建材秒知道
登录
建材号 > 苯酚 > 正文

苯酚与酸酐反应机理

傻傻的手套
欣慰的豆芽
2022-12-22 13:42:11

苯酚与酸酐反应机理

最佳答案
高兴的煎蛋
安详的月饼
2026-02-06 13:49:05

两种化合物形成酯(典型反应为酸与醇反应形成酯),这种反应叫酯化反应。羧酸和普通的醇可以发生,而羧酸和苯酚就很难直接发生酯化反应, 羧酸和醇成酯的机理是醇羟基的氧的孤对电子进攻羧酸的碳原子,而苯酚的氧原子与苯环形成p-π共轭,就难以进攻别的原子,因此羧酸和苯酚就很难直接发生反应。要制备酚酯可以使用苯酚和要发生酯化反应的羧酸的酸酐或酰氯在浓硫酸的催化下反应。

酸酐与醇或酚的反应:

R’OH+(R”CO)2O→R”COOR’+R”COOH。

酸酐为较强的酰化剂,适用于直接酯化法难以反应的酚羟基或空间位阻较大的羟基化合物,反应生成的羧酸不会使酯发生水解,所以这种酯化反应可以进行完全。常用的酸酐是乙酸酐,反应常用酸性或碱性催化剂来加速,如硫酸、高氯酸、氯化锌、三氯化铁、吡啶、无水乙醇钠、对甲基苯磺酸或叔胺等。

醇和酸酐酯化反应的难易程度和醇的结构有关,一般来说,醇的反应速率常数递增顺序是:伯醇>仲醇>叔醇。

最新回答
个性的煎蛋
漂亮的电话
2026-02-06 13:49:05

苯酚或苯胺的紫外光谱在酸性或碱性介质中有溶剂极性变化。

溶剂极性的变化会引起有机化合物紫外吸收谱带波长的变化。通常增加溶剂的极性会使π→π*跃迁吸收谱带波长红移;而使n→π*跃迁吸收谱带波长蓝移。

酸性条件下,酚羟基上的氢不易被电离。而碱性和中性条件下就容易被电离形成氧负离子。氧负离子与苯环的共轭程度比羟基高。故PH值变大红移,变小蓝移。

跃迁类型

有机化合物分子中主要有三种电子:形成单键的σ电子、形成双键的π电子、未成键的孤对电子,也称n电子。基态时σ电子和π电子分别处在σ成键轨道和π成键轨道上,n电子处于非键轨道上。仅从能量的角度看,处于低能态的电子吸收合适的能量后,都可以跃迁到任一个较高能级的反键轨道上。

英俊的萝莉
眼睛大的电话
2026-02-06 13:49:05
有机实验的八项注意

有机实验是中学化学教学的重要内容,是高考会考的常考内容。对于有机实验的操作及复习必须注意以下八点内容。

1.注意加热方式

有机实验往往需要加热,而不同的实验其加热方式可能不一样。

⑴酒精灯加热。 酒精灯的火焰温度一般在400~500℃,所以需要温度不太高的实验都可用酒精灯加热。教材中用酒精灯加热的有机实验是:“乙烯的制备实验”、“乙酸乙酯的制取实验”“蒸馏石油实验”和“石蜡的催化裂化实验”。

⑵酒精喷灯加热。酒精喷灯的火焰温度比酒精灯的火焰温度要高得多,所以需要较高温度的有机实验可采用酒精喷灯加热。教材中用酒精喷灯加热的有机实验是:“煤的干馏实验”。

⑶水浴加热。水浴加热的温度不超过100℃。教材中用水浴加热的有机实验有:“银镜实验(包括醛类、糖类等的所有的银镜实验)”、“ 硝基苯的制取实验(水浴温度为6 0℃)”、“ 酚醛树酯的制取实验(沸水浴)”、“乙酸乙酯的水解实验(水浴温度为70℃~80℃)”和“ 糖类(包括二糖、 淀粉和纤维素等)水解实验(热水浴)”。

⑷用温度计测温的有机实验有:“硝基苯的制取实验”、“乙酸乙酯的制取实验”(以上两个实验中的温度计水银球都是插在反应液外的水浴液中,测定水浴的温度)、“乙烯的实验室制取实验”(温度计水银球插入反应液中,测定反应液的温度)和“ 石油的蒸馏实验”(温度计水银球应插在具支烧瓶支管口处, 测定馏出物的温度)。

2、注意催化剂的使用

⑴ 硫酸做催化剂的实验有:“乙烯的制取实验”、 “硝基苯的制取实验”、“乙酸乙酯的制取实验”、“纤维素硝酸酯的制取实验”、“糖类(包括二糖、淀粉和纤维素)水解实验”和“乙酸乙酯的水解实验”。

其中前四个实验的催化剂为浓硫酸,后两个实验的催化剂为稀硫酸,其中最后一个实验也可以用氢氧化钠溶液做催化剂

⑵铁做催化剂的实验有:溴苯的制取实验(实际上起催化作用的是溴与铁反应后生成的溴化铁)。

⑶氧化铝做催化剂的实验有:石蜡的催化裂化实验。

3、注意反应物的量

有机实验要注意严格控制反应物的量及各反应物的比例,如“乙烯的制备实验”必须注意乙醇和浓硫酸的比例为1:3,且需要的量不要太多,否则反应物升温太慢,副反应较多,从而影响了乙烯的产率。

4、注意冷却

有机实验中的反应物和产物多为挥发性的有害物质,所以必须注意对挥发出的反应物和产物进行冷却。

⑴需要冷水(用冷凝管盛装)冷却的实验:“蒸馏水的制取实验”和“石油的蒸馏实验”。

⑵用空气冷却(用长玻璃管连接反应装置)的实验:“硝基苯的制取实验”、“酚醛树酯的制取实验”、“乙酸乙酯的制取实验”、“石蜡的催化裂化实验”和 “溴苯的制取实验”。

这些实验需要冷却的目的是减少反应物或生成物的挥发,既保证了实验的顺利进行,又减少了这些挥发物对人的危害和对环境的污染。

5、注意除杂

有机物的实验往往副反应较多,导致产物中的杂质也多,为了保证产物的纯净,必须注意对产物进行净化除杂。如“乙烯的制备实验”中乙烯中常含有CO2和SO2等杂质气体,可将这种混合气体通入到浓碱液中除去酸性气体;再如“溴苯的制备实验”和“硝基苯的制备实验”,产物溴苯和硝基苯中分别含有溴和NO2,因此, 产物可用浓碱液洗涤。

6、注意搅拌

注意不断搅拌也是有机实验的一个注意条件。如“浓硫酸使蔗糖脱水实验”(也称“黑面包”实验)(目的是使浓硫酸与蔗糖迅速混合,在短时间内急剧反应,以便反应放出的气体和大量的热使蔗糖炭化生成的炭等固体物质快速膨胀)、“乙烯制备实验”中醇酸混合液的配制。

7、注意使用沸石(防止暴沸)

需要使用沸石的有机实验:⑴ 实验室中制取乙烯的实验⑵石油蒸馏实验。

8、注意尾气的处理

有机实验中往往挥发或产生有害气体,因此必须对这种有害气体的尾气进行无害化处理。

⑴如甲烷、乙烯、乙炔的制取实验中可将可燃性的尾气燃烧掉;⑵“溴苯的制取实验”和“硝基苯的制备实验”中可用冷却的方法将有害挥发物回流。

有机化学中常见误区剖析

--------------------

1、误认为有机物均易燃烧。

如四氯化碳不易燃烧,而且是高效灭火剂。

2、误认为二氯甲烷有两种结构。

因为甲烷不是平面结构而是正四面体结构,故二氯甲烷只有一种结构。

3、误认为碳原子数超过4的烃在常温常压下都是液体或固体。

新戊烷是例外,沸点9.5℃,气体。

4、误认为可用酸性高锰酸钾溶液去除甲烷中的乙烯。

乙烯被酸性高锰酸钾氧化后产生二氧化碳,故不能达到除杂目的,必须再用碱石灰处理。

5、误认为双键键能小,不稳定,易断裂。

其实是双键中只有一个键符合上述条件。

6、误认为烯烃均能使溴水褪色。

如癸烯加入溴水中并不能使其褪色,但加入溴的四氯化碳溶液时却能使其褪色。因为烃链越长越难溶于溴水中与溴接触。

7、误认为聚乙烯是纯净物。

聚乙烯是混合物,因为它们的相对分子质量不定。

8、误认为乙炔与溴水或酸性高锰酸钾溶液反应的速率比乙烯快。

大量事实说明乙炔使它们褪色的速度比乙烯慢得多。

9、误认为块状碳化钙与水反应可制乙炔,不需加热,可用启普发生器。

由于电石和水反应的速度很快,不易控制,同时放出大量的热,反应中产生的糊状物还可能堵塞球形漏斗与底部容器之间的空隙,故不能用启普发生器。

10、误认为甲烷和氯气在光照下能发生取代反应,故苯与氯气在光照(紫外线)条件下也能发生取代。

苯与氯气在紫外线照射下发生的是加成反应,生成六氯环己烷。

11、误认为苯和溴水不反应,故两者混合后无明显现象。

虽然二者不反应,但苯能萃取水中的溴,故看到水层颜色变浅或褪去,而苯层变为橙红色。

12、误认为用酸性高锰酸钾溶液可以除去苯中的甲苯。

甲苯被氧化成苯甲酸,而苯甲酸易溶于苯,仍难分离。应再用氢氧化钠溶液使苯甲酸转化为易溶于水的苯甲酸钠,然后分液。

13、误认为石油分馏后得到的馏分为纯净物。

分馏产物是一定沸点范围内的馏分,因为混合物。

14、误认为用酸性高锰酸钾溶液能区分直馏汽油和裂化汽油。

直馏汽油中含有较多的苯的同系物;两者不能用酸性高锰酸钾鉴别。

15、误认为卤代烃一定能发生消去反应。

16、误认为烃基和羟基相连的有机物一定是醇类。

苯酚是酚类。

17、误认为苯酚是固体,常温下在水中溶解度不大,故大量苯酚从水中析出时产生沉淀,可用过滤的方法分离。

苯酚与水能行成特殊的两相混合物,大量苯酚在水中析出时,将出现分层现象,下层是苯酚中溶有少量的水的溶液,上层相反,故应用分液的方法分离苯酚。

18、误认为乙醇是液体,而苯酚是固体,苯酚不与金属钠反应。

固体苯酚虽不与钠反应,但将苯酚熔化,即可与钠反应,且比乙醇和钠反应更剧烈。

19、误认为苯酚的酸性比碳酸弱,碳酸只能使紫色石蕊试液微微变红,于是断定苯酚一定不能使指示剂变色。

“酸性强弱”≠“酸度大小”。饱和苯酚溶液比饱和碳酸的浓度大,故浓度较大的苯酚溶液能使石蕊试液变红。

20、误认为苯酚酸性比碳酸弱,故苯酚不能与碳酸钠溶液反应。

苯酚的电离程度虽比碳酸小,但却比碳酸氢根离子大,所以由复分解规律可知:苯酚和碳酸钠溶液能反应生成苯酚钠和碳酸氢钠。

21、误认为欲除去苯中的苯酚可在其中加入足量浓溴水,再把生成的沉淀过滤除去。

苯酚与溴水反应后,多余的溴易被萃取到苯中,而且生成的三溴苯酚虽不溶于水,却易溶于苯,所以不能达到目的。

22、误认为苯酚与溴水反应生成三溴苯酚,甲苯与硝酸生成TNT,故推断工业制取苦味酸(三硝基苯酚)是通过苯酚的直接硝化制得的。

此推断忽视了苯酚易被氧化的性质。当向苯酚中加入浓硝酸时,大部分苯酚被硝酸氧化,产率极低。工业上一般是由二硝基氯苯经先硝化再水解制得苦味酸。

23、误认为只有醇能形成酯,而酚不能形成酯。

酚类也能形成对应的酯,如阿司匹林就是酚酯。但相对于醇而言,酚成酯较困难,通常是与羧酸酐或酰氯反应生成酯。

24、误认为醇一定可发生去氢氧化。

本碳为季的醇不能发生去氢氧化,如新戊醇。

25、误认为饱和一元醇被氧化一定生成醛。

当羟基与叔碳连接时被氧化成酮,如2-丙醇。

26、误认为醇一定能发生消去反应。

甲醇和邻碳无氢的醇不能发生消去反应。

27、误认为酸与醇反应生成的有机物一定是酯。

乙醇与氢溴酸反应生成的溴乙烷属于卤代烃,不是酯。

28、误认为酯化反应一定都是“酸去羟基醇去氢”。

乙醇与硝酸等无机酸反应,一般是醇去羟基酸去氢。

29、误认为凡是分子中含有羧基的有机物一定是羧酸,都能使石蕊变红。

硬脂酸不能使石蕊变红。

30、误认为能使有机物分子中引进硝基的反应一定是硝化反应。

乙醇和浓硝酸发生酯化反应,生成硝酸乙酯。

31、误认为最简式相同但分子结构不同的有机物是同分异构体。

例:甲醛、乙酸、葡萄糖、甲酸甲酯(CH2O);乙烯、苯(CH)。

32、误认为相对分子质量相同但分子结构不同的有机物一定是同分异构体。

例:乙烷与甲醛、丙醇与乙酸相对分子质量相同且结构不同,却不是同分异构体。

33、误认为相对分子质量相同,组成元素也相同,分子结构不同,这样的有机物一定是同分异构体。

例:乙醇和甲酸。

34、误认为分子组成相差一个或几个CH2原子团的物质一定是同系物。

例:乙烯与环丙烷。

35、误认为能发生银镜反应的有机物一定是醛或一定含有醛基。

葡萄糖、甲酸、甲酸某酯可发生银镜反应,但它们不是醛;果糖能发生银镜反应,但它是多羟基酮,不含醛基。

有机判断:

1.羟基官能团可能发生反应类型:取代、消去、酯化、氧化、缩聚、中和反应

2.最简式为CH2O的有机物:甲酸甲酯、麦芽糖、纤维素

3.分子式为C5H12O2的二元醇,主链碳原子有3个的结构有2种

4.常温下,pH=11的溶液中水电离产生的c(H+)是纯水电离产生的c(H+)的104倍

5.甲烷与氯气在紫外线照射下的反应产物有4种

6.醇类在一定条件下均能氧化生成醛,醛类在一定条件下均能氧化生成羧酸

7.CH4O与C3H8O在浓硫酸作用下脱水,最多可得到7种有机产物

8.分子组成为C5H10的烯烃,其可能结构有5种

9.分子式为C8H14O2,且结构中含有六元碳环的酯类物质共有7种

10.等质量甲烷、乙烯、乙炔充分燃烧时,所耗用的氧气的量由多到少。

11.棉花和人造丝的主要成分都是纤维素

12.聚四氟乙烯的化学稳定性较好,其单体是不饱和烃,性质比较活泼

13.酯的水解产物只可能是酸和醇;四苯甲烷的一硝基取代物有3种

14.甲酸脱水可得CO,CO在一定条件下与NaOH反应得HCOONa,故CO是酸酐

15.应用水解、取代、加成、还原、氧化等反应类型均可能在有机物分子中引入羟基

16.由天然橡胶单体(2-甲基-1,3-丁二烯)与等物质的量溴单质加成反应,有三种可能生成物

17.苯中混有己烯,可在加入适量溴水后分液除去

18.由2-丙醇与溴化钠、硫酸混合加热,可制得丙烯

19.混在溴乙烷中的乙醇可加入适量氢溴酸除去

20.应用干馏方法可将煤焦油中的苯等芳香族化合物分离出来

21.甘氨酸与谷氨酸、苯与萘、丙烯酸与油酸、葡萄糖与麦芽糖皆不互为同系物

22.裂化汽油、裂解气、活性炭、粗氨水、石炭酸、CCl4、焦炉气等都能使溴水褪色

23.苯酚既能与烧碱反应,也能与硝酸反应

24.常温下,乙醇、乙二醇、丙三醇、苯酚都能以任意比例与水互溶

25.利用硝酸发生硝化反应的性质,可制得硝基苯、硝化甘油、硝酸纤维

26.分子式C8H16O2的有机物X,水解生成两种不含支链的直链产物,则符合题意的X有7种

27.1,2-二氯乙烷、1,1-二氯丙烷、一氯苯在NaOH醇溶液中加热分别生成乙炔、丙炔、苯炔

28.甲醛加聚生成聚甲醛,乙二醇消去生成环氧以醚,甲基丙烯酸甲酯缩聚生成有机玻璃

29.甲醛、乙醛、甲酸、甲酸酯、甲酸盐、葡萄糖、果糖、麦芽糖、蔗糖都能发生银镜反应

30.乙炔、聚乙炔、乙烯、聚乙烯、甲苯、乙醛、甲酸、乙酸都能使KMnO4(H+)(aq)褪色

1.对。取代(醇、酚、羧酸)、消去(醇)、酯化(醇、羧酸)、氧化(醇、酚)、缩聚(醇、酚、羧酸)、中和反应(羧酸、酚)2.错。麦芽糖、纤维素不符合3.对。4.错。10-4 5.错。四中有机物+HCl共五种产物6.错。醇类在一定条件下不一定能氧化生成醛,醛类在一定条件下均能氧化生成羧酸 7.对。六种醚一种烯8.对。9.对。注意-CH3和-OOCH六元碳环上取代有4种10.对。n(H)/n(O)比值决定耗氧量11.对。棉花、人造丝、人造棉、玻璃纸都是纤维素 12.错。单体是不饱和卤代烃13.错。酯的水解产物也可能是酸和酚14.错。甲酸酐(HCO)2O 15.对。水解、取代(酯、卤代烃到醇)、加成、还原(醛到醇)、氧化(醛到酸)16.对。1,2;1,4;3;4三种加成 17.错。苯溶剂溶解二溴代己烷18.错。2-溴丙烷 19.对。取代反应20.错。分馏 21.错。只有丙烯酸与油酸为同系物22.对。裂化汽油、裂解气、焦炉气(加成)活性炭(吸附)、粗氨水(碱反应)、石炭酸(取代)、CCl4(萃取)23.对。24.错。苯酚常温不溶于水 25.错。酯化反应制得硝化甘油、硝酸纤维 26.对。酸+醇的碳数等于酯的碳数 27.错。没有苯炔 28.错。乙二醇取代生成环氧以醚,甲基丙烯酸甲酯加聚生成有机玻璃29.错。蔗糖不能反应 30.错。聚乙烯、乙酸不能使酸性高锰酸钾溶液褪色

怕黑的鞋垫
留胡子的歌曲
2026-02-06 13:49:05
吸收光谱(absorption spectrum)是指物质吸收光子,从低能级跃迁到高能级而产生的光谱。吸收光谱可是线状谱或吸收带。研究吸收光谱可了解原子、分子和其他许多物质的结构和运动状态,以及它们同电磁场或粒子相互作用的情况。

繁荣的水壶
疯狂的麦片
2026-02-06 13:49:05
紫外分光光度计可测试溶液在不同波长下的吸光度与透过率。其中,吸收光谱是由于物质中的分子或原子吸收了入射光中不同波长的光能,导致相应的分子发生振动能级跃迁和电子能级跃迁导致的结果。溶液对入射光的透过率不仅受其吸光度的影响,还有溶液对入射光的反射率有关。乙醇溶液在270nm处的透光率为0%,主要是由于乙醇分子对270 nm的光发生了吸收,而无法吸收500 nm处的可见光,因而乙醇溶液看起来是无色透明的液体。

玩命的小猫咪
和谐的草莓
2026-02-06 13:49:05
一、几个常见的热点问题 1.阿伏加德罗常数 (1)条件问题:常温、常压下气体摩尔体积增大,不能使用22.4 L/mol。 (2)状态问题:标准状况时,H2O、N2O4、碳原子数大于4的烃为液态或固态;SO3、P2O5等为固态,不能使用22.4 L/mol。 (3)特殊物质的摩尔质量及微粒数目。 (4)某些特定组合物质分子中的原子个数。 (5)某些物质中的化学键数目。 (6)某些特殊反应中的电子转移数目。 (7)电解质溶液中因微粒的电离或水解造成微粒数目的变化;弱电解质CH3COOH、HClO等因部分电离,而使溶液中CH3COOH、HClO浓度减小;Fe3+、Al3+、CO32–、CH3COO–等因发生水解使该种粒子数目减少;Fe3+、Al3+、CO32–等因发生水解反应而使溶液中阳离子或阴离子总数增多等。 (8)由于生成小分子的聚集体使溶液中的微粒数减少:如1 mol Fe3+形成Fe(OH)3胶体时,微粒数目少于1 mol。 (9)此外,还应注意由物质的量浓度计算微粒时,是否告知了溶液的体积;计算的是溶质所含分子数,还是溶液中的所有分子数;某些微粒的电子数计算时应区分是微粒所含的电子总数还是价电子数,并注意微粒的带电情况。 2.离子共存问题 (1)弱碱阳离子只存在于酸性较强的溶液中 (2)弱酸阴离子只存在于碱性溶液中。 (3)弱酸的酸式阴离子在酸性较强或碱性较强的溶液中均不能大量共存。它们遇强酸会生成弱酸分子;遇强碱会生成正盐和水。 (4)若阴、阳离子能相互结合生成难溶或微溶性的盐,则不能大量共存。 (5)若阴、阳离子发生双水解反应,则不能大量共存。 (6)若阴、阳离子能发生氧化还原反应则不能大量共存。 (7)因络合反应或其它反应而不能大量共存。 (8)此外,还有与Al反应反应产生氢气的溶液;水电离出的c(H+)=10–13 mol/L等。 3.热化学方程式 (1)△H=生成物总能量-反应物总能量 =反应物中的总键能-生成物中的总键能 注意:①同一热化学方程式用不同计量系数表示时,△H值不同;②热化学方程式中计量系数表示物质的量;③能量与物质的凝聚状态有关,热化学方程式中需标明物质的状态;④△H中用“+”表示吸热;用“-”表示放热;⑤计算1 mol物质中所含化学键数目时,应首先区分晶体类型,分子晶体应看其分子结构,原子晶体应看其晶体结构,特别注意化学键的共用情况;⑥在表示可燃物燃烧热的热化学方程式中,可燃物前系数为1,并注意生成的水为液态。 (2)物质分子所含化学键的键能越大,则成键时放出的能量越多,物质本身的能量越低,分子越稳定。 (3)盖斯定律:一定条件下,某化学反应无论是一步完成还是分几步完成,反应的热效应相同。即反应热只与反应的始态和终态有关,而与反应所经历的途径无关。 4.元素周期率与元素周期表 (1)判断金属性或非金属性的强弱 金属性强弱 非金属性强弱 ①最高价氧化物水化物碱性强弱 ①最高价氧化物水化物酸性强弱 ②与水或酸反应,置换出H2的易难 ②与H2化合的易难或生成氢化物稳定性 ③活泼金属能从盐溶液中置换出不活泼金属 ③活泼非金属单质能置换出较不活泼非金属单质 (2)比较微粒半径的大小 ①核电荷数相同的微粒,电子数越多,则半径越大:阳离子半径<原子半径<阴离子半径 ②电子数相同的微粒,核电荷数越多则半径越小.即具有相同电子层结构的微粒,核电荷数越大,则半径越小。 如:① 与He电子层结构相同的微粒:H–>Li+>Be2+ ② 与Ne电子层结构相同的微粒:O2–>F–>Na+>Mg2+>Al3+ ③ 与Ar电子层结构相同的微粒: S2–>Cl–>K+>Ca2+ ③电子数和核电荷数都不同的微粒 同主族:无论是金属还是非金属,无论是原子半径还是离子半径从上到下递增。 同周期:原子半径从左到右递减。 同周期元素的离子半径比较时要把阴阳离子分开。同周期非金属元素形成的阴离子半径大于金属元素形成的阳离子半径。 (3)元素周期结构 (4)位、构、性间关系。 二、无机框图中的题眼 1.中学化学中的颜色 (1)焰色反应:Na+(黄色)、K+(紫色,透过蓝色钴玻璃) (2)有色溶液:Fe2+(浅绿色)、Fe3+(黄色)、Cu2+(蓝色)、MnO4–(紫红色)、Fe(SCN)3(血红色) (3)有色固体:红色:Cu、Cu2O、Fe2O3;红褐色固体:Fe(OH)3;蓝色固体:Cu(OH)2;黑色固体:CuO、FeO、FeS、CuS、PbS;浅黄色固体:S、Na2O2、AgBr;黄色固体:AgI、Ag3PO4(可溶于稀硝酸);白色固体:Fe(OH)2等。 (4)反应中的颜色变化 ① Fe2+与OH–反应:产生白色絮状沉淀,迅速转变成灰绿色,最后变成红褐色。 ② I2遇淀粉溶液:溶液呈蓝色。 ③ 苯酚中加过量浓溴水:产生白色沉淀。 ④ 苯酚中加FeCl3溶液:溶液呈紫色。 ⑤ Fe3+与SCN–:溶液呈血红色。 ⑥ 蛋白质溶液与浓硝酸:出现黄色浑浊。 2.中学化学中的气体 (1)常见气体单质:H2、N2、O2、Cl2 (2)有颜色的气体:Cl2(黄绿色)、溴蒸气(红棕色)、NO2(红棕色)。 (3)易液化的气体:NH3、Cl2、SO2。 (4)有毒的气体:F2、O3、HF、Cl2、H2S。 (5)极易溶于水的气体:NH3、HCl、HBr;易溶于水的气体:NO2、SO2;能溶于水的气体:CO2、Cl2。 (6)具有漂白性的气体:Cl2、O3、SO2。 注意:Cl2(潮湿)、O3因强氧化性而漂白;SO2因与有色物质化合生成不稳定无色物质而漂白;焦碳因多孔结构,吸附有色物质而漂白。 (7)能使石蕊试液先变红后褪色的气体为:Cl2。 (8)能使品红溶液褪色的气体:SO2、Cl2。 (9)能使无水硫酸铜变蓝的气体:水蒸气。 (10)能使湿润的碘化钾淀粉试纸变蓝的气体:Cl2、Br2、NO2、O3。 (11)不能用浓硫酸干燥的气体:NH3、H2S、HBr、HI。 (12)不能用无水CaCl2干燥的气体:NH3。 3.有一些特别值得注意的反应 (1)单质+化合物1 化合物2 2FeCl2+Cl2 2FeCl3 (2)难溶性酸、碱的分解 H2SiO3 SiO2+H2O (3)不稳定性酸、碱的分解 2HClO 2HCl+O2↑ (4)不稳定性盐的分解 NH4Cl NH3↑+HCl↑ 2AgBr 2Ag+Br2 (5)金属置换金属:Fe+Cu2+ Cu+Fe2+、2Al+Fe?2O3 2Fe+Al2O3 (6)金属置换非金属:2Na+2H2O 2NaOH+H2↑ Zn+2H+ Zn2++H2↑ 2Mg+CO2 2MgO+C 3Fe+4H2O Fe3O4+4H2↑ (7)非金属置换非金属:2F2+2H2O 4HF+O2 Cl2+H2S(HBr、HI) 2HCl+S(Br2、I2) (8)非金属置换金属:H2+CuO Cu+H2O C+2CuO 2Cu+CO2↑ 4.一些特殊类型的反应 (1)化合物+单质 化合物+化合物 Cl2+H2O HCl+HClO 2H2S+3O2 2SO2+2H2O (2)化合物+化合物 化合物+单质 4NH3+6NO 5N2+6H2O 2H2S+SO2 3S+2H2O (3)一些特殊化合物与水的反应 金属过氧化物:2Na2O2+2H2O 4NaOH+O2↑ (4)双水解反应 Al3+(或Fe3+)与HCO3–、CO32–:Al3++3HCO3– Al(OH)3↓+3CO2↑ (5)一些高温下的反应 3Fe+4H2O Fe3O4+4H2↑ 2Al+Fe?2O3 2Fe+Al2O3 (6)能连续被氧化的物质 单质:Na Na2O Na2O2 C CO CO2 5.有机中常见的分离和提纯 (1)除杂) ① C2H6(C2H4、C2H2):溴水,洗气 ② C6H6(C6H5-CH3):酸性高锰酸钾溶液、NaOH溶液,分液 ③ C2H5-Br(Br2):Na2CO3溶液,分液 ④ C6H5-Br(Br2):NaOH溶液,分液 ⑤ C2H5-OH(H2O):加新制生石灰,蒸馏 ⑥ C6H6(C6H5-OH):NaOH溶液,分液 ⑦ CH3COOC2H5(CH3COOH、C2H5OH):饱和碳酸钠溶液,分液 ⑧ C2H5OH(CH3COOH):NaOH,蒸馏 (2)分离 ① C6H6、C6H5OH:NaOH溶液,分液,上层液体为苯;然后在下层液体中通过量的CO2,分液,下层液体为苯酚 ② C2H5OH、CH3COOH:NaOH,蒸馏收集C2H5OH;然后在残留物中加硫酸,蒸馏得CH3COOH。 四、物质结构与性质 1.原子结构与性质 原子核:同位素、原子量——物理性质 (1)原子 核外电子——化学性质 (2)元素的化学性质主要由原子最外层电子数和原子半径决定。 例如:最外层电子数相等,半径不等,性质出现递变性; Li和Mg、Be和Al的最外层电子数不等,半径相近,性质相似。 (3)原子核外电子排布 ① 能量最低原理:电子先排能量低的能层和能级,然后由里往外排能量高的。 ② 泡里不相容原理:每个原子轨道上最多排2个自旋相反的电子,即原子核外没有2个电子的运动状态完全相同。 ③ 洪特规则:电子在能量相同的各个轨道上排布时,电子尽可能分占不同的原子轨道; 当轨道上电子呈半满、全满或全空时,体系能量最低。 (4)电离能比较:首先应写出微粒的外围电子排布式,再根据使体系能量最低去比较;根据用原子的电离能数据也可推测原子的最外层电子数。 (5)电负性:元素的原子吸引电子的能力。元素的电负性越大,则元素的非金属性越强;元素的电负性越小,则元素的金属性越强。电负性相差越大的元素形成化合物时,化合物的离子性越强。 2.分子结构与性质 (1)化学键——化学性质 离子键 共价键 金属键 成键微粒 阴、阳离子 原子 金属离子和自由电子 微粒间相互作用 静电作用 共用电子对 静电作用 成键原因 活泼金属(如ⅠA、ⅡA)和活泼非金属成键原子具有未成对电子 金属 (2)化学键理论 ① 共价键理论(VB):共价键的形成实则是电子的配对。该理论不能解释碳形成甲烷分子。 ② 杂化轨道理论:能量相近的轨道可以兼并成能量相同的几个等价轨道。用以解释碳能形成甲烷分子。杂化后,原子的成键能力增强。 ③ 价层电子对互斥模型 a.分子中的价电子对由于相互排斥,尽可能远离,电子对之间夹角越小,排斥力越大。 b.由于孤电子对只受一个原子核的吸引,电子云比较“肥大”,故电子对之间排斥力大小顺序为:孤电子对与孤电子对大于孤电子对与成键电子对大于成键电子对与成键电子对。 c.微粒中价电子对数为:n=(中心原子的价电子数+每个配位原子提供的价电子数±微粒所带的电荷数)/2。主族元素的价电子数等于最外层电子数,氢和卤素作为配位原子时,提供一个电子,当ⅥA族元素作为配位原子时,认为不提供电子。 d.当配位原子不是氢、ⅥA、ⅦA族元素时,可运用等电子原理,寻找其熟悉的等电子体来判断其构型。 ④ 等电子原理 a.具有相同原子数目和相同电子总数的分子或离子具有相同的结构特征。 b.常见等电子体:N2、CO、CN–、C22–; BCl3、CO32–、SiO32–、NO3–; NCl3、PCl3、NF3、PF3、SO32–; SiCl4、CCl4、SiO44–、SO42–、PO43–。 (3)分子极性:分子中正、负电荷重心是否重合 ① 与键的极性有关;② 与分子的空间构型有关。 类型 实例 键角 键的极性 空间构型 分子的极性 A2 H2、N2、Cl2等 ― 非极性键 直线形 非极性分子 AB HCl、NO、CO等 ?― 极性键 直线形 极性分子 AB2 CO2、CS2等 180° 极性键 直线形 非极性分子 H2O、H2S等 <180° 极性键 “V”形 极性分子 SO2分子 120° 极性键 三角形 极性分子 ABC COS 180° 极性键 直线形 极性分子 AB3 BF3分子 120° 极性键 三角形 非极性分子 NH3、PCl3等分子 <109.5° 极性键 三角锥形 极性分子 AB4 CH4、CCl4等分子 109.5° 极性键 正四面体形 非极性分子 (4)相似相溶原理:极性相似,相互溶解,极性相差越大,则溶解度越小。 如:水为强极性分子,强极性的HX、NH3等易溶于水; 有机物均为弱极性或非极性分子,有机物间可相互溶解。 (5)共价键的类型 ① 电子对是否偏移:极性键和非极性键。 ② 成键方式:头碰头——δ键;肩并肩——π键。头碰头时电子云重叠最大,故δ键较π键稳定。当两原子间形成多个共价键时,首先形成一个δ键,其余则只能形成π键。 (6)分子间作用力及氢键——物理性质 ① 分子间作用力——范德华力 对于分子组成和结构相似的物质,其相对分子质量越大,范德华力越大,熔、沸点越高。 ② 氢键 a.形成氢键的因素:含N、O、F,且含有与N、O、F直接相连的H。 b.氢键对物质性质的影响:分子间氢键的形成,使物质在熔化或汽化的过程中,还需克服分子间的氢键,使物质的熔、沸点升高;分子间氢键的形成,可促进能形成氢键的物质之间的相互溶解。 3.晶体结构与性质——物理性质 (1)晶体类型及其性质 离子晶体 分子晶体 原子晶体 金属晶体 组成微粒 阴、阳离子 分子 原子 金属离子和自由电子 微粒间的相互作用 离子键 分子间作用力 共价键 金属键 是否存在单个分子 不存在 存在 不存在 不存在 熔、沸点 较高 低 很高 高低悬殊 硬度 较大 小 很大 大小悬殊 导电情况 晶体不导电, 溶于水或熔融状态下导电 晶体或熔融状态下不导电, 溶于水时部分晶体能导电 晶体为半导体或绝缘体 晶体导电 (2)晶体熔、沸点高低的比较 一般规律:原子晶体>离子晶体>分子晶体。 ① 离子晶体:离子晶体的晶格能越大,则离子键越强,晶体熔、沸点越高。 晶格能比较:阴、阳离子所带电荷越多,半径越小,则晶格能越大。 ② 分子晶体:组成和结构相似的分子晶体,相对分子质量越大,分子间作用力越强,晶体的熔、沸点越高。 此外,当分子形成分子间氢键时,分子晶体的熔、沸点升高。 ③ 原子晶体:原子半径越小,键长越短,键能越大,键越牢固,晶体的熔、沸点越高。 ④ 金属晶体:金属离子所带电荷越多,半径越小,金属键越强,晶体的熔、沸点越高。 (3)晶体化学式的确定 ① 分子结构:分子结构中每一个微粒均属于该分子,按结构中的微粒数书写的式子即为其化学式。 ② 晶体结构 分摊法:按晶体结构中各微粒对结构单元的贡献计算出的微粒数目的最简整数比书写的式子即为其化学式。 紧邻法:按晶体结构中各微粒周围与之距离最近且相等的另一微粒数目的最简整数比书写的式子即为其化学式。 (4)金属晶体 ① 金属的导电性、导热性和延展性均与自由电子有关。 ② 金属晶体的堆积方式 六方堆积:配位数为12;面心立方堆积:配位数为12; 体心立方堆积:配位数为8。 4.配合物 Na3AlF6:存在离子键、配位键。 Ag(NH3)2OH:存在离子键、配位键。