锅炉,蒸汽压力3.9MPa,温度 440℃,属于重大危险源。而150MW级机组所配套的启动锅炉,一般蒸汽参数压力1.25MPa,温度300~350℃,容量为10t/h左右,则不是重大危险源。

1993年3月10日,浙江省宁波市北仑港发电厂一号机组发生一起特大锅炉炉膛爆炸事故,造成死亡23人,重伤8人,伤16人。2004年9月23日,新兴铸管股份公司一在建电厂项目发生燃气锅炉爆炸事故,造成13人死亡,8人受伤。

2.2 点火轻柴油灌区重大危险源的辨识

锅炉点火助燃使用的轻柴油因闪点较高(“GB252-2000”将10号、5号、0号、-10号和-20号等5个牌号的轻柴油的闪点指标由原来的≥65℃修改为≥55℃),不在GBl8218-2000《重大危险源辨识》所列的易燃物质名单中。但按照安监管协调字[2004]56号文规定,贮罐区(贮罐)所贮存的易燃液体,如煤油、松节油、丁醚等,若28℃≤闪点<60℃,储量超过100 t,则构成重大危险源。点火轻柴油闪点在这个范围之内,在2×135MW机组的工程中,一般设置2×500m3的贮罐,在2×300MW机组工程中,则设置2×1000m3贮罐,在火电厂中储量较大,应把点火油罐区划为重大危险源管理。

2005年5月13日,新疆红雁池第二发电有限公司厂区的油罐发生剧烈爆炸,随即引起大火,事故是由于现场施工人员违反安全生产操作规程引起的。爆炸造成 5人死亡,1人重伤,发电厂损失惨重。

2.3 贮氢罐(群)重大危险源的辨识

在发电机为水-氢-氢冷却方式的电厂中,均设有制氢站,提供发电机绕组和铁芯冷却用氢气,若发电机采用空冷或者双水内冷,则不设制氢站。氢气为无色无味气体,密度0.0899g/l,沸点-252.8℃,自燃点572℃,爆炸极限:4.0%~74.4%,氢气在常温下不活泼,但易燃。

以300MW机组典型设计为例,一般制氢站产氢流量为Q=10Nm3/h,压力3.2MPa,4台贮氢罐每个容积V=13.9m3。按照安监管协调字[2004]56号文规定,对于乙炔、氢、液化石油气等可燃气体,爆炸极限低于10%的,若在贮罐区(贮罐)的存储量超过10t,就是重大危险源。贮罐中储存3.2 MPa的氢气55.6m3,经过换算后,计算出氢气的量约为0.16t,不属于重大危险源。但是,在同一文件中规定,若压力容器(群)内所储存易燃介质,最高工作压力≥0.1MPa,且PV≥100 MPa×m3,则构成重大危险源。电厂中氢气贮罐177.92 MPa×m3 ≥100 MPa×m3,应属于重大危险源。因此,应将贮氢罐(群)划为重大危险源管理。

1989年9月7日天津杨柳青电厂发生氢罐爆炸事故。在向3号发电机充氢过程中,由于1号制氢设备氢氧侧压力调整器卡涩,导致氧气窜到氢气中,使1号氢罐氢、氧混合气体达到爆炸极限,在值班人员倒罐开门瞬间,因氢气压差大(0.4MPa)、流速快(初始流速可达每秒数百米)扰动铁锈摩擦发热,引爆了1号罐内混合气体,发生氢罐爆炸。

2.4 贮灰场重大危险源的辨识

燃煤电厂生产过程中不断产生大量灰渣。为防止灰渣排入河流造成环境污染,新、扩、改建燃煤电厂必须同时建设贮灰场,贮存燃煤电厂排出的粉煤灰和炉渣。电厂灰渣一般属无害少毒的三类废渣,在设计灰场时,需分析化验灰渣和灰水中微量重金属元素及其他有害物质的含量,要有防止灰尘飞扬和灰水排放对江河水域污染的措施。按照安监管协调字[2004]56号文规定,全库容≥100万m3或者坝高≥30 m的尾矿库属于重大危险源。贮灰场属于尾矿库的一种,且一般库容较大,如600MW装机容量的电厂每年排出的灰渣超过30×104t,贮灰场设计容量一般大于300 ×104 m3,应该作为重大危险源进行管理。

1983年景德镇电厂灰场垮坝,1985年榆树川电厂灰场垮坝,以及户县电厂灰场垮坝、习水电厂灰场垮坝事故都造成了严重损失,还造成了人身伤亡。有些电厂处于人口较为稠密地区,一旦发生灰场垮坝事故,其后果将不堪设想。

2006年6月上旬,贵州黔桂发电有限公司和吉林延边晨鸣纸业有限公司自备热电厂相继发生了两起电厂灰渣库泄漏事故,造成较大经济损失和环境污染。国家安监总局和电监会以安监总管一【2006】141号文进行了通报,并明确灰渣库是尾矿库的一种类型,属于重大危险源,要按照《尾矿库安全监督管理规定》和《尾矿库安全技术规程》的规定进行管理,严格灰渣库的安全生产许可制度。

3. 重大危险源的安全管理

《安全生产法》第三十三条规定:生产经营单位对重大危险源应当登记建档,进行定期检测、评估、监控,并制定应急预案,告知从业人员和相关人员在紧急情况下应当采取的应急措施。生产经营单位应当按照国家有关规定,将本单位重大危险源及有关安全措施、应急措施报有关地方人民政府负责安全生产监督管理的部门和有关部门备案。

《国务院关于进一步加强安全生产工作的决定》(国发【2004】2号)要求搞好重大危险源的普查登记,加强国家、省(区、市)、市(地)、县(市)四级重大危险源监控工作。

《关于进一步加强和规范重大危险源监督管理工作的通知》(安监管司办字[2004]127号)要求加强对重大危险源监督管理工作的领导,进一步加大工作力度,加强技术指导和政策引导,强化监督检查,充分发挥有关中介机构、科研单位在技术支撑与服务方面的优势,促使生产经营单位做好重大危险源监控的各项工作。

《关于认真做好重大危险源监督管理工作的通知》(安监总协调字[2005]62号)指出,企业是安全生产的主体,也是重大危险源管理监控的主体,在重大危险源管理与监控中负有重要责任。各级安全生产监督管理部门要监督检查并指导督促企业做好重大危险源管理工作。文件中提出做好登记建档和申报、保证资金投入、建立健全规章制度和落实责任、安全教育和技术培训、检测和检验、事故隐患和缺陷整改、制定应急救援预案、不断改进监控管理手段等十项具体要求。

4. 事故应急救援预案的编制

国家一系列法律、法规和文件,明确规定了对重大危险源应编制应急救援预案,并定期进行技术培训和事故演练。

对重大事故危险源要组织专家进行辨识、评估或评价,针对辨识、评估或评价结果制定事故应急救援预案,这是制定预案的基础和出发点。对已确认的重大危险源,应制定严格的管理制度,并预测发生重大事故的状态和损失程度以及对周边地区可能造成的危害程度。

事故应急救援预案的基本要求包括:事故预防措施的落实、应急处理程序和方法的规定、抢险救援技术保障等。编写或制定事故应急救援预案时,应具体描述意外事故和紧急情况发生时所采取的措施,其基本要求是:

具体描述可能的意外事故和紧急情况及其后果。

确定应急期间负责人及所有人员在应急期间的职责。

确定应急期间起特殊作用的人员(例如:消防员、急救人员、危险情况处置人员)的职责、权限和义务。

规定疏散程序。

明确危险物料的识别和位置及其处置的应急措施。

建立与外部应急机构的联系(消防部门、医院等)。

定期与安全生产监督管理部门、公安部门、保险机构及相邻企业交流。

做好重要记录和设备等保护(如装置布置图、危险物质数据、联络电话号码等)。

安详的月亮
眼睛大的大门
2026-02-08 21:26:27
氨水又称阿摩尼亚水,由铵根离子,氢离子,氢氧根离子组成,易挥发,同时具有一定的腐蚀性,属于危险化学品。今天我们就来 说说氨水都有哪些用途?

一、实验室用途

氨水是实验室重要的试剂,主要用作分析试剂,中和剂,生物碱浸出剂,铝盐合成和弱碱性溶剂。用于铝盐合成和某些元素(如铜、镍)的检定和测定,用以沉淀出各种元素的氢氧化物。

二、军事用途

作为一种碱性消毒剂,用于消毒沙林类毒剂。常用的是10%浓度的稀氨水(密度0.960),冬季使用浓度则为20%。

三、工业用途

毛纺、丝绸、印染等工业用于洗涤羊毛、呢绒、坯布,溶解和调整酸碱度,并作为助染剂等。 有机工业用作胺化剂,生产热固性酚醛树脂的催化剂,无机工业用于制选各种铁盐。

工业上用于大规模集成电路减压或等离子体CVD,以生长二氧化硅膜锅炉给水pH值调节剂,氨用来中和给水中的碳酸,提高pH值,减缓给水中二氧化碳的腐蚀。也是锅炉停炉保护剂,对锅炉内有少量存水不能放出的锅炉也有较好的保护效果。

四、农业用途

农用氨水的氨浓度一般控制在含氮量15%~18%的范围内,碳化度最好大于100%。施肥简便,方法也较多,如沟施、面施、随着灌溉水施或喷洒施用。使用时须先用水稀释至千分之一以下,切忌同茎叶接触以免灼伤。

氨水的施用原则是“一不离土,二不离水”。不离土就是要深施覆土;不离水就是加水稀释以降低浓度、减少挥发,或结合灌溉施用。由于氨水比水密度小,灌溉时要注意避免局部地区积累过多而灼伤植株。氨水可作基肥也可作追肥。

柔弱的大树
谨慎的路人
2026-02-08 21:26:27
压力也是响精馏操作的重要因素。精馏塔的操作压力是由设计者根据工艺要求,经济效益等综含论证后确定的,生产运行中不能随意变动。塔压发生变化时,首先要判断引起压力变化的原因,而不是简单的只从调节上使塔压恢复正常,要从根本上消除变化的因素,才能不破坏塔的操作。如何深入了解精塔的压力变化和调节方案?请看小7总结以下内容妙不妙!

7友常见精馏塔压力问题,如何解决?

1.不好意思,请问大家一下,板式精制塔的所说的压差,正常是塔顶压力大还是塔釜压力大?谁能和我理论上讲讲?

2.甲醇的常压塔,塔顶和回流槽一直出现负压,回流管线还有水击现象发生,我想问下:这是为什么?

3.预精馏塔为全回流塔,预精馏塔再沸器内漏,塔釜温度压力上升,为什么塔顶温度压力下降?

4.精馏塔开车过程中是不是可以用水蒸汽来保持压力?

…………

首先,回顾精馏塔压力问题知识……

对板式塔来说,塔板压降什么?影响因素有哪些?

压差的高低对精馏塔操作的影响?

液泛

当塔内发生液泛时,阻力、液面将发生很大的波动。同时破坏了塔内的精馏过程,产品纯度往往达不到要求,并且波动很大,无法维持正常生产。在操作中应尽力避免液泛的发生,并及时进行处理。

漏液

精馏塔的压差都有一定的控制范围,压差太大太小都会使精馏塔的操作变得异常困难。

如何控制精馏塔的压差?

对于干板压降主要从塔本身的设计上来着手:

对于操作中压差的变化:

塔压差的影响因素是多种多样的,分析压差变化的原因时应具体情况具体分析,找出了变化的原因后再施以相应的调整措施以将压差控制好。

然后,了解那些熟悉而又陌生的精馏塔控制……

加压塔压力控制

——气相采出法

顶冷凝器为分凝器(气液相并存)时,塔压一般是靠气相采出量来调节的,在其他条件不变的情况下,气相采出量增大,塔压下降,气相采出量减少,塔压上升。

乙烯厂加氢工段10-C-701塔的压力控制P17003就是采用的气相采出法。

——冷剂调节

塔顶物料为全凝时,靠冷剂量来控制压力,也就是控制回流温度。

——热旁通法

热旁通阀的三个优点:

冷凝器可以安装的比较低,这样就不用设置平台,减少材料,降低成本;

调节灵敏度高,易调节;

调节阀安装的管线可以比较细,可以使用比较小的调节阀,也降低了成本;

——卡脖子法

精细化工厂的偏三甲苯塔是气相卡脖子法,加氢装置的脱碳十塔是液相卡脖子法。

常压塔的压力控制

——常压塔的压力控制(一)

对于塔顶压力在稳定性要求不高的情况下,无需安装压力控制系统,可在精馏设备(回流罐)设一个通大气的管道,以保证塔内压力接近于大气压。

——常压塔的压力控制(二)

对塔顶压力的稳定性要求较高或被分离的物料不能于空气接触时,该塔的压力控制可以采用加压塔的压力控制方法,可以用气相排出法或冷剂法。

——常压塔控制(三)

调节塔釜加热量的方法来控制塔顶压力,化工助剂装置的溶剂精馏塔就是用塔釜加热量来控制压力。

减压塔控制方法

——不凝气回流

当使用电动真空泵时,可以将调节阀安装在真空泵的回流线上,通过控制抽出量来控制塔的真空度。

——冷剂法

当塔的真空借助喷射泵获得时,可以用调节塔顶冷凝器的冷剂量或冷剂温度从而改变尾气量的方法来调节塔的真空度。

——补氮气

在使用电动真空泵时,还可以用补氮气的方式来控制塔压。在真空抽出线上接氮气线,通过调节氮气量来控制真空度。我们新装置精馏部分的四个塔压力都这样控制。

最后,分析并解决问题

问题一

在这里替换你的文字内容,注意不要用删除键把所有文字删除,请保留一个或者用鼠标选取后TXT文档复制粘贴替换,防止格式错乱。

回答

当然是塔釜的压力高了,一是因为塔釜有蒸汽压力,使易挥发性的物质挥发,所以,汽相物质较多,因而压力较高。而塔顶则因为随着塔高的增加,轻组分的物质会越来越少,所以压力也较低。

回答

这种解释基本是错误的,至少不严密。从现象上分析,塔顶是由轻组分占据,塔釜重组分居多。我们假设忽略因为重力的原因,塔内的物质自然分布,塔顶和塔底还有压差吗?我们知道,精馏塔要建立循环,必须有上升气相和下降液相,液相的下降是依靠重力,那么气相上升靠什么?很多人认为靠塔底的再沸,其实是压差。压差来源于塔顶的冷凝。正是由于塔顶的气相冷凝,产生了小于下一块板的压力,并且逐板传递,才能完成每个塔板上的物质交换。

需要指出的是塔内物质的分布能够代表一定气相物质的压力差在塔内的分布,但是反过来塔的压差分布并不能表示塔内部气相组成的分布。