建材秒知道
登录
建材号 > 乙酸 > 正文

3-烯丙基乙酰乙酸乙酯的沸点是多少

烂漫的蜜粉
快乐的小蜜蜂
2022-12-22 14:11:21

3-烯丙基乙酰乙酸乙酯的沸点是多少

最佳答案
疯狂的小蜜蜂
合适的橘子
2026-02-06 23:22:30

熔点<-45℃,沸点181℃,118.5℃(13.3kPa),96.2(5.33kPa),81.1℃(2.67kPa),

74℃(1.87kPa),67.3℃(1.33kPa),28.5℃(0.53kPa),相对密度1.0282(20/4℃),折射率1.4194,闪点(闭杯)84.4℃,

蒸气压(20℃)106.66Pa。与乙醇、乙醚、苯等一般有机溶剂混溶,易溶于水。具有愉快的水果香气。一般的乙酰乙酸乙酯

是酮式和烯醇式互变异构体和平衡混合物,酮式占92.3%,烯醇式占7.7%。酮式乙酰乙酸乙酯沸点为41℃(0.267kPa),

不能与溴起加成反应,也不使三氯化铁显色,但能与酮试剂作用。烯醇式乙酰乙酸乙酯沸点为33℃(0.267kPa),

最新回答
柔弱的秀发
美好的鞋子
2026-02-06 23:22:30

中文名称:乙酸烯丙酯

中文同义词:乙酸2-丙烯基酯乙酸烯丙酯醋酸烯丙酯乙酸烯丙酯 烯丙基乙酸酯醋酸丙烯酯乙酸烯丙酯,99%乙酸烯丙

英文名称:Allyl acetate

英文同义词:2-Propenyl acetate2-Propenyl ester of acetic acid2-propenylmethanoate3-acetoxy-1-propeneacetated’allyleAceticacid,2-propenylesteraceticacidprop-2-enylesterCH2=C(CH3)OC(=O)CH3

CAS号:591-87-7

EINECS号:209-734-8

Mol文件:591-87-7.mol

如意的乌冬面
懵懂的斑马
2026-02-06 23:22:30
主要材料是聚碳酸酯(PC)

太阳镜最主要的还是他的图层,pc只是决定了它的最大透光率和一些光学基本参数。

颜色是后期的光学镀膜,眼镜的档次高低关键就在镀膜上。

镜片材料采用透明的介质,主要分为无机和有机二大类。

在我们的日常生活还会碰到一种天然介质水晶镜片,这是用石英矿磨制成的镜片。古代有水晶能养颜明目的说法,但事实上水晶的主要成分是二氧化硅(sio2),最大优点是硬性度高且不易受潮,但紫外线及红外线的透过率较高,而且水晶中密度不均匀,含杂质,有条纹及气泡等到产生,会形成双折射现象,从而影响视力。

一、 无机材料--玻璃

玻璃是非常特殊的不定型材料,在常温下呈现固体,坚硬但易碎,在高温下具有粘性。

玻璃没有固定的化学结构,因而没有确切的熔点。随着温度的上升,玻璃材料会变软、粘性增加,并逐渐由固体变为液体,这种逐渐变化的特性我们称之为"玻璃状态"。这一特性意味着玻璃在高温时可以被加工和铸型。玻璃材料制成的镜片具有良好的透光性、表面抛光后更加透明的优点。

(1)普通玻璃材料(1。5和1。6):折射率为1.523的冕牌玻璃是传统光学镜片的制造材料,其中60%~70%为二氧化硅,其余则由氧化钙、钠和硼等多种物质混合。有时也将折射率为1.6的镜片划归普通镜片。

(2)高折射率玻璃材料:经过多年的研究,镜片制造商已经找到了在提高材料折射率的同时又保持低色散的方法,即在玻璃中加入新的化学元素。

早在1975年就生产出了含钛元素的镜片,折射率为1.7,阿贝数为41;15年之后又生产出了含镧元素的镜片,折射率为1.8,阿贝数为34;1995年出现折射率为1.9的材料,加入了元素铌,阿贝数为30,这是目前折射率最高的镜片材料。虽然采用这些材料所制造的镜片越来越薄,然而却没有减少镜片的另一重要参数:重量。实际上,随着折射率的增加,材料的比重也随之增加,这样就抵消了因为镜片变薄而带来的重量上的减轻。

(3)染色玻璃材料:在玻璃材料中混合入一些具有特殊吸收性质的金属盐后会表现出着色的效果,例如:加镍和钴(紫色),钴和铜(蓝色),铬(绿色),铁,镉(黄色),金,铜和硒(红色)等等。这些染色镜片材料主要应用于大规模地生产平光太阳镜片或防护镜片。一些具有特殊过滤性质的浅色材料(棕色、灰色、绿色或粉红色)也被用于生产屈光矫正镜片,但象这种镜片的材料现在的需求并不多,主要原因是由于近视或远视镜片的中心厚度与边缘厚度不同,从而使镜片的颜色深浅不一致,屈光度越高,颜色差异就越明显。

(4)光致变色玻璃材料:光致变色现象是通过改变材料的光线吸收属性,使材料对太阳光强度作出反应的一种性质。它的基本原则是使普通的玻璃(包括塑料光致变色材料)在紫外线辐射的影响下颜色变深,以及在周围高温的影响下颜色变淡,这

两个过程是可逆的,而且可能一直存在。这一现象是通过激活在材料中混合的光致变色物质的分子而完成的。1962年出现了第一代光致变色玻璃材料,此后性能不断得到改良。其主要是在玻璃材料中加入了卤化银晶体。这些晶体在紫外线击幅射下起化学反应,使镜片的颜色变深。第一代光致变色玻璃材料的变色原理是银原子和氯原子之间的一种电子交换,通过氯化银和周围的环境来表现。在没有光线的条件下,氯化银呈离子态,因银离子是透明的,所以镜片也是透明的;而在紫外线辐射下,不稳定电子离开了氯离子,与银离子结合为金属银并吸收光,镜片则变深。当紫外线辐射减弱,移动电子离开银原子返回氯原子,镜片逐渐恢复了原先的清澈状态。对一般的光致变色玻璃,变色同时也受到温度的控制,在光照度不变时,温度越低则颜色越深。 光致变色材料大多是灰色和棕色的,俗称灰变和茶变,其它的颜色也可以通过专门的工艺达到。所有的眼镜片,包括熔化双焦点镜片、渐进镜片都可以使用光致变色材料制造。近年来,光致变色树脂镜片的发展较快,材料在不断改良,其折射率已不再局限于1.50。

二、 有机材料

有机材料可以分为两大类:热固性材料,具有加热后硬化的性质,爱热不会变形,眼镜片大部分以这种材料为主,如CR-39。热塑性材料,具有加热后软化的性质,尤其是适合热塑和注塑,聚碳酸酯PC就是这种材料。

(1)热固性材料

1)普通树脂材料:(CR-39)

学名碳本酸丙烯乙酸,或称烯丙基二甘醇酸脂(Dially Glycol Carbonates),是应用最广泛的生产普通树脂镜片的材料。它于四十年代被美国哥伦比亚公司的化学家发现,是美国空军所研制的一系列聚合物中的第39号材料,因此,被称为CR-39(哥伦比亚树脂第39号)。CR-39被用于生产眼用矫正镜片是在1955~1960年,是第一代的超轻、抗冲击的树脂镜片。CR-39作为一种热固性材料,单体呈液态,在加热和加入催化剂的条件下聚合固化。聚合是一个化学反应,即由几个相同分子结构的单体组成的一个

俊逸的面包
感性的电话
2026-02-06 23:22:30
眼镜片的光学目的旨在通过配戴矫正镜片使屈光不正的眼睛恢复清晰视力,所以在选用镜片材料时需要考虑以下这些与镜片屈光作用密切相关的因素:

1、材料的几何特性:曲率半径、表面形状等;

2、材料的物理化学特性:折射率、阿贝数等。

镜片材料的研究发展主要是为了获取并控制这些相关因素,了解并掌握其特性,以使不断完善、发展镜片的光学矫正效果。

镜片材料的基本特性有:

1、光学性质,计算屈光作用和控制光学性能;

2、机械和热性质;

3、电性质材料;

4、化学性质通过外界所可能接触的化学物质了解材料的相应变化。

一、 光学性质:光学性质是材料的基本性质,与镜片在日常生活中所见到的各种光学现象相符合,主要为光线在镜片表面的折射和反射、材料本身的吸收,以及散射和衍射现象。

(1)光线折射:通过镜片的光线会在镜片的前后表面发生折射或偏离现象,光线的偏离幅度由材料的折射率和入射光线在镜片表面的入射角度决定。

1)折射率:透明媒质的折射率是光线在真空中的速度c与在媒质中的速度v的比值,

n=c/v。该比值没有单位并且总是大于1。折射率反映媒质的折射能力,折射率越高,从空气进入该媒介的光束偏离得越多。从空气到折射率为n的透明媒质所发生的偏离或折射可以根据斯涅耳-笛卡尔定律(Snell-Descartes Law)进行计算,规定如下:折射光线与入射光线和法线位于同一平面入射角i和折射角r分别由法线与入射光线、折射光线构成。计算公式: sin i=n sin r

由于透明媒质的光速随着波长而变化,所以折射率的值总是参考某一特定波长

表示:在欧洲和日本,参考波长为e线546.07nm(汞--绿光谱线),但是在美国等其它

国家则是d线587.56nm(氦--黄光谱线)。但这个区别并没有造成实际影响,因为它的

区别仅仅反映在折射率值的第三位小数上。

目前市场所采用的镜片材料的折射率范围是从1.5--1.9。

2)色散系数:阿贝数。

由光波引起的折射率变化会使白光根据不同的折射产生色散现象。事实上,波长越短,折射率越高,可见光的折射从光谱的红光区延伸到蓝光区。材料的色散能力可以由阿贝数描述,在欧洲、日本规定用e线,在美国等其他国家规定使用d线。

阿贝数与材料的色散力成反比,镜片材料规定的范围通常从30-60,数值越大即表示色散越少。一般而言,折射率越高,色散力越大,而阿贝数就越低。尽管所有镜片都存在色散,但在镜片中心,这个因素可以被忽略,只有在用高色散材料制造的镜片周边部,色散现象才易被察觉。在这种情况下,色散现象所表现的是离轴物体边缘带有彩色条纹。

(2)光线反射

光线在镜片表面产生折射的同时,也会产生反射现象。光线反射会影响镜片的清晰度,而且在镜片表面会产生干扰性反射光。通常,镜片材料的折射率越高,因反射而损失的光线就越多。当然,对于干扰性反射光可以通过在镜片表面镀多层减反射膜而相应抵消。

(3)光线吸收:材料的本身吸收光的特性会减少镜片的光线透过率,这部分的光量损失对于非染色眼镜片是可以忽略的,但如果为染色或变色镜片,光的吸收量会很大,这也是此类镜片的设计目的。眼镜片的光线吸收通常指材料内部的光线吸收,可通过镜片前、后表面吸收光线的百分比表示。例如,30%的光线吸收相当于30%的光通量在镜片内部的减少。材料的光线吸收遵循郎伯(Lambert′s Law)定律,它根据镜片的不同厚度呈指数性的变化。

镜片的光线透过率

镜片的光线透过率指光线通过镜片而没有被反射和吸收的光的总量。通过镜片抵达眼睛的光通量ΦΥ相当于镜片前表面的入射量Φ,减去镜片前、后表面的反射量Φρ,减去可能被材料吸收的流量Φα,即ΦΥ+Φρ+Φα=Φ。因此,戴镜者的视觉受三方面的综合影响:入射光的强度和入射光谱范围、镜片吸收和对光谱的选择、以及眼睛对不同可见波长的敏感度。

(4)光线散射和衍射

1)散射:散射是光线在各个方向上被散播的一种现象,它一般在固体的表面以及透

明材料的内部产生。理论上眼镜片表面没有散射发生,因为镜片的磨片过程(抛光)消除了这一现象。然而当镜片由于外界污染而弄脏或表面由于油渍而模糊不清时会产生散射。同时镜片内部的菜射也非常有限,只在偶尔情况下,可能会使镜片呈现黄色或乳白色。目前合格的眼镜片只有非常少量的散射光线产生,通常可以忽略不计。

2)衍射:衍射是当光波遇到小障碍而改变行径方向的一种现象。在眼镜光学里,衍

射现象是需引起重视的,因为衍射会使镜片表面产生异常干扰,尤其是在使用不当或不小心在镜片表面造成的磨损的情况下。

二、 机械性质

机械性质通常反映块状固体材料的特性,它规定了材料的质量、体积和尺寸,以及材料对变形和冲击的抵抗力。我们常见的反映镜片机械性质的特性有:1、比重;2、硬度;3、弹性系数E(或杨氏系数):压力和在排除压力后恢复最初形状时产生的相应变形之间的比率。4、抗冲击性:常采用由美国食品和药物管理局(FDA)规定的一项落球试验表示。落球试验即使用一个16克的钢球从1.27M高处对准镜片中心落下的测试。5、抗断开点:采用由欧洲标准化委员会制定的"100牛顿"CEN静态变形测试。该测试是在一个恒定速度下增加压力直到100牛顿。

三、 热性质

热性质描述了关于材料的变化状态以及温度影响下的特性。

热性质主要包括:1、热传导系数。2、比热:物体温度每升高一摄氏度所需的热量与相同质量的水温每升高一摄氏度所需的热量的比值。3、线性膨胀系数:预先设定的温度范围。4、熔点:物理常数。5、沸点。 6、镜片的应力温度。

四、 电性质

电性质表示了材料电磁波和电效应的特性,由物理定律决定,有时需将镜片的光学性质与电性质联系。通常材料制造进需考虑以下参数:1、介电强度;2、预定频率下的介电损耗系数。

五、 化学性质

化学性质反映了在镜片制造及日常生活中,镜片材料对于化学物质的反应特性,或是在某些极端条件下材料的反应特性。例如加速老化试验是为了测试材料的可信度。测试时通常使用冷水、热水、酸类以及各种有机溶剂,在国际标准中也有判断镜片材料的耐火性测试。

二.基本镜片材料

镜片材料采用透明的介质,主要分为无机和有机二大类。在我们的日常生活还会碰到一种天然介质水晶镜片,这是用石英矿磨制成的镜片。古代有水晶能养颜明目的说法,但事实上水晶的主要成分是二氧化硅(sio2),最大优点是硬性度高且不易受潮,但紫外线及红外线的透过率较高,而且水晶中密度不均匀,含杂质,有条纹及气泡等到产生,会形成双折射现象,从而影响视力。

一、 无机材料--玻璃

玻璃是非常特殊的不定型材料,在常温下呈现固体,坚硬但易碎,在高温下具有粘性。

玻璃没有固定的化学结构,因而没有确切的熔点。随着温度的上升,玻璃材料会变软、粘性增加,并逐渐由固体变为液体,这种逐渐变化的特性我们称之为"玻璃状态"。这一特性意味着玻璃在高温时可以被加工和铸型。玻璃材料制成的镜片具有良好的透光性、表面抛光后更加透明的优点。

(1)普通玻璃材料(1。5和1。6):折射率为1.523的冕牌玻璃是传统光学镜片的制造材料,其中60%~70%为二氧化硅,其余则由氧化钙、钠和硼等多种物质混合。有时也将折射率为1.6的镜片划归普通镜片。

(2)高折射率玻璃材料:经过多年的研究,镜片制造商已经找到了在提高材料折射率的同时又保持低色散的方法,即在玻璃中加入新的化学元素。

早在1975年就生产出了含钛元素的镜片,折射率为1.7,阿贝数为41;15年之后又生产出了含镧元素的镜片,折射率为1.8,阿贝数为34;1995年出现折射率为1.9的材料,加入了元素铌,阿贝数为30,这是目前折射率最高的镜片材料。虽然采用这些材料所制造的镜片越来越薄,然而却没有减少镜片的另一重要参数:重量。实际上,随着折射率的增加,材料的比重也随之增加,这样就抵消了因为镜片变薄而带来的重量上的减轻。

(3)染色玻璃材料:在玻璃材料中混合入一些具有特殊吸收性质的金属盐后会表现出着色的效果,例如:加镍和钴(紫色),钴和铜(蓝色),铬(绿色),铁,镉(黄色),金,铜和硒(红色)等等。这些染色镜片材料主要应用于大规模地生产平光太阳镜片或防护镜片。一些具有特殊过滤性质的浅色材料(棕色、灰色、绿色或粉红色)也被用于生产屈光矫正镜片,但象这种镜片的材料现在的需求并不多,主要原因是由于近视或远视镜片的中心厚度与边缘厚度不同,从而使镜片的颜色深浅不一致,屈光度越高,颜色差异就越明显。

(4)光致变色玻璃材料:光致变色现象是通过改变材料的光线吸收属性,使材料对太阳光强度作出反应的一种性质。它的基本原则是使普通的玻璃(包括塑料光致变色材料)在紫外线辐射的影响下颜色变深,以及在周围高温的影响下颜色变淡,这

两个过程是可逆的,而且可能一直存在。这一现象是通过激活在材料中混合的光致变色物质的分子而完成的。1962年出现了第一代光致变色玻璃材料,此后性能不断得到改良。其主要是在玻璃材料中加入了卤化银晶体。这些晶体在紫外线击幅射下起化学反应,使镜片的颜色变深。第一代光致变色玻璃材料的变色原理是银原子和氯原子之间的一种电子交换,通过氯化银和周围的环境来表现。在没有光线的条件下,氯化银呈离子态,因银离子是透明的,所以镜片也是透明的;而在紫外线辐射下,不稳定电子离开了氯离子,与银离子结合为金属银并吸收光,镜片则变深。当紫外线辐射减弱,移动电子离开银原子返回氯原子,镜片逐渐恢复了原先的清澈状态。对一般的光致变色玻璃,变色同时也受到温度的控制,在光照度不变时,温度越低则颜色越深。光致变色材料大多是灰色和棕色的,俗称灰变和茶变,其它的颜色也可以通过专门的工艺达到。所有的眼镜片,包括熔化双焦点镜片、渐进镜片都可以使用光致变色材料制造。近年来,光致变色树脂镜片的发展较快,材料在不断改良,其折射率已不再局限于1.50。

二、 有机材料

有机材料可以分为两大类:热固性材料,具有加热后硬化的性质,爱热不会变形,眼镜片大部分以这种材料为主,如CR-39。热塑性材料,具有加热后软化的性质,尤其是适合热塑和注塑,聚碳酸酯PC就是这种材料。

(1)热固性材料

1)普通树脂材料:(CR-39)

学名碳本酸丙烯乙酸,或称烯丙基二甘醇酸脂(Dially Glycol Carbonates),是应用最广泛的生产普通树脂镜片的材料。它于四十年代被美国哥伦比亚公司的化学家发现,是美国空军所研制的一系列聚合物中的第39号材料,因此,被称为CR-39(哥伦比亚树脂第39号)。CR-39被用于生产眼用矫正镜片是在1955~1960年,是第一代的超轻、抗冲击的树脂镜片。CR-39作为一种热固性材料,单体呈液态,在加热和加入催化剂的条件下聚合固化。聚合是一个化学反应,即由几个相同分子结构的单体组成的一个新的聚合体分子,具有不同的长度

和性质。作为光学镜片,CR-39材料性质的参数十分适宜:折射率为1.5(接近普通玻璃镜片)、密度1.32(几乎是玻璃的一半)、阿贝数为58~59(只有很少的色射)、抗冲击、高透光率,可以进行染色和镀膜处理。

它主要的缺点是耐磨性不及玻璃,需要镀抗磨损膜处理。树脂镜片可采用模式压法加工镜片表面的曲率,因此很适用于非球面镜片的生产。

2)中高折射率树脂材料:今天大部分的中折射率和高折射率材料都是热固性树脂,其发展非常迅速。它们的折射率可以使用以下任意一种技术来增加:改变原分子中电子的结构,例如:引入苯环结构;在原分子中加入重原子,诸如卤素(氯、溴等)或硫。与传统CR-39相比,用中高折射率树脂材料制造的镜片更轻、更薄。它们的比重与CR-39大体一致(在1.20到1.40之间),但色散较大(阿贝数45),抗热性能较差,然而抗紫外线较佳,同时也可以染色和进行各种系统的表面镀膜处理。使用这些材料的镜片制造工艺与CR-39的制造原理大体一致。现在1.67的树脂材料已广泛流行,而且象1.7的树脂材料也已在市场上有销售。视光业的专业人员正不断研制开发新材料,改良原有材料,以期树脂材料在将来获得更好的性能。

3)染色树脂材料:用于制造太阳眼镜镜片的基本上都是聚合前加入染料而制成的,特别适合大批量制造各色平光太阳镜片,同时在材料中加入可吸收紫外线的物质。

现在的一项技术即是使用浸泡在溶有有机色素的热水中,常用的染料有红色、绿色、黄色、蓝色、灰色、和棕色,根据需求可任意调染,颜色的深浅也可以控制,可以将整片镜片染色成一种颜色,也可以染成逐渐变化的颜色,例如镜片上部深色,往下逐渐减浅,即俗称的双色或渐进色。有机材料的出现,解决了屈光不正者配戴太阳眼镜的问题。

4)光致变色树脂材料:第一代光致变色树脂镜片大约出现在1986年,但是直到1990年第一代Transi-tion镜片面市后,它才真正开始普及。光致变色效果是在材料中加入了感光的混合物而获得的,在特殊波段的紫外线辐射作用下,这些感光物质的结构发生变化,改变了材料的吸收能力。这些混合物与的结合主要有两种方法:在聚合前与液态单体混合,或在聚合后渗入材料中(Transition镜片就采用后一种方法)。光致变色树脂镜片采用几种光致变色物质,在最后的制造中使这些不同的

变色效果结合起来,这使得镜片变色不但迅速,而且不完全受温度的控制。

一种新型的光致变色树脂镜片已于1993年投放市场,这种镜片采用树脂材料作片基,用渗透法在镜片的凸面渗透了一层光致变色材料,然后再镀上一层抗磨损膜,起保护和而磨作用。这项工艺技术可以使镜片的变色不会随屈光度数的加深而出现镜片中央与周围深浅不一的情况,弥补了玻璃变色的不足。再加上片基是树脂材料,轻且抗冲击,所以这种镜片特别适合用于各种屈光不正者使用。

(2)热塑性材料(聚碳酸酯,POLYCARBONATE,简称PC)

热塑性材料如PMMA早在五十年代就被首次用于制造镜片,但是由于受热易变形及耐磨性较差的缺点,很快就被CR-39所替代。然而今天,聚碳酸酯的发展将热塑性材料带回了镜片领域,并被视光业专业人士认可为21世纪的主导镜片材料。实际上,聚碳酸酯也不是一种新材料,它大约在1995年就被发现了,但真正在视光领域的使用仅仅是近几年,它在历经了数年的研制和多次的改进之后尤其是应用于CD产业,其光学质量已其它镜片材料相媲美。

聚碳酸酯是直线形无定型结构的热塑聚合体,具有许多光学方面的优点:出色的抗冲击性(是CR-39的10倍以上),高折射率(ne=1.591,nd=1.586),非常轻(比重=1.20g/立方厘米),100%抗紫外线(385nm),耐高温(软化点为140 °C/280 °F)。聚碳酸酯材料也可进行系统的镀膜处理。它的阿贝数较低(Ve=31,Vd=30),但在实际中对配戴者并没有显著的影响。在染色方面,由于聚碳酸酯材料本身不易着色,所以大多通过可染色的抗磨损膜吸收颜色。

安详的电源
勤奋的大树
2026-02-06 23:22:30
乙酸烯丙酯=乙酸与 烯丙醇(CH2=CH-CH2-OH)反应

丙烯酸甲酯=丙烯酸+甲醇

补充:

这是基团的不同,

烯丙基:-CH2-CH=CH2,所以烯丙酸CH2=CH-CH2-COOH

丙烯基:-CH=CH-CH3,所以丙烯酸CH3-CH=CH-COOH

小巧的小猫咪
英勇的项链
2026-02-06 23:22:30
CH2=CH-CH2O18H在酸作用下羟基质子化,然后H2O18离去,生成烯丙基正离子CH2=CH-CH2+;这是因为烯丙基正离子中,双键的π轨道与碳正离子的空的p轨道共轭,使得正电荷离域,体系趋于稳定,所以烯丙醇有生成烯丙基正离子的倾向;(这与烯丙型卤代烃、苯甲型卤代烃很活泼,易于按SN1机理反应的道理是类似的);

然后CH3COOH中O对烯丙基正离子亲核进攻,质子离去,形成CH2=CH-CH2OOCH3;

笨笨的指甲油
冷艳的毛豆
2026-02-06 23:22:30
一.根据碳原子结合而成的基本骨架不同,有机化合物被分为三大类:1.链状化合物 这类化合物分子中的碳原子相互连接成链状,因其最初是在脂肪中发现的,所以又叫脂肪族化合物.2.碳环化合物 这类化合物分子中含有由碳原子组成的环状结构[2],故称碳环化合物.它又可分为两类:脂环族化合物:是一类性质和脂肪族化合物相似的碳环化合物.芳香族化合物:是分子中含有苯环或稠苯体系的化合物.3.杂环化合物:组成这类化合物的环除碳原子以外,还含有其它元素的原子,叫做杂环化合物.二、按官能团分类 决定某一类化合物一般性质的主要原子或原子团称为官能团或功能基.含有相同官能团的化合物,其化学性质基本上是相同的.[编辑本段]命名:1.俗名及缩写 有些化合物常根据它的来源而用俗名,要掌握一些常用俗名所代表的化合物的结构式,如:木醇是甲醇的俗称,酒精(乙醇)、甘醇(乙二醇)、甘油(丙三醇)、石炭酸(苯酚)、蚁酸(甲酸)、水杨醛(邻羟基苯甲醛)、肉桂醛(β-苯基丙烯醛)、巴豆醛(2-丁烯醛)、水杨酸(邻羟基苯甲酸)、氯仿(三氯甲烷)、草酸(乙二酸)、苦味酸(2,4,6-三硝基苯酚)、甘氨酸(α-氨基乙酸)、丙氨酸(α-氨基丙酸)、谷氨酸(α-氨基戊二酸)、D-葡萄糖、D-果糖(用费歇尔投影式表示糖的开链结构)等.还有一些化合物常用它的缩写及商品名称,如:RNA(核糖核酸)、DNA(脱氧核糖核酸)、阿司匹林(乙酰水杨酸)、煤酚皂或来苏儿(47%-53%的三种甲酚的肥皂水溶液)、福尔马林(40%的甲醛水溶液)、扑热息痛(对羟基乙酰苯胺)、尼古丁(烟碱)等.2.普通命名(习惯命名)法 要求掌握“正、异、新”、“伯、仲、叔、季”等字头的含义及用法.正:代表直链烷烃; 异:指碳链一端具有结构的烷烃; 新:一般指碳链一端具有结构的烷烃.伯:只与一个碳相连的碳原子称伯碳原子.仲:与两个碳相连的碳原子称仲碳原子.叔:与三个碳相连的碳原子称叔碳原子.季:与四个碳相连的碳原子称季碳原子.如在下式中:C1和C5都是伯碳原子,C3是仲碳原子,C4是叔碳原子,C2是季碳原子.要掌握常见烃基的结构,如:烯丙基、丙烯基、正丙基、异丙基、异丁基、叔丁基、苄基等.例如:3.系统命名法 系统命名法是有机化合物命名的重点,必须熟练掌握各类化合物的命名原则.其中烃类的命名是基础,几何异构体、光学异构体和多官能团化合物的命名是难点,应引起重视.要牢记命名中所遵循的“次序规则”.1.烷烃的命名:烷烃的命名是所有开链烃及其衍生物命名的基础.命名的步骤及原则:(1)选主链 选择最长的碳链为主链,有几条相同的碳链时,应选择含取代基多的碳链为主链.(2)编号 给主链编号时,从离取代基最近的一端开始.若有几种可能的情况,应使各取代基都有尽可能小的编号或取代基位次数之和最小.(3)书写名称 用阿拉伯数字表示取代基的位次,先写出取代基的位次及名称,再写烷烃的名称;有多个取代基时,简单的在前,复杂的在后,相同的取代基合并写出,用汉字数字表示相同取代基的个数;阿拉伯数字与汉字之间用半字线隔开.2.几何异构体的命名:烯烃几何异构体的命名包括顺、反和Z、E两种方法.简单的化合物可以用顺反表示,也可以用Z、E表示.用顺反表示时,相同的原子或基团在双键碳原子同侧的为顺式,反之为反式.如果双键碳原子上所连四个基团都不相同时,不能用顺反表示,只能用Z、E表示.按照“次序规则”比较两对基团的优先顺序,两个较优基团在双键碳原子同侧的为Z型,反之为E型.必须注意,顺、反和Z、E是两种不同的表示方法,不存在必然的内在联系.有的化合物可以用顺反表示,也可以用Z、E表示,顺式的不一定是Z型,反式的不一定是E型.例如:脂环化合物也存在顺反异构体,两个取代基在环平面的同侧为顺式,反之为反式.3.光学异构体的命名:光学异构体的构型有两种表示方法D、L和R、S,D 、L标记法以甘油醛为标准,有一定的局限性,有些化合物很难确定它与甘油醛结构的对应关系,因此,更多的是应用R、S标记法,它是根据手性碳原子所连四个不同原子或基团在空间的排列顺序标记的.光学异构体一般用投影式表示,要掌握费歇尔投影式的投影原则及构型的判断方法.

落寞的豌豆
贪玩的绿茶
2026-02-06 23:22:30
它参与的反应类型大致有三种:

① Pd(II) 通过与烯烃发生配位从而活化烯烃,进而被亲核试剂进攻的反应;

② 活化芳烃、苄基和烯丙基的C-H键;

③ 作为Pd(0)试剂的前体,低价的Pd(0)试剂能通过氧化加成与不饱和基团形成Pd(II)-芳基、Pd(II)-乙烯基、Pd(II)-烯丙基中间体,从而起到活化芳基、乙烯基和烯丙基氯或烯丙基醋酸酯的作用。

激情的过客
闪闪的裙子
2026-02-06 23:22:30
1、取待测溶液置于试管中,加饱和碳酸钠溶液,分层现象为乙酸乙酯,不分层无明显变化的为甘油,其余为酸; 2、另取剩余溶液,滴加溴水,若无明显变化的为戊二酸; 3、再取剩下的两份溶液,滴加氯化钙,若产生沉淀且沉淀在盐酸中溶解的,为草酸,反之为丙烯酸。