建材秒知道
登录
建材号 > cas号 > 正文

山梨醇粉和海藻糖的区别

懦弱的大门
微笑的帆布鞋
2022-12-22 14:33:05

山梨醇粉和海藻糖的区别

最佳答案
野性的自行车
要减肥的柜子
2026-02-07 07:11:36

山梨醇粉白色颗粒状或粉末状,有清凉甜味。山梨醇可广泛用于医药、轻工、食品、化工等行业。 海藻糖一般用于食品类,能调节蛋糕、饼干和糕点上的糖霜、面包奶油和水果馅的甜味与芳香,不损害贮藏寿命,使人们品尝到产品原有的风味。

最新回答
完美的背包
听话的白羊
2026-02-07 07:11:36

海藻糖是一种非还原性的D-葡萄糖二糖(a-D-吡喃葡糖基-a-D-吡喃葡糖苷)。海藻糖在脊椎动物和真菌中的作用是面对物理应激时储存糖类和保护剂。对木霉海藻糖酶研究的最多,尤其是它们的理化性质和动力学性质,例如供给物质的分配、立体化学反应等其他性质(Weiser et al.,1988)。从里氏木霉中纯化的海藻糖酶的选择性活性是pH 4.4,等电点是5.7,km值是3.1mm。这个酶对多种物质的水解反应表明海藻多糖催化位点的弹性和对立体化学反应的多样性(Kasumi et al.,1986)。然而,将里氏木霉的葡聚糖酶和海藻糖酶相比较,海藻糖酶对a,a’-海藻糖具有高度的特异性,而a-葡聚糖酶对多种多样的吡喃葡糖苷都能起作用(Alabran et al.,1983)。这两种酶都能够催化水解介质的gluco-octenitol,但是不能催化a-葡聚糖(Weiser et al.,1988)。这些数据表明了里氏木霉海藻糖酶和a-葡聚糖酶之间的不同。Rodriguez-Kabana(1978)报道了哈茨木霉和樟疫霉竞争过程中,能产生高活性的海藻糖酶,这是真菌剂生物利用樟疫霉作为碳源的表现。

悦耳的发箍
细腻的小笼包
2026-02-07 07:11:36

海藻糖又称漏芦糖、蕈糖等。是一种安全、可靠的天然糖类。

海藻糖是由两个葡萄糖分子以1,1-糖苷键构成的非还原性糖,有3种异构体即海藻糖(α,α)、异海藻糖(β,β)和新海藻糖(α,β),并对多种生物活性物质具有非特异性保护作用。

海藻糖在自然界中许多可食用动植物及微生物体内都广泛存在,如人们日常生活中食用的蘑菇类、海藻类、豆类、虾、面包、啤酒及酵母发酵食品中都有含量较高的海藻糖。

扩展资料

生命之糖-海藻糖——

海藻里确实有海藻糖,不过很多微生物、大型真菌、植物和动物中也都有它的存在,比如酵母、乳酸菌、蘑菇、昆虫等。实际上人类发现海藻糖已经100多年,最早是从一种叫麦角的真菌中发现的。

海藻糖是天然的双糖(蔗糖也是双糖),其甜度约为蔗糖的一半,可在肠道被分解为葡萄糖,但升糖指数较低。它最引以为自豪的能力是保护生物体的细胞和大分子的活性和功能,在动植物的耐寒、耐旱、抗冻方面有重要作用。

2000年,《自然》杂志曾发表评论,认为“对许多生物而言,海藻糖的有无意味着生死”,因此后来很多人将它称为“生命之糖”。

参考资料来源:百度百科-海藻糖

参考资料来源:人民网-食品中海藻糖致病说法不靠谱

复杂的白羊
开朗的枫叶
2026-02-07 07:11:36
TRIZ,直译是“发明问题解决理论”,国内也形象的翻译为“萃智”或者“萃思”,取其“萃取智慧”或“萃取思考”之义。

前苏联发明家、教育家G.S.Altshuller(根里奇·阿奇舒勒)和他的研究团队,通过分析大量专利和创新案例总结出来的。TRIZ意译为发明问题的解决理论。TRIZ理论成功地揭示了创造发明的内在规律和原理,着力于澄清和强调系统中存在的矛盾,其目标是完全解决矛盾,获得最终的理想解。它不是采取折中或者妥协的做法,而且它是基于技术的发展演化规律研究整个设计与开发过程, 而不再是随机的行为。实践证明,运用TRIZ理论,可大大加快人们创造发明的进程而且能得到高质量的创新产品。

舒心的美女
干净的冷风
2026-02-07 07:11:36
异麦芽低聚糖:是难消化低聚糖,不被唾液、胰液所分解,但在小肠可部分被分解和吸收。热值约为蔗糖和麦芽糖的70 %~80 %。对肠道直接刺激性较小。小鼠急性毒性试验LD50 为44g/ kg 以上,安全性不逊于蔗糖和麦芽糖。人体最大无作用量1. 5 g/ kg (摄取后24 小时不发生腹泻之上限量) ,而其它难消化低聚糖或糖醇的最大无作用量只有0. 1~0. 4 g/ kg。摄取异麦芽糖16g ,一周后肠道中双歧杆菌、乳酸菌等有益菌明显增加,而拟杆菌、梭状杆菌等有害菌受到抑制,便秘改善,粪便pH 下降,有机酸增加,腐败物减少。小鼠试验表明,摄取异麦芽糖后免疫力增强,血脂改善。异麦芽糖在高温、微酸性和酸性环境下稳定,可以添加于各种食品和饮料中。

异麦芽低聚糖是淀粉经α- 淀粉酶液化,β- 淀粉酶糖化和α- 葡萄糖苷酶转苷反应而生成的包括含α- 1 ,6 键的异麦芽糖,潘糖,异麦芽三糖等分枝低聚糖的糖浆。市场上的异麦芽糖分含量50 %与90 %两种,后者是将含量50 %的异麦芽糖用离子交换法或酵母发酵法去除葡萄糖而成。粉状糖是糖浆经喷雾干燥而成。

生产异麦芽糖的α- 葡萄糖苷酶是黑曲霉生产糖化酶之副产品,将糖化酶发酵液经离子交换吸附去除所含α- 葡萄糖苷酶经洗脱浓缩而成。虽然发表过不少培养黑曲霉生产α- 葡萄糖苷酶的研究的报道,但未见用于商品生产。用α- 葡萄糖苷酶转化麦芽糖生产异麦芽低聚糖,其生成量一般仅50 %左右,另外还含有20 %~40 %的麦芽糖与葡萄糖。为了提高异麦芽低聚糖产量,曾有不少研究报导,例如使用臭曲霉α- 葡萄糖苷酶,产品中潘糖产量可达30 %葡萄糖量可降至20 %。高崎发现脂肪嗜热芽孢杆菌所产普鲁兰酶在高浓度麦芽三糖存在下有转苷作用。将其结构基因导入枯草杆菌NA - 1 ,生产的新普鲁兰酶,与枯草杆菌糖化型α- 淀粉酶(可产生麦芽三糖) 一起作用于淀粉,异麦芽低聚糖的产率可达60 % ,而葡萄糖含量由40 %降至20 %。为了提高黑曲霉α- 葡萄糖苷酶的活力,东京大学生物工程系将α- 葡萄糖苷酶基因AGLA 导入黑曲霉GN - 3 ,得到转化子GIZ 155 - A3 - 4 ,产酶能力提高了11 倍。

目前我国生产异麦芽糖的企业多达50~60 家,生产能力约5 万吨以上,α- 葡萄糖苷酶的用量以0. 1 %计,需50 吨,消耗外汇甚巨(以每吨75 万元计,就需3750 万元人民币) 。有必要立足自给。

(2) 海藻糖:是二分子葡萄糖以α,α- 1. 1 键连结而成的非还原性低聚糖。广泛存在于动植物和微生物(如菌覃、海藻、虾、啤酒酵母、面包酵母) 中,是昆虫主要血糖,作为飞翔时之能源来利用。海藻糖能保护某些动植物适应干燥和冰冻的环境。海藻糖是一种很好的糖源,因非还原性,故耐酸耐热性好,不易同蛋白质、氨基酸发生反应。对淀粉老化,蛋白质变性,脂肪氧化有较强抑制作用。此外还可消除某些食物之苦涩味、肉类之腥臭。海藻糖不被龋齿突变链球菌利用,食之不会引起蛀牙。活性干酵母的活存率全赖酵母细胞中海藻糖含量所决定。过去海藻糖系从酵母中提取(最大含量也只有20 %) ,成本甚高,每公斤高达2~3 万日元。现在可以用酶或发酵法生产,成本大大下降。久保田等从节杆菌、小球菌、黄杆菌、硫化叶菌等土壤细菌中发现一组海藻糖生成酶(海藻糖合成酶MTSASE 与麦芽低聚糖海藻糖水解酶MTHASE) ,当将其同异淀粉酶、环糊精生成酶、α- 淀粉酶、糖化酶一起作用于液化淀粉时,可得到85 %收率的海藻糖。

(3) 帕拉金糖( Palatinose) 学名为异麦芽酮糖( Isomaltotulose) :以蔗糖为原料,经产朊杆菌或普利茅斯沙雷氏菌的α- 葡萄糖基转移酶(又称蔗糖变换酶Sucrose multase) 的作用,蔗糖分子的葡萄糖和果糖由α- 1 ,2 键结合转变为α- 1 ,6 键结合而成。由于结构的改变,其甜度减少到蔗糖之42 % ,吸湿性较低,对酸的稳定性增加,耐热性略为降低,生物学、生理学特性发生改变,不能为多数细菌、真菌所利用。食后不被口腔、胃中的酶所分解,直到小肠才可被酶水解成为葡萄糖和果糖而进入代谢。帕拉金糖不为口腔龋齿突变链球菌所利用,食之不易发生蛀牙,食后血糖也不会迅速升高,故可为糖尿病人使用。

帕拉金糖在低水份和低pH 下便会失水而缩合成为2~4 个分子的低聚帕拉金糖,甜度为蔗糖之30 % ,不为肠道消化酶所消化,食后可直达大肠而为双歧杆菌选择性利用,起到双歧因子的保健作用。将帕拉金糖在高温高压下,用雷尼尔镍为催化剂氧化便生成帕拉金糖醇。这种糖醇甜度为蔗糖的45~60 % ,热值为蔗糖的二分之一。食后不易消化吸收,不会引起血糖和胰岛素升高,不会引起蛀牙,适合糖尿病人、老人、肥胖者作甜味剂。因其物理性质酷似蔗糖,可用其制作低热值糖果,是国际上流行的新一代甜味剂。上述三种糖在欧美、日本等已经大量生产,并被广泛利用而在国内虽已研究成功,但在生产和应用上尚存在不少阻力。

(4) 低聚果糖:是以蔗糖为原料经黑曲霉β2果糖基转移酶的作用,将蔗糖分子的D2果糖以β22 ,1 链连接123 个果糖分子而成的蔗果三糖、蔗果四糖以及蔗果五糖与蔗糖、葡萄糖以及果糖的混合物,甜度为蔗糖的60 %。用离子交换树脂将其中葡萄糖与果糖除去后,可得到含低聚果糖95 %以上的产品,甜度为蔗糖的30 %。低聚果糖的主要成份蔗果三糖与蔗果四糖在人体中完全不被唾液、消化道、肝脏、肾脏中的α2葡萄糖苷酶水解,本身是一种膳食纤维,食后可直达大肠,为大肠中的有益细菌优先利用。食低聚果糖不会引起血糖、胰岛素水平的升高,热值为1. 5kCal/ g ,通过双歧杆菌的增殖,肠道得以净化,肌体免疫力增强,营养改善,血脂降低。以年龄50~90 岁老人进行试验,日食低聚果糖8g ,8 天后肠道双歧杆菌可由5 %增加到25 %。便秘者食用低聚果糖每天5~6g ,4 天后80 %便秘者症状改善,粪便变为柔软,色泽转黄,臭味减少,肠道腐败得到控制。

低聚果糖也存在于菊芋、菊苣、芦笋等植物,西欧都用菊粉做原料,用菊粉酶局部水解而成。日本政府将低聚果糖批准为特定保健食品西欧、芬兰、新加坡、台湾等地将低聚果糖作为功能性食品配料,广泛使用在各种食品。我国大陆低聚果糖的年生产能力为15000 吨,广东江门量子高科10000 吨,云南天元3000 吨,张家港梁丰1000 吨,广西大学奥立高500 吨。此外五粮液酿酒公司、上海中科生物医学高科技开发有限公司也在销售。

(5) 低聚木糖的特点是对酸、热稳定性强,故可用于果汁等酸性饮料,因其不被多数肠道细菌利用,只有双歧杆菌等少数细菌能利用,因此是一种强力双歧因子,每天摄取0. 7g 即可见效。这种糖是以玉米芯为原料,提取其木聚糖后,用曲霉木聚糖酶水解而得。由日本三得利公司首先生产,我国山东龙力公司在中国农大的支持下开发成功。山东食品发酵研究院亦已宣告研制成功。此外,其它功能性低聚糖如低聚半乳糖,低聚甘露糖等我国也已开发成功。

2. 2 酶用于功能性多肽的生产

近年发现蛋白酶水解蛋白质生成的肽类,其吸收性比蛋白质或由蛋白质的组成的氨基酸为好,因此可作为输液、运动员食品、保健食品等。在蛋白质水解物中,有些肽具有生理活性功能,如酪蛋白经胰酶或碱性蛋白酶水解可生成酪蛋白磷酸肽(CPP) ,具有促进Ca 、Fe 吸收的功能。由鱼肉、大豆、酪蛋白经酶水解得到的水解物中含有一种氨基酸,序列是Ala - Val - Pro - Tyr - Pro - Gln - Arg 的七肽,是一种血管紧张素转化酶抑制剂(ACEI , An2giotensin Converting Enzyme Inhibitor) 。它可同血管紧张素相结合影响其活性的表达,从而防止血压升高,是较理想的降压保健食品。由不同蛋白质原料,不同的蛋白酶水解得到不同结构的肽类中,有些肽还具有降血脂,促进酒精代谢、抗疲劳、抗过敏的生理功能。常食豆酱、豆豉、纳豆、乳腐等酿造食品有益健康,原因也在此。胨是细菌培养基原料,因发现其有生理功能,竟

然也有人将它装入胶囊,当保健品销售,获利甚丰。

2. 3 酶用于油脂工业

酶在油脂工业上的应用还处于萌芽阶段。(1) 纤维素酶、半纤维素酶用于榨油工业:油料用溶剂抽提油后,残渣中残留溶剂很难完全去除,影响饲料应用,为此日本开发了采用纤维素酶、半纤维素酶和果胶酶分解植物组织,来提取油脂。方法是将油橄榄、菜籽等先经破碎或热处理,然后加半纤维素酶反应数小时,离心分离油脂和渣粕。这种工艺已用在橄榄油、桔油提取上,菜籽油已进入中试阶段。在动物油脂生产上,利用蛋白酶处理,使蛋白质同油脂分离,因可避免高温处理,油脂的质量也就更好。为了去除油脂残余卵磷脂,使用磷酸酯酶去除油中水溶性卵磷脂。

(2) 制造脂肪酸

脂肪酶对底物有位置专一性和非专一性之分,此外对底物脂肪酸链长、不饱和度也有选择性,用对位置无专一性脂肪酶水解猪油生产脂肪酸,作为制造肥皂的原料。用对不饱和脂肪酸酯无作用的脂肪酶,水解鱼油时,因对高度不饱和脂肪酸DHA 的甘油三酯难水解而保留下来,用此法来制造DHA 等ω3 脂肪酸。

(3) 酯交换

利用脂肪酶之酯交换作用,改变油脂脂肪酸组成可改变油脂性质,例如用棕榈油改性成为可可脂。

2. 4 转谷酰胺酶( TGASE) 用于肉类加工转谷酰胺酶可催化蛋白质分子中谷氨酸残基上γ2酰胺基和各种伯胺间的转酰基反应,当蛋白质中赖氨酸残基的ε2氨基作为酰基受体时,可在分子间形成ε2(γ2Gln) Lys 共价键而交联,从而可增加蛋白质之凝胶强度,改善蛋白质结构和功能性质,利用此作用,可将低值碎肉重组,改善鱼、肉制品外观和口感,减少损耗, 从而提高经济价值。还可将Met .Lys. 等必须氨基酸导入缺乏此氨基酸的蛋白质而改善营养价值。此酶也可用于毛织物加工,用于酶的固定化或将不同分子进行联结,将抗体与药剂进行联结等。生产菌种为茂原链轮丝菌( S t reptoverticill ummobaracens) ,日本已商业化生产,我国无锡轻工业大学也已研究成功,转入试生产阶段。

2. 5 酶在果蔬加工上的新用途

(1) 原果胶酶用于果胶提取:

果实中的果胶在未成熟前是以不溶性的原果胶形式存在的,在水果成熟过程中逐渐转变成可溶性之果胶。原果胶也可在酸、热作用下转变为可溶性。由枯草杆菌、黑曲霉、酵母、担子菌所生产的原果胶酶已被开发用于桔皮、苹果、葡萄皮、胡萝卜中果胶的提取。用酶法提取果胶与酸热法相比工艺简单,无污染,成本低,产品质量除含糖量稍高外,无甚区别。

(2) 粥化酶(Macerating enzymes) 之用于提高果

汁得率:

粥化酶是果胶酶、半纤维素酶(包括木聚糖酶、阿拉伯聚糖酶、甘露聚糖酶) 、纤维素酶之混合物,作用于溃碎果实,对促进过滤,提高果汁收率的效果比单一果胶酶为好。已是果汁加工主要的酶。

(3) 真空或加压渗酶法处理完整果蔬:

利用加压或真空浸渍果蔬,使果胶酶渗入细胞间隙或细胞壁中而起作用。此法已用于完整桔子的软化,桔皮容易剥除。还用于桃肉硬化处理,将果胶甲基酯酶与Ca2 + 渗入桃肉,可使罐头糖水桃子硬度提高4 倍(因脱甲酯之果胶可同Ca2 + 结合而增强硬度) 。腌制蔬菜用此法处理可防止软化而保持脆性。此法也用于桔皮之柚苷酶脱苦处理, 脱苦率达81 %。

(4) 柒酶用于去除酚类化物

澄清果汁经超滤过滤,浓缩后仍发生白色混浊,此乃由于果汁中酚类化合物所引起,为此在过滤前可用柒酶处理,使之氧化聚合成不溶性高分子而过滤去除之。

(5) 果胶酶用于洗清滤膜果胶污染物。

(6) β2葡聚糖酶用于去除葡萄汁中由感染Cot rytis cinerea 而产生的β- 葡聚糖,Vinozyme促使不溶物沉降。

2. 6 酶在纺织工业上的应用

棉布用淀粉酶退浆已有100 多年历史了,随着酶制剂工业的发展,纤维素酶、果胶酶、木聚糖酶、柒酶、蛋白酶等酶类先后被纺织工业所采用。

(1) 棉布整理用酶

随着牛仔服的流行,纤维素酶整理棉布,改善织物观感和手感,已受到纺织业的广泛重视。纤维素酶作用于天然纤维非结晶区,使纤维发生部分降解和改性,可使织物柔软、光洁、手感和外观舒适。通常用酶处理以后,棉布重量减轻3~5 % ,但牢度要损失20 %左右。在发达国家为追求时尚,不在乎布的牢度。

过氧化氢酶常用于经H2O2 漂白后除去残留的H2O2 , 最近发现A rthromyces ramosus , 鬼伞菌Coprinus cinereus可大量生产过氧化氢酶,过氧化氢酶也用于洗涤剂。果胶酶用于棉布整理,主要是分解棉、麻织物纤维表面的果胶,以利漂白与染色。柒酶是种酚氧化酶,以O 为H 受体,主要用在牛仔布靛蓝染色时脱色处理,NOVO 公司采用基因技术改良黑曲霉生产。柒酶也可作用于木质素,有分解木质素的作用。木聚糖酶用于布坯漂白处理,可去除木质素及粘附纤维上之棉子壳。

(2) 毛织物蛋白酶防毡缩整理

毛织品若不经整理水洗后便发生收缩毡化不能再穿(如劣质羊毛衫洗涤后缩得很小) ,必须防缩防毡化处理,洗后才能保持原状。防毡化防腐处理已有100 多年历史,过去用氯、H2O2 、过硫酸盐处理,污染严重,90 年代才开发了无氯防缩剂。利用蛋白酶改变羊毛结构可用于防毡防缩处理,40 年代就有人研究,60 年代日本报道,用木瓜酶处理可防毡缩,并可进行低温染色,提高染色率,减少污水,改善毛织物手感和观感。70 年代我们也曾试用酸性蛋白酶处理,进行低温染色,取得良好结果,染色率提高3. 6 % ,污水减少62 %。每千锭断纱率降到145 根,抗伸力、抗拉力、手感都有明显提高。80 年代以来,酶法防毡缩在国内外重新引起重视,日、英、美等国发表了大量研究文章,取得了一定进展。研究过的蛋白酶有胰酶、木瓜酶、碱性蛋白酶、中性蛋白酶、酸性蛋白酶等,相信不久这些工艺会成熟而得到推广。

2. 7 酶在造纸工业上的应用

造纸工业是环境污染的重要源头。随着人们对环保意识增强,造纸工业使用生物技术受到了重视。酶法生产纸浆引起了各国浓厚兴趣,关键是降解木质素。最近国内有人利用多种微生物作用制造纸浆,已经取得可喜进展,目前正在筹备扩大试验。酶在造纸工业的应用现在主要是脂肪酶用于原木脱树脂,纤维素酶半纤维素酶和脂肪酶用于废报纸回收后脱油墨以及木聚糖酶用于纸浆漂白。

(1) 原木脱树脂:

造纸用的原木因含树脂,打浆抄纸时,树脂污染设备,影响生产,降低纸品质量。为此需要在室外堆放很长时间(3 个月以上) ,使树脂分解。这样影响生产周期,还占用大片场地。日本造纸研究机构对原木成份进行研究,发现树脂的成份中96 %是油酸和亚油酸,使用脂肪酶处理就可除去。自从90 年代在生产上采用后,纸品的质量提高,原木堆积成本下降,树脂吸附剂用量减少,经济效益提高。当时所用脂肪酶由NOVO 公司供应,在pH6~10 ,40~60 ℃作用良好,近来又发现使用耐热性70 ℃的脂肪酶效果更佳。

(2) 纸浆漂白:

纸浆为了除去色素来源木质素,要用氯、次氯酸、二氧化氯等氯化物处理,污染严重,因此60 年代就有人考虑用木质素酶将其分解。木质素是以苯基丙烷为骨干的高分子聚合物,只有将其分解木质素才会崩解。已发现对木质素有分解力的酶有木质素过氧化酶(L IP) 、锰依赖性过氧化酶(MNP) 、柒酶(LAC) ,但至今未找到适用的木质素酶。近年芬兰提出了一种化学和酶法相结合的处理法,取得了较好的效果。先用木聚糖酶切断木质素同纤维素之间的联系物(木聚糖和半纤维素) ,使木质素游离,再用碱蒸煮后,由纸浆游离出的木聚糖可再次吸附在纤维的表面,用木聚糖酶将其分解,可增加孔隙,于是氯素的浸透性提高,并使木质素容易从纸浆内部出来,此工艺活性氯用量可减少30 %。

(3) 废报纸回收利用中的脱墨

废纸回收后打纸浆时,需用碱、非离子表面活性剂、硅酸钠及H2O2 进行脱墨处理。日本在脱墨时添加碱性纤维素酶、半纤维素酶0. 1 %反应2 小时,抄纸白度可提高4~5 % ,强度并未降低。由于防止油墨印刷品弄脏手,油墨中加有亚油酸、亚麻酸和油酸等的高级三甘油酯,故脱墨时再添加脂肪酶效果更好,白度可提高2. 5 %。废报纸脱墨,我国山东大学也进行过不少研究。

2. 8 其它

植酸酶除作为饲料添加剂用以提高饲料中有机磷的利用率,减少粪便中磷对环境的污染,节省饲料另加磷酸盐用量。近年植酸酶还用于酿造,以改善原料中磷的利用,以及用于去钾大豆蛋白食物的生产,成为肾脏病人蛋白质的来源。α- 葡萄糖基转移酶还用于甜叶菊加工,用以脱苦涩味。淀粉的液化和糖化几乎占了工业上酶反应的绝大部分,由于目前的酶液化、糖化要在不同pH 和温度下进行,为简化工艺、节省水和能源,有必要开发耐酸性高温α2淀粉酶和耐热性糖化酶,如果α2淀粉酶可在pH4. 5 时进行液化,而糖化酶能在60 ℃以上温度下进行,试想将这些带来多大的效益? 不仅如此在pH4. 5 液化,还可避免麦芽酮糖生成。耐酸性α2淀粉酶和耐热性糖化酶在国外已经进行多年研究,已有不少报道。例如日本报道已选育出一株耐酸性α2淀粉酶( KOD - 1) ,在30 %淀粉浆中,pH4. 5 ,105 ℃下反应10 分钟,残留酶活75 %。将该酶在pH4. 5 ,60 ℃时液化30 %粉浆60 分钟,得到DE14 液化液,加糖化酶0. 1 %糖化48 小时,葡萄糖含量达95. 5 % ,与对照枯草杆菌α2淀粉酶的结果于pH5. 8 液化者相同(葡萄糖含量95. 7 %) 。此外,利用蛋白质工程将地衣芽孢杆菌α2淀粉酶分子中7个蛋氨酸用其它氨基酸置换后,耐酸性增强。这类酶的产业化一旦成功,将大大改变糖化有关工业的面貌。

3 结束语

随着世界能源的日益减少,而人口却在不断增加,水资源和粮食日见短缺。由于人类对环保意识的加强,使得工业界用酶来改革传统工艺的需求更为迫切。因此,提高酶的产量,降低生产成本,开发酶的新品种、新用途更是当务之急。基因工程、蛋白质工程的发展,为酶制剂工业发展创造了有利条件。开发耐热、耐酸碱,对底物有特殊作用的酶,以及将动植物生产的酶改由微生物发酵方法来生产,或者将还不能使用的微生物所产的酶改由安全菌种来生产,都将成为现实。

雪白的泥猴桃
现实的水池
2026-02-07 07:11:36
1、海藻糖对生物体具有神奇的保护作用,是因为海藻糖在高温、高寒、高渗透压及干燥失水等恶劣环境条件下在细胞表面能形成独特的保护膜,有效地保护蛋白质分子不变性失活,从而维持生命体的生命过程和生物特征。许多对外界恶劣环境表现出非凡抗逆耐受力的物种,都与它们体内存在大量的海藻糖有直接的关系。这一独特的功能特性,使得海藻糖除了可以作为蛋白质药物、酶、疫苗和其他生物制品的优良活性保护剂以外,还是保持细胞活性、保湿类化妆品的重要成分,更可作为防止食品劣化、保持食品新鲜风味、提升食品品质的独特食品配料,大大拓展了海藻糖作为天然食用甜味糖的功能。生产工艺:海藻糖是运用当代最先进的生物工程技术和生产工艺,采用按国际制药标准建造的成套设备,以当地特有的不含转基因成分的天然木薯淀粉为原料。

2、食品工业:海藻糖在食品工业中的应用:与其它糖类一样,海藻糖可广泛应用于食品业,包括饮料、巧克力及糖果、烘烤制品和速冻食品。

3、烘烤制品类:在烘烤制品中,海藻糖有多种潜在的使用价值:它能调节蛋糕、饼干和糕点上的糖霜、面包奶油和水果馅的甜味与芳香,不损害贮藏寿命,使人们品尝到产品原有的风味。糖果类:海藻糖与其它大多数增甜剂混合,可在糖果、果汁饮料和药草产品中使用,以调节产品甜质,从而能真正保持产品的原有风味。另外,由于海藻糖性质的稳定性,不会产生水解,产品色泽不变并保持原有光泽。速冻品类:海藻糖可代替蔗糖,降低冰淇淋和其他冷冻制品的凝结点。可在冻品和冰冻糖果中用于产生新的糖霜,并产生独特的可口的风味。

4、医药工业:海藻糖在医药工业中的应用:(1)在医学上已经成功地应用海藻糖替代血浆蛋白作为血液制品、疫苗、淋巴细胞、细胞组织等生物活性物质的稳定剂。(2)英国剑桥的Quadrant研究基金会将小儿麻痹症疫苗与海藻糖混合冻干后,发现在干燥状态下45℃时其稳定性和液态4℃保存条件时相当。(3)美国加利福尼亚大学的约翰克劳及其同事将海藻糖与制造血小板的细胞混合,经干燥脱水使细胞变干后,将其冻干在室温下可长时间保存。(4)海藻糖可应用于研究用生物试剂的保存,例如各种工具酶、细胞膜、细胞器、抗体、抗原及病毒等等,使得生命科学研究更为方便快捷有效。(5)双歧杆菌是肠道中用于改善人体微生态平衡的细菌,双歧杆菌活菌制剂作为防病治病的有力武器。

5、化妆品:海藻糖在化妆品上的应用是基于其具有优异的保持细胞活力和生物大分子活性的特性。皮肤细胞,尤其是表皮细胞在高温、高寒、干燥、强紫外线辐射等环境下,极易失去水分发生角质化,甚至死亡脱落使皮肤受损。海藻糖在这种情况下能够在细胞表层形成一层特殊的保护膜,从膜上析出的粘液不仅滋润着皮肤细胞,还具有将外来的热量辐射出去的功能。从而保护皮肤不致受损。

无私的太阳
热情的棒棒糖
2026-02-07 07:11:36

海藻糖是一种安全、可靠的天然糖类。海藻糖又称漏芦糖、蕈糖。

海藻糖是由两个葡萄糖分子以1,1-糖苷键构成的非还原性糖,有3种异构体即海藻糖(α,α)、异海藻糖(β,β)和新海藻糖(α,β),并对多种生物活性物质具有非特异性保护作用。

海藻糖在自然界中许多可食用动植物及微生物体内都广泛存在,如人们日常生活中食用的蘑菇类、海藻类、豆类、虾、面包、啤酒及酵母发酵食品中都有含量较高的海藻糖。

扩展资料

海藻糖的功效:

1、外源性海藻糖是对内源性海藻糖的补充。

外源性海藻糖与内源性海藻糖同样对生命体和生物大分子具有良好的非特异性保护功能,而且这种保护作用似乎对所有的生物分子都通用

2、降低冰点降低水相的凝固点,这样可以大大提高产品低温稳定性。

3、防止油脂分解对于含脂肪酸及酯类的产品,添加海藻糖可有效抑制产品的氧化酸败。日本林原生物研究所发现,海藻糖具有抑制中老年人特有体臭的作用。

4、防止蛋白质变性、保持各种蛋白质及多肽类活性成分的功效。

对于一些无法常温与长时间保持活性的bEGF(表皮生长因子)、SOD(超氧化物歧化酶)等生化物质的活性有良好的保持作用,使其应用价值提高。

5、优异的保水性,吸湿性,在严重脱水时,可代替细胞中水分的作用。

透明质酸与海藻糖联合应用,互补增效,兼具生物保鲜和智能保湿作用,可始终保持组织和皮肤及化妆品本身的“新鲜”。

6、抗辐射作用能清除α、β射线所产生的OH・自由基,使细DNA不易发生突变。

实验研究证明, 10mmol/kg的海藻糖,可使活细胞承受正常剂量4.3倍的α、β射线。海藻糖是皮肤细胞DNA的保护因子、修复因子,可有效保护DNA免受由放射线引起的损伤。

7、对抗氧化物“多酚”有稳定作用保持活性成分的稳定是化妆品不可缺少的要素。

海藻糖对抗氧化物“多酚”有稳定作用,从而减少产品出现问题的可能性。

参考资料来源:百度百科—海藻糖

自然的钢笔
开放的草丛
2026-02-07 07:11:36
水解胶原加工糖。海藻糖是天然糖。

水解胶原是通过科学加工方法生产的,这种胶原多肽分子量较小可以完全溶解在水中。海藻糖是天然双糖中最稳定的糖,即使在100℃PH3.0条件下加热30min也不水解。

自信的老师
激昂的小兔子
2026-02-07 07:11:36

单糖是指分子结构中含有3~6 个碳原子的糖。二糖又名双糖,由二分子的单糖通过糖苷键形成,在一种单糖的还原基团和另一种糖的醇羟基相结合的情况下,显示出与单糖的共同化学性质。

双糖作用:

天然存在的游离态和具有机能的糖类以哺乳类的乳糖、细菌和昆虫血液等的海藻糖、植物的蔗糖为代表。它们是各种有机体的能源,或有机体的原料,在必要的糖的储存或运输中起着重要作用。

1、它可以由各种特定的转葡萄糖苷酶与相应的核苷合成,同时它可以被特定的水解酶水解和磷酸分解。纤维二糖和麦芽糖也是较为熟知的二糖。

2、纤维素和淀粉的酶分解产物与纤维素和淀粉的酶分解产物相比,并不是单独合成和发挥作用的产物。因此,有比天然双糖更先进的结构,大多数自由双糖是其代谢分解的产物。

单糖作用:

1、氧化作用

单糖,不论是醛糖还是酮糖,都能与黄原试剂、菲林试剂、本笃试剂等弱氧化剂反应,形成金属或金属的低价氧化物。

2、成苷作用

当单糖环半缩醛结构中的半缩醛羟基与另一分子醇或羟基反应时,一分子水被除去形成缩醛。这种糖的缩醛叫做糖苷。例如,α和β-d-吡喃葡萄糖的混合物与氯化氢催化的甲醇反应,除去水分子,并产生α和β-d-甲基吡喃葡萄糖苷的混合物。

3、成酯作用

单糖分子中含有许多羟基,能与酸反应生成酯。人体内葡萄糖在酶的作用下产生葡萄糖磷酸酯,如1-磷酸吡喃葡萄糖和6-磷酸吡喃葡萄糖。

所以单糖双糖是对人体有好处的。

扩展资料:

单糖通常是易溶于水的无色晶体,大多有吸湿性。难溶于乙醇,不溶于乙醚。单糖有旋光性,多于四个碳的单糖的溶液有变旋现象。四个碳以上的单糖主要以环状结构形式存在,但在溶液中可以以开链结构反应。因此 ,单糖的化学反应有的以环式结构进行,有的以开链结构进行。

单糖可以被还原成相应的糖醇(Sugar alcohol)。D-葡萄糖被还原成D-葡萄糖醇,又称山犁醇(D-Sorbitol)。

参考资料来源:百度百科-单糖

参考资料来源:百度百科-二糖