建材秒知道
登录
建材号 > 乙酸 > 正文

1-(氯乙酰基)-2-(三氟乙酰基)肼的合成路线有哪些

虚心的心锁
淡定的眼睛
2022-12-22 15:52:19

1-(氯乙酰基)-2-(三氟乙酰基)肼的合成路线有哪些?

最佳答案
含糊的滑板
平常的向日葵
2026-02-08 08:11:17

基本信息:

中文名称

1-(氯乙酰基)-2-(三氟乙酰基)肼

英文名称

N'-(2-chloroacetyl)-2,2,2-trifluoroacetohydrazide

英文别名

N'-(chloroacetyl)-2,2,2-trifluoroacetohydrazideN'-(2-chloroacetyl)trifluoroacetohydrazidebis-hydrazide1-(Chloroacetyl)-2-(trifluoroacetyl)hydrazine

CAS号

762240-99-3

合成路线:

1.通过三氟乙酸乙酯和一氯代乙酰氯合成1-(氯乙酰基)-2-(三氟乙酰基)肼,收率约99%;

2.通过三氟乙酸乙酯、一氯代乙酰氯和高纯氮合成1-(氯乙酰基)-2-(三氟乙酰基)肼,收率约99%;

更多路线和参考文献可参考http://baike.molbase.cn/cidian/1199243

最新回答
安静的御姐
受伤的白开水
2026-02-08 08:11:17

发烟硝酸

硝酸

硝化酸混合物 硝化混合酸

废硝酸

废硝化混合酸

硝酸羟胺

发烟硫酸 焦硫酸

硫酸

含铬硫酸

废硫酸

淤渣硫酸

三氧化硫[抑制了的] 硫酸酐

亚硫酸

亚硝基硫酸 亚硝酰硫酸

盐酸 氢氯酸

硝基盐酸 王水

氟化氢(无水)

氢氟酸 氟化氢溶液

氢溴酸 溴化氢溶液

溴化氢乙酸溶液 溴化氢醋酸溶液

氢碘酸 碘化氢溶液

溴酸

溴 溴素

溴水[含溴≥3.5%]

高氯酸[含酸≤50%] 过氯酸

氯磺酸

氟磺酸

氟硅酸 硅氟酸

氟硼酸

氟磷酸[无水]

二氟磷酸[无水] 二氟(代)磷酸

六氟合磷氢酸[无水] 六氟(代)磷酸

硒酸

铬酸溶液

一氯化硫

二氯化硫

四氯化硫

氧氯化硫 硫酰氯二氯硫酰磺酰氯

氯化二硫酰 二硫酰氯焦硫酰氯

氯化亚砜 亚硫酰(二)氯二氯氧化硫

氧氯化铬 氯化铬酰二氯氧化铬铬酰氯

氧氯化硒 氯化亚硒酰二氯氧化硒

氧氯化磷 氯化磷酰磷酰氯三氯氧化磷

三氯化磷

五氯化磷

四氯化硅 氯化硅

四氯化碲

三氯化铝[无水]

三氯化锑

五氯化锑

四氯化锗 氯化锗

四氯化铅

三氯化钛混合物

四氯化钛

四氯化钒

四氯化锡[无水] 氯化锡

一氯化碘

氧溴化磷 溴化磷酰磷酰溴三溴氧(化)磷

三溴化磷

五溴化磷

三溴化铝[无水] 溴化铝

三溴化硼

二水合三氟化硼 三氟化硼水合物

五氟化锑

硫酸铅[含游离酸>3%]

五氧化(二)磷 磷酸酐

硫代磷酰氯 硫代氯化磷酰三氯化硫磷

灭火器药剂[腐蚀性液体]

电池液[酸性的]

甲酸

三氟乙酸 三氟醋酸

三氟乙酸酐 三氟醋酸酐

三氟化硼乙酸酐 三氟化硼醋(酸)酐

乙基硫酸 酸式硫酸乙酯

二苯胺硫酸溶液

苯酚二磺酸硫酸溶液

苯酚磺酸

邻硝基苯磺酸

间硝基苯磺酸

对硝基苯磺酸

烷基、芳基或甲苯磺酸[含游离硫酸>5%]

溴(化)乙酰 乙酰溴

溴(化)丙酰 丙酰溴

溴乙酰溴 溴化溴乙酰

1-溴丙酰溴 溴化-1-溴丙酰

2-溴丙酰溴 溴化-2-溴丙酰

碘(化)乙酰 乙酰碘

戊酰氯

异戊酰氯

己酰氯 氯化己酰

乙二酰氯 氯化乙二酰草酰氯

丙二酰氯 缩苹果酰氯

丁二酰氯 氯化丁二酰琥珀酰氯

癸二酰氯 氯化癸二酰

丁烯二酰氯[反式] 富马酰氯

三甲基乙酰氯 三甲基氯乙酰新戊酰氯

氯乙酰氯 氯化氯乙酰

二氯乙酰氯

三氯乙酰氯

二甲氨基甲酰氯

呋喃甲酰氯 氯化呋喃甲酰

苯甲酰氯 氯化苯甲酰

2,4-二氯苯甲酰氯 2,4-二氯(代)氯化苯甲酰

甲氧基苯甲酰氯 茴香酰氯

2,6-二甲氧基苯甲酰氯

邻苯二甲酰氯 二氯化(邻)苯二甲酰

间苯二甲酰氯 二氯化(间)苯二甲酰

对苯二甲酰氯

苯磺酰氯 氯化苯磺酰

甲(基)磺酰氯 氯化硫酰甲烷

苯(基)氧氯化膦 苯磷酰二氯

1-萘氧(基)二氯化膦

苯硫代二氯化膦 苯硫代磷酰二氯硫代二氯(化)膦苯

二甲基硫代磷酰氯

二乙基硫代磷酰氯

一级有机氯硅烷化合物,如:

丙基三氯硅烷

丁基三氯硅烷

戊基三氯硅烷

己基三氯硅烷

辛基三氯硅烷

壬基三氯硅烷

十二烷基三氯硅烷

十六烷基三氯硅烷

十八烷基三氯硅烷

二氯苯基三氯硅烷

氯苯基三氯硅烷

苯基三氯硅烷 苯代三氯硅烷

烯丙基三氯硅烷[稳定了的]

环己基三氯硅烷

环己烯基三氯硅烷

二乙基二氯硅烷 二氯二乙基硅烷

苯基二氯硅烷 二氯苯基硅烷

甲基苯基二氯硅烷

乙基苯基二氯硅烷

二苯(基)二氯硅烷

二苄基二氯硅烷

三苯基氯硅烷

氯甲基三甲基硅烷 三甲基氯甲硅烷

3-甲基-2-戊烯-4-炔醇

正磷酸 磷酸

亚磷酸

三氧化(二)磷 亚磷(酸)酐

次磷酸

多聚磷酸 四磷酸

氨基磺酸

氯铂酸

硫酸羟胺 硫酸胲

硫酸氢钾 酸式硫酸钾

硫酸氢钠 酸式硫酸钠

硫酸氢钠溶液 酸式硫酸钠溶液

硫酸氢铵 酸式硫酸铵

亚硫酸氢盐及其溶液,如:

亚硫酸氢铵 酸式亚硫酸铵

亚硫酸氢钙 酸式亚硫酸钙

亚硫酸氢钾 酸式亚硫酸钾

亚硫酸氢钠 酸式亚硫酸钠

亚硫酸氢锌 酸式亚硫酸锌

亚硫酸氢镁 酸式亚硫酸镁

2-氨基噻唑硫酸盐

2-氨基噻唑盐酸盐

三氯化铝溶液 氯化铝溶液

三氯化铁 氯化铁

三氯化铁溶液 氯化铁溶液

三氯化钼

五氯化钼

五氯化铌

五氯化钽

四氯化锆

三氯化钛溶液

三氯化钒

四氯化锡五水合物

三氯化碘

三溴化合铝溶液 溴化铝溶液

三溴化锑

四溴化锡

一溴化碘

三溴化碘

三碘化锑

四碘化锡

除锈磷化液,如:

B205型-除锈磷化处理剂

蓄电池[注有酸液]

乙酸[含量>80%] 醋酸冰醋酸

乙酸溶液[含量>10%~80%] 醋酸溶液

乙酸酐 醋酸酐

氯乙酸 氯醋酸

氯乙酸酐 氯醋酸酐

二氯乙酸 二氯醋酸

三氯乙酸 三氯醋酸

溴乙酸 溴醋酸

三溴乙酸 三溴醋酸

碘乙酸 碘醋酸

三碘乙酸 三碘醋酸

巯基乙酸 氢硫基乙酸硫代乙醇酸

三氟化硼乙酸络合物 乙酸三氟化硼

丙酸

丙(酸)酐

2-氯丙酸 2-氯代丙酸

3-氯丙酸 3-氯代丙酸

三氟化硼丙酸络合物

丙烯酸[抑制了的]

甲基丙烯酸[抑制了的] 异丁烯酸

丙炔酸

丁酸

丁酸酐

己酸

2-丁烯酸 巴豆酸

丁烯二酸酐[顺式] 马来(酸)酐失水苹果酸酐

二氯醛基丙烯酸 粘氯酸糠氯酸二氯代丁烯醛酸

甲(基)磺酸

1,3-苯二磺酸溶液

烷基、芳基或甲苯磺酸[含游离硫酸≤5%]

2-氯(代)乙基膦酸 乙烯利一试灵

硝酸甲胺

邻苯二甲酸酐 苯酐酞酐

四氢邻苯二甲酸酐[含马来酐>0.05%] 四氢酞酐

辛酰氯

十二(烷)酰氯 月桂酰氯

十四(烷)酰氯 肉豆蔻酰氯

十六(烷)酰氯 棕榈酰氯

十八(烷)酰氯 硬脂酰氯

己二酰(二)氯

苯乙酰氯

2-氯苯甲酰氯 邻氯苯甲酰氯氯化邻氯苯甲酰

4-氯苯甲酰氯 对氯苯甲酰氯氯化对氯苯甲酰

2-溴苯甲酰氯 邻溴苯甲酰氯

4-溴苯甲酰氯 对溴苯甲酰氯氯化对溴代苯甲酰

2-硝基苯甲酰氯 邻硝基苯甲酰氯

3-硝基苯甲酰氯 间硝基苯甲酰氯

2-硝基苯磺酰氯 邻硝基苯磺酰氯

3-硝基苯磺酰氯 间硝基苯磺酰氯

4-硝基苯磺酰氯 对硝基苯磺酰氯

苯甲氧基磺酰氯

氰尿酰氯 三聚氰(酰)氯三聚氯化氯

3-硝基苯甲酰溴 间硝基苯甲酰溴

异丙基磷酸 酸式磷酸异丙酯

丁基磷酸 酸式磷酸丁酯

二戊基磷酸 酸式磷酸(二)戊酯

二异辛基磷酸 酸式磷酸二异辛酯

氢氧化钠 苛性钠烧碱

氢氧化钠溶液 液碱

氢氧化钾 苛性钾

氢氧化钾溶液

氢氧化锂

氢氧化锂溶液

氢氧化铷

氢氧化铷溶液

氢氧化铯

氢氧化铯溶液

氧化钠

氧化钾

铝酸钠溶液

多硫化铵溶液

硫化铵溶液

硫化钠[含结晶水≥30%]

硫化钾[含结晶水≥30%]

硫化钡

硫氢化钠[含结晶水≥25%] 氢硫化钠

硫氢化钙

电池液[碱性的]

烷基醇钠类,如:

乙醇钠 乙氧基钠

丁醇钠 丁氧基钠

异戊醇钠 异戊氧基钠

己醇钠

四甲基氢氧化铵

四乙基氢氧化铵

四丁基氢氧化铵

水合肼[含肼≤64%] 水合联氨

肼水溶液[含肼≤64%]

环己胺 六氢苯胺氨基环己烷

N,N-二甲基环己胺 二甲氨基环己烷

苄基二甲胺 N,N-二甲基苄胺

N,N-二乙基乙(撑)二胺

二亚乙基三胺 二乙(撑)三胺

三亚乙基四胺 二缩三乙二胺三乙(撑)四胺

二(正)丁胺

1,2-乙二胺 1,2-二氨基乙烷乙(撑)二胺

铜乙二胺溶液

1,2-丙二胺 1,2-二氨基丙烷

1,3-丙二胺 1,3-二氨基丙烷

1,6-己二胺 1,6-二氨基己烷己(撑)二胺

聚乙烯聚胺 多乙烯多胺多乙撑多胺

钠石灰[含氢氧化钠>4%] 碱石灰

铝酸钠[固体]

氨溶液[10%<含氨≤35%] 氨水

1-氨基乙醇 乙醛合氨

2-氨基乙醇 乙醇胺2-羟基乙胺

四亚乙基五胺 三缩四乙二胺四乙(撑)五胺

2-(2-氨基乙氧基)乙醇

2,2′-二羟基二乙胺 二乙醇胺

2,2′-二羟基二丙胺 二异丙醇胺

3-二乙氨基丙胺 N,N-二乙基-1,3-二氨基丙烷

三(正)丁胺

2-乙基己胺 3-(氨基甲基)庚烷

二环己胺

三甲基环己胺

3,3,5-三甲基己撑二胺 3,3,5-三甲基六亚甲基二胺

3,3′-二氨基二丙胺 二丙三胺3,3′-亚氨基二丙胺

异佛尔酮二胺 1-氨基-3-氨基甲基-3,5,5-三甲基环己烷3,3,5-三甲基-4,6-二氨基-2-烯环己酮4,6-二氨基-3,5,5-三甲基-2-环己烯-1-酮

三氟化硼甲苯胺

哌嗪 对二氮己环

N-氨基乙基哌嗪 1-哌嗪乙胺N-(2-氨基乙基)哌嗪

蓄电池[注有碱液的]

蓄电池[含氢氧化钾固体]

亚氯酸钠溶液[含有效氯>5%]

氟化铬 三氟化铬

氟化氢铵 酸性氟化铵

氟化氢钠 酸性氟化钠

氟化氢钾 酸性氟化钾

三氟化硼乙醚络合物

氯甲酸烯丙(基)酯[含有稳定剂]

氯甲酸苄酯 苯甲氧基碳酰氯

硫代氯甲酸乙酯 氯硫代甲酸乙酯

二氯乙醛

二氯化膦苯 苯基二氯磷苯膦化二氯

α,α,α-三氯甲(基)苯 三氯化苄苯(基)三氯甲烷

甲醛溶液 福尔马林溶液

苯酚钠 苯氧基钠

2-甲苯硫酚 邻甲苯硫酚2-巯基甲苯

3-甲苯硫酚 间甲苯硫酚3-巯基甲苯

4-甲苯硫酚 对甲苯硫酚4-巯基甲苯

甲苯-3,4-二硫酚 3,4-二巯基甲苯

二苯甲基溴 溴二苯甲烷二苯溴甲烷

木镏油 木焦油

蒽,如:

粗蒽

精蒽

塑料沥青

次氯酸盐溶液[含有效氯>5%],如:

次氯酸钠溶液[含有效氯>5%] 漂白水

次氯酸钾溶液[含有效氯>5%]

三氯氧化钒 三氯化氧钒

氯化铜

氯化锌

氯化锌溶液

汞 水银

镓 金属镓

邻异丙基(苯)酚

间异丙基(苯)酚

对异丙基(苯)酚

辛基(苯)酚

N,N-二异丙基乙醇胺 N,N-二异丙氨基乙醇

萤蒽

欢呼的乌龟
独特的石头
2026-02-08 08:11:17
1.三氯乙酸:蛋白酶抑制剂,使酶失活。

碘乙酸:抑制剂,抑制3-磷酸甘油醛脱氢酶。

硫酸肼:稳定剂,防止3-磷酸甘油醛自然分解。

2.三氯乙酸的作用:主要用于有机合成和制备医药、也可用作化学试剂、杀虫剂。

碘乙酸的作用:用作分析试剂,染料制备,有机合成与酶的抑制剂。

硫酸肼的作用:用作分析试剂,如作沉淀剂、还原剂。还用于有机合成。

眼睛大的芝麻
传统的茉莉
2026-02-08 08:11:17
借用10051540119的答案,订正几个出错的地方[]中为有错误的名称,在末尾订正

ARGON 氩

BORON TRICHLORIDE 三氯化硼

BORON TRIFLUORIDE 三氟化硼

BROMINE 溴

NITROSYL CHLORIDE 亚硝酰氯 或 氯化亚硝酰

CHLORINE 氯

PHOSPHORUS TRICHLORIDE 三氯化磷

SILICON TETRACHLORIDE 四氯化硅

DEUTERIUM 氘

DEUTERIUM OXIDE 氧化氘

FLUORINE 氟(9号元素, 符号F)

NITROGEN TRIFLUORIDE 三氧化二氮

SILICON TETRAFLUORIDE 四氟化硅

SULFUR HEXAFLUORIDE 碘化硫

HYDROGEN BROMIDE 溴化氢

HYDROGEN CHLORIDE 氯化氢

HYDROGEN FLUORIDE 氟化氢

HYDROGEN IODIDE 碘化氢

HYDROGEN 氢

WATER 水

HYDROGEN SULFIDE 硫化氢

AMMONIA 氨, 氨水

HYDRAZINE 肼, 联氨

HELIUM氦(化学元素, 符号为He)

IODINE 碘, 碘酒

[KRYPTON 钾]

NITRIC OXIDE 氧化一氮

NITROGEN DIOXIDE 二氧化氮

NITROGEN 氮

NITROUS OXIDE 一氧化二氮, 笑气(=laughing gas)

NEON 氖

OXYGEN 氧

SULFUR DIOXIDE 二氧化硫

OZONE 新鲜的空气, [化]臭氧

SULFUR TRIOXIDE 三氧化硫

XENON 氙(惰性气体的一种,元素符号Xe)

[TRIFLUOROBROMOMETHANE 三氟氯乙烯]

[CHLOROTRIFLUOROMETHANE]

DICHLORODIFLUOROMETHANE 二氯二氟甲烷

PHOSGENE 光气, 碳酰氯

[TRICHLOROFLUOROMETHANE 三氯丙醇腈]

CARBON TETRACHLORIDE 四氯化碳

[CARBON TETRAFLUORIDE 四碘化碳]

CARBON MONOXIDE 一氧化碳

[CARBONYL SULFIDE]

CARBON DIOXIDE 二氧化碳

CARBON DISULFIDE 二硫化碳

[CHLORODIFLUOROMETHANE]

[DICHLOROMONOFLUOROMETHANE 硝酸二氯丙酯]

CHLOROFORM 氯仿

HYDROGEN CYANIDE 氰化氢

DIBROMOMETHANE 二溴甲烷

DICHLOROMETHANE 二氯甲烷

FORMALDEHYDE 甲醛, 蚁醛

FORMIC ACID 蚁酸

METHYL BROMIDE 甲基溴, 溴化甲烷

METHYL CHLORIDE 氯甲烷(致冷剂)

METHYL FLUORIDE 氟甲烷

METHYL IODIDE 碘甲烷

NITROMETHANE 硝基甲烷

METHANE 甲烷, 沼气

METHANOL 甲醇

METHYL MERCAPTAN 甲硫醇

METHYL AMINE 甲基胺

METHYL HYDRAZINE 甲腙

[CHLOROPENTAFLUOROETHANE 氯仿牙胶]

TETRACHLOROETHYLENE 四氯乙烯,全氯乙烯

[PERFLUOROETHANE 全氟甲基环己烷]

[PERFLUOROETHANE 全氟甲基环己烷]

CYANOGEN 氰

TRICHLOROETHYLENE 三氯乙烯

[TRIFLUOROACETIC ACID 三氟乙酰化]

ACETYLENE 乙炔, 电石气

KETENE 乙烯酮, 烯酮

VINYL CHLORIDE 乙烯基氯 氯乙烯

ACETYL CHLORIDE 乙酰氯

VINYL FLUORIDE 氟化乙烯, 乙烯基氟

ACETONITRILE 乙腈, 氰化甲烷

[METHYL ISOCYANATE 甲基异丙酮]

ETHYLENE 乙烯, 乙烯基

ACETALDEHYDE乙醛, 醋醛

KRYPTON 氪

TRIFLUOROBROMOMETHANE 三氟溴甲烷

CHLOROTRIFLUOROMETHANE 氯三氟甲烷

TRICHLOROFLUOROMETHANE 三氯氟甲烷

CARBON TETRAFLUORIDE 四氟化碳

CARBONYL SULFIDE 硫化碳酰

CHLORODIFLUOROMETHANE 氯二氟甲烷

DICHLOROMONOFLUOROMETHANE 二氯氟甲烷

CHLOROPENTAFLUOROETHANE 氯五氟乙烷

PERFLUOROETHANE 六氟乙烷

TRIFLUOROACETIC ACID 三氟乙酸

METHYL ISOCYANATE 异氰酸甲酯

怕孤单的短靴
聪慧的鸭子
2026-02-08 08:11:17

寿光市海辰化工有限公司是2018-11-09在山东省潍坊市寿光市注册成立的有限责任公司(自然人独资),注册地址位于山东省潍坊市寿光市圣城街道城投五星广场A308室。

寿光市海辰化工有限公司的统一社会信用代码/注册号是91370783MA3NJ15M16,企业法人王金梁,目前企业处于开业状态。

寿光市海辰化工有限公司的经营范围是:不带有储存设施的经营:溴、甲苯、丙酮、硫酸、盐酸、甲醛溶液、氢氧化钠、氢氧化钠溶液[含量≥30%]、正磷酸、连二亚硫酸钠、氯苯、1,2-二甲苯、乙醇[无水]、乙酸乙酯、二氯甲烷、二甲苯异构体混合物、1,3,5-三甲基苯、异辛烷、甲醇、苯、正丁醇、石脑油、氢溴酸、环己烷、2-氟甲苯、乙酸[含量>80%]、2-甲基-1-丙醇、甲基叔丁基醚、1-溴丙烷、2-溴丙烷、1-溴丁烷、2-溴丁烷、1,2-二溴乙烷、溴乙烷、溴己烷、溴酸钠、异丙醇、正丙醇、正戊醇、溴苯、氟苯、苯甲醚、对溴苯甲醚、硫磺、过氧化氢溶液[含量>8%]、水合肼[含肼≤64%]、硝酸胍、氢氟酸、氯磺酸、亚磷酸、亚氯酸钠、甲醇钠、乙醇钠、氯甲烷、三氯甲烷、三氯化磷、硝酸、甲酸、丙酸、赤磷、环氧乙烷、氢氧化钾、氨溶液、苯胺、苯酚、次氯酸钠溶液、亚硝酸钠、乙醛、乙胺、氯化锌、氯化亚砜、1-氯丁烷、四氯化钛、氯化苄、丙烯、苯乙烯[稳定的]、醋酸乙烯酯、硫酸二甲酯、四氢呋喃、丙烯腈、亚硫酸氢钠、1,2-环氧丁烷、氮、苯酐、吡啶、对甲酚、二甲胺、1,2-二甲苯、2,5-二氯硝基苯、2,6-二氯苯酚、邻二氯苯、硫化钠、石油醚、1,3-二氯丙烯、二苯胺、二氧化硫、氢氧化钠溶液[含量≥30%]、三氯乙醛[稳定的]、氯丙酮、N,N-二甲基甲酰胺、乙醚、哌啶、乙酸酐、三氟乙酸、4-溴甲苯、4-氟甲苯、对苯二甲酰氯、2,4-二氯甲苯、4-氯甲苯、氟化氢[无水]、三氟甲苯、一氯丙酮、三乙胺、1,2-二氯乙烷、二甲氧基甲烷、三苯基磷、正己烷、正庚烷、2,2-偶氮二异丁腈、五氧化二钒、一甲胺溶液、异丁醛、醇酸树脂、氨基树脂、N,N-二甲基苯胺、硝基苯、原甲酸三甲酯、原甲酸三乙酯、乙二酸二乙酯、 硫脲、四氯化碳、氢氧化钡、对氯苯硫醇、三氯氧磷、过硫酸钠、5-氯-2-甲基苯胺、4-氯-2-硝基甲苯、三氯甲苯、三氯化铝[无水]、亚硫酸氢钠。(有效期以许可证为准);销售:化工产品(不含危险化学品和易制毒化学品)、环保专用设备、建材、五金产品、玻璃仪器、水泵、阀门、日用百货、不锈钢制品、办公用品;经营国家允许范围内的货物与技术的进出口业务(依法须经批准的项目,经相关部门批准后方可开展经营活动)。

通过爱企查查看寿光市海辰化工有限公司更多信息和资讯。

帅气的母鸡
谨慎的柠檬
2026-02-08 08:11:17
ziyirenjiajia 你好!

多肽合成技术

多肽药物的研究与开发将作为二十一世纪高新技术竟争的主要项目之一。生物活性多肽在内源性物质中占有非常重要的地位,除酶、受体、金属蛋白等生物大分子外,许多合成或分离的多肽对生理过程或病理过程,对疾病的发生、发展或治疗过程有重要意义。

氨基酸彼此以酰胺键(也称肽键)相互连接的化合物称作肽。一种肽含有的氨基酸少于10个就称作寡肽,超过的就称为多肽。多肽与蛋白质只有肽链长短之别,二者间并没有严格的区分。蛋白质是生命存在的最基本形式。可见多肽是生命之"桥",蛋白质工程从某种意义上而言就是研究多肽。

伴随着分子生学物、生物化学技术的飞速发展,多肽研究取得了惊人的、划时代的飞跃。人们发现存在于生物体的多肽有数万种,并且发现所有的细胞均能合成多肽。同时,几乎所有的细胞也都受多肽调节,它涉及激素、神经、细胞生长与生殖等各个领域,21世纪是一个多肽的世界,人们研究多肽,也渴望着将多肽应用到医疗、保健、检测等多个领域中去,为人类造福。

事实上,肽类药物开发与应用已走出科学家们的实验室,变成了现实,并发挥着其独特的功效。例如,神经紧张肽(NT)能降低血压,对肠和子宫具有收缩作用;内啡肽和脑啡肽的衍生物有着很强的镇痛作用;促甲状腺素释放激素(TRH)是一种能促进产妇乳汁分泌的多肽;能治疗糖尿病、胃溃疡、胰腺炎的多肽是一种环状的14肽;临床上常用的催产素是一种多肽;已获广泛应用的白蛋白多肽、胸腺肽、血清胸腺因子(FTS)等均可以引起免疫T细胞的分化;近日来在中国及日本已开始使用的糖肽辅助治疗肿瘤,其作用机理是使淋巴系统活化等等。应用多肽技术开发的医用蛋白质芯片(肽芯片)只有指甲盖大小,放置了与肾炎、胃溃疡和胃癌等相关的抗原分子,只要通过芯片阅读仪便可检测到有关疾病的功能状态与变异情况。其功能已相当于一个大型或中型实验室、化验室,效率是传统医学检测的成百上千倍,受检者几乎没有任何痛苦。肽芯片的广泛应用,已在医学临床检测业引发一场技术革命。

自从1963年MERRIFIELD发展成功了固相多肽合成(SPPS)方法以来,经过不断的改进和完善,到今天这个方法已成为多肽和蛋白质合成中的一个常用技术,表现出了经典液相合成法无法比拟的优点。

固相合成的主要设计思想是:先将所要合成肽链的未端氨基酸的羧基以共价键的结构同一个不溶性的高分子树脂相连,然后以此结合在固相载体上。氨基酸作为氨基组分经过脱去氨基保护基,并同过量的活化羟基组分反应接长肽链。重复(缩合—洗涤—去保护—中和和洗涤—下一轮缩合)操作,达到所要合成的肽链长度;最后将肽链从树脂上裂解下来,经过纯化等处理,即得所要的多肽。

http://www.pharmco.com.cn/technical-3.htm

多肽是涉及生物体内各种细胞功能的生物活性物质。它是分子结构介于氨基酸和蛋白质之间的一类化合物,由多种氨基酸按照一定的排列顺序通过肽键结合而成。到现在,人们已发现和分离出一百多种存在于人体的肽,对于多肽的研究和利用,出现了一个空前的繁荣景象。

多肽的全合成不仅具有很重要的理论意义,而且具有重要的应用价值。通过多肽全合成可以验证一个新的多肽的结构;设计新的多肽,用于研究结构与功能的关系;为多肽生物合成反应机制提供重要信息;建立模型酶以及合成新的多肽药物等。

多肽的化学合成技术无论是液相法还是固相法都已成熟。近几十年来,固相法合成多肽更以其省时、省力、省料、便于计算机控制、便于普及推广的突出优势而成为肽合成的常规方法并扩展到核苷酸合成等其它有机物领域。本文概述了固相合成的基本原理、实验过程,对其现状进行分析并展望了今后的发展趋势。

1.固相合成的基本原理

多肽合成是一个重复添加氨基酸的过程,合成一般从C端(羧基端)向N端(氨基端)合成。过去的多肽合成是在溶液中进行的,但自从1963年Merrifield发展成功了固相多肽合成方法以来,经过不断的改进和完善,到今天固相法已成为多肽和蛋白质合成中的一个常用技术,表现出了经典液相合成法无法比拟的优点。其基本原理是:先将所要合成肽链的羟末端氨基酸的羟基以共价键的结构同一个不溶性的高分子树脂相连,然后以此结合在固相载体上的氨基酸作为氨基组份经过脱去氨基保护基并同过量的活化羧基组分反应,接长肽链。重复(缩合→洗涤→去保护→中和和洗涤→下一轮缩合)操作,达到所要合成的肽链长度,最后将肽链从树脂上裂解下来,经过纯化等处理,即得所要的多肽。其中α-氨基用BOC(叔丁氧羰基)保护的称为BOC固相合成法,α-氨基用FMOC(9-芴甲氧羰基)保护的称为FMOC固相合成法,

2. 固相合成的具体试验过程

2.1树脂的选择及氨基酸的固定

将固相合成与其他技术分开来的最主要的特征是固相载体,能用于多肽合成的固相载体必须满足如下要求:必须包含反应位点(或反应基团),以使肽链连在这些位点上,并在以后除去;必须对合成过程中的物理和化学条件稳定;载体必须允许在不断增长的肽链和试剂之间快速的、不受阻碍的接触;另外,载体必须允许提供足够的连接点,以使每单位体积的载体给出有用产量的肽,并且必须尽量减少被载体束缚的肽链之间的相互作用。用于固相法合成多肽的高分子载体主要有三类:聚苯乙烯-苯二乙烯交联树脂、聚丙烯酰胺、聚乙烯-乙二醇类树脂及衍生物,这些树脂只有导入反应基团,才能直接连上(第一个)氨基酸。根据所导入反应基团的不同,又把这些树脂及树脂衍生物分为氯甲基树脂、羧基树脂、氨基树脂或酰肼型树脂。BOC合成法通常选择氯甲基树脂,如Merrifield树脂;FMOC合成法通常选择羧基树脂如王氏树脂。 氨基酸的固定主要是通过保护氨基酸的羧基同树脂的反应基团之间形成的共价键来实现的,形成共价键的方法有多种:氯甲基树脂,通常先制得保护氨基酸的四甲铵盐或钠盐、钾盐、铯盐,然后在适当温度下,直接同树脂反应或在合适的有机溶剂如二氧六环、DMF或DMSO中反应;羧基树脂,则通常加入适当的缩合剂如DCC或羧基二咪唑,使被保护氨基酸与树脂形成共酯以完成氨基酸的固定;氨基树脂或酰肼型树脂,却是加入适当的缩合剂如DCC后,通过保护氨基酸与树脂之间形成的酰胺键来完成氨基酸的固定。

2.2氨基、羧基、侧链的保护及脱除

要成功合成具有特定的氨基酸顺序的多肽,需要对暂不参与形成酰胺键的氨基和羧基加以保护,同时对氨基酸侧链上的活性基因也要保护,反应完成后再将保护基因除去。同液相合成一样,固相合成中多采用烷氧羰基类型作为α氨基的保护基,因为这样不易发生消旋。最早是用苄氧羰基,由于它需要较强的酸解条件才能脱除,所以后来改为叔丁氧羰基(BOC)保护,用TFA(三氟乙酸)脱保护,但不适用含有色氨酸等对酸不稳定的肽类的合成。1978年,chang Meienlofer和Atherton等人采用Carpino报道的Fmoc(9-芴甲氧羰基)作为α氨基保护基,Fmoc基对酸很稳定,但能用哌啶-CH2CL2或哌啶-DMF脱去,近年来,Fmoc合成法得到了广泛的应用。 羧基通常用形成酯基的方法进行保护。甲酯和乙酯是逐步合成中保护羧基的常用方法,可通过皂化除去或转变为肼以便用于片断组合;叔丁酯在酸性条件下除去;苄酯常用催化氢化除去。 对于合成含有半胱氨酸、组氨酸、精氨酸等带侧链功能基的氨基酸的肽来说,为了避免由于侧链功能团所带来的副反应,一般也需要用适当的保护基将侧链基团暂时保护起来。保护基的选择既要保证侧链基团不参与形成酰胺的反应,又要保证在肽合成过程中不受破坏,同时又要保证在最后肽链裂解时能被除去。如用三苯甲基保护半胱氨酸的S-,用酸或银盐、汞盐除去;组氨酸的咪唑环用2,2,2-三氟-1-苄氧羰基和2,2,2-三氟-1-叔丁氧羰基乙基保护,可通过催化氢化或冷的三氟乙酸脱去。精氨酸用金刚烷氧羰基(Adoc)保护,用冷的三氟乙酸脱去。

2.3成肽反应

固相中的接肽反应原理与液相中的基本一致,将两个相应的氨基被保护的及羧基被保护的氨基酸放在溶液内并不形成肽键,要形成酰胺键,经常用的手段是将羧基活化,变成混合酸酐、活泼酯、酰氯或用强的失去剂(如碳二亚氨)形成对称酸酐等方法来形成酰胺键。其中选用DCC、HOBT或HOBT/DCC的对称酸酐法、活化酯法接肽应用最广。

2.4 裂解及合成肽链的纯化 BOC法用TFA+HF裂解和脱侧链保护基,FMOC法直接用TFA,有时根据条件不同,其它碱、光解、氟离子和氢解等脱保护方法也被采用。合成肽链进一步的精制、分离与纯化通常采用高效液相色谱、亲和层析、毛细管电泳等。

3.固相合成的特点及存在的主要问题

固相合成法对于肽合成的显著的优点:简化并加速了多步骤的合成;因反应在一简单反应器皿中便可进行,可避免因手工操作和物料重复转移而产生的损失;固相载体共价相联的肽链处于适宜的物理状态,可通过快速的抽滤、洗涤未完成中间的纯化,避免了液相肽合成中冗长的重结晶或分柱步骤,可避免中间体分离纯化时大量的损失;使用过量反应物,迫使个别反应完全,以便最终产物得到高产率;增加溶剂化,减少中间的产物聚焦;固相载体上肽链和轻度交联的聚合链紧密相混,彼此产生一种相互的溶剂效应,这对肽自聚集热力学不利而对反应适宜。 固相合成的主要存在问题是固相载体上中间体杂肽无法分离,这样造成最终产物的纯度不如液相合成物,必需通过可靠的分离手段纯化。

4.固相合成的研究发展前景

固相多肽合成已经有40年的历史了,然而到现在,人们还只能合成一些较短的肽链,更谈不上随心所欲地合成蛋白质了,同时合成中的试剂毒性,昂贵费用,副产物等一直都是令人头痛的问题,而在生物体内,核糖体上合成肽链的速度和产率都是惊人的,那么,是否能从生物体合成蛋白质的原理上得到一些启发,应用在固相多肽合成(树脂)上,这是一个令人感兴趣的问题,也许是今后多肽合成的发展。

http://www.ptgcn.com/bbs/simple/index.php?t181.html