建材秒知道
登录
建材号 > 苯酚 > 正文

测定苯酚的方法

健忘的冰棍
风趣的黑米
2022-12-22 13:21:01

测定苯酚的方法?

最佳答案
朴素的盼望
任性的小鸭子
2026-02-06 06:15:23

还有:

一:苯酚的测定—氧化还原滴定法

方法原理: 供试品加水溶解,取适量置碘瓶中,精密加溴滴定液(0.05mol/L)后再加盐酸,立即密塞,振摇30分钟,静置15分钟后,注意微开瓶塞,加碘化钾试液,立即密塞,充分振摇后,加三氯甲烷,摇匀,用硫代硫酸钠滴定液(0.1mol/L)滴定,至近终点时,加淀粉指示液,继续滴定至蓝色消失,并将滴定的结果用空白试验校正,根据滴定液使用量,计算苯酚的含量。

试样制备: 1. 溴滴定液(0.05mol/L)

配制:取溴酸钾3.0g与溴化钾15g,加水适量使溶解成1000mL,摇匀。

标定:精密量取本液25mL,置碘瓶中,加水100mL与碘化钾2.0g,振摇使溶解,加盐酸5mL,密塞,振摇,在暗处放置5分钟,用硫代硫酸钠滴定液(0.1mol/L)滴定至近终点时,加淀粉指示液2mL,继续滴定至蓝色消失。根据硫代硫酸钠滴定液(0.1mol/L)的消耗量,算出本液的浓度,即得。

室温在25℃以上时,应将反应液降温至约20℃。本液每次临用前均应标定浓度。

贮藏:置玻璃塞的棕色玻瓶中,密闭,在凉处保存。

2. 碘化钾试液

取碘化钾16.5g,加水使溶解成100mL,本液应临用新制。

3. 淀粉指示液

取可溶性淀粉0.5g,加水5mL搅匀后,缓缓倾入100mL沸水中,随加随搅拌,继续煮沸2分钟,放冷,倾取上层清液,即得,本液应临用新制。

4. 硫代硫酸钠滴定液(0.1mol/L)

配制:取硫代硫酸钠26g与无水碳酸钠0.20g,加新沸过的冷水适量使溶解成1000mL,摇匀,放置1个月后滤过。

标定:取在120℃干燥至恒重的基准重铬酸钾0.15g,精密称定,置碘瓶中,加水50mL使溶解,加碘化钾2.0g,轻轻振摇使溶解,加稀硫酸40mL,摇匀,密塞,在暗处放置10分钟后,加水250mL稀释,用本液滴定至近终点时,加淀粉指示液3mL,继续滴定至蓝色消失而显亮绿色,并将滴定结果用空白试验校正。每1mL硫代硫酸钠滴定液(0.1mol/L)相当于4.903mg的重铬酸钾。根据本液的消耗量与重铬酸钾的取用量,算出本液的浓度。

室温在25℃以上时,应将反应液及稀释用水降温至约20℃。

5. 稀硫酸

取硫酸57mL,加水稀释至1000mL。

操作步骤: 精密称取供试品约0.75g,置500mL量瓶中,加水适量使溶解并稀释至刻度,摇匀,精密量取25mL,置碘瓶中,精密加溴滴定液(0.05mol/L)30mL,再加盐酸5mL,立即密塞,振摇30分钟,静置15分钟后,注意微开瓶塞,加碘化钾试液6mL,立即密塞,充分振摇后,加三氯甲烷1mL,摇匀,用硫代硫酸钠滴定液(0.1mol/L)滴定,至近终点时,加淀粉指示液,继续滴定至蓝色消失,并将滴定的结果用空白试验校正。每1mL溴滴定液(0.05mol/L)相当于1.569mg的C6H6O。

注:“精密称取”系指称取重量应准确至所称取重量的千分之一。“精密量取”系指量取体积的准确度应符合国家标准中对该体积移液管的精度要求。

二:

WS/T 49-1996 尿中苯酚的气相色谱测定方法 (一) 液晶柱法

http://www.gb99.cn/ViewDownloadUrl.asp?ID=2466

pdf文件,无法在此显示。可以自己下载观看(适用于浓度很低的情况)

其实这些方法都有不同的适用范围,很难说孰优孰劣。

最新回答
酷酷的大雁
霸气的冷风
2026-02-06 06:15:23

1 环境中氯酚类化合物的来源

环境中氯酚类化合物的来源主要有人为源和自然源2 类。人为源主要是来自于炼油、炼焦、造纸、塑料加工等人类的生产活动向环境中排放的含有CPs 的有机化工废水。自然源主要包括2 类:① 由人类使用的一次化学物经过自然界的生物化学过程生成二次的CPs, 如农业生产过程中广泛使用的2,4- 二氯苯氧基乙酸和2,4,5- 三氯苯氧乙酸等杀虫剂通过自然界微生物的代谢作用降解生成CPs 等中间产物② 自然物质在某些催化作用下合成CPs, 如土壤腐殖泥层中的无机氯盐和有机化合物在过氧氯化酶的催化作用下会生成CPs,如4-CP、2,5-DCP、2,4-DCP、2,6-DCP 和2,4,5-TCP等。

2 氯酚类化合物的环境污染水平

由于氯酚类化合物是一类用途广、毒性大的持久性有机污染物(Persistent Organic Pollutants,POPs), 所以, CPs 一旦未经处理或处理不当释放到环境中, 就会污染自然生态环境, 进而威胁人类安全。目前, 关于氯酚类化合物在水体环境、沉积物和土壤环境及水生生物体内大量存在并造成污染的情况已有大量报道。

2.1 水体环境

CPs 广泛分布在水体的表面, 其含量与废水排放源有关。降水及水的流动也很大程度上影响了各种CPs 浓度的变化。有研究报道, 加拿大的Superior湖中被排入纸浆厂废水后, 其中DCP 和TCP 的浓度会迅速上升到4 mg/L 和13 mg/L荷兰境内河流及沿海海域中TCP、一氯酚(Mono-CP) 和DCP的浓度分别达到0.0030.l mg/L、320 mg/L 和0.011.5 mg/L。Gao 等研究发现我国北方的黄河、淮河、海河等水体中2,4-DCP 和2,4,6-TCP 的浓度较高, 且北方受其污染比南方严重而长江流域受PCP 的污染较为严重, 在85.4% 的地表水样品中能够检出, 且平均浓度达到50.0 ng/L。我国《城市供水水质标准(CJ/T 206-2005)》中将氯酚类化合物列为非常规检验项目, 要求氯酚类总量(含2-CP、2,4-DCP 和2,4,6-TCP) 检出浓度小于0.020 mg/L, 2,4,6-TCP 的最低检测浓度小于0.010 mg/L, PCP 的最低检测浓度小于0.009 mg/L。

2.2 底泥沉积物和土壤环境

CPs 的辛醇/水分配系数(Kow) 较大, 且随着苯环上氯原子个数的增多而增大, 导致其亲脂性增强。所以, 水相中CPs 易转移到底泥沉积物及土壤环境中。因此, CPs 在河流底泥中积累的量要远大于水体中的量, 在底泥沉积物中的环境污染也较为严重。此外, 底泥中CPs的滞留时间和危害程度与CPs 苯环上的氯原子取代基个数成正比。加拿大British Columbi 地区海域内排入了大量含有CPs 的生产废水, 致使海底沉积物中的TCP 和四氯酚(Tetra-CP) 的累积总浓度达96 mg/k。韩国核电站附近海域底泥中CPs 的含量高达0.14516.1 g/kg (干重)。希腊Thermaikos 海湾和Loudia 河沉积物中均检出了2,4-DCP。波兰Dzierzno Duze 水库沉积物中2,4-DCP 的浓度接近0.02 g/kg, 2,4,6-TCP 的浓度为0.010.62 g/kg。此外, 在我国长江中下游地区备受血吸虫病害威胁, 各省长期使用五氯酚钠防治血吸虫, 致使土壤和沉积物中积累了大量PCP。许士奋等检测了长江下游底泥沉积物中的CPs 含量, 发现PCP 浓度最高, 达到0.494.57 g/kg, 占18种待测氯酚含量的39.4 %, 明显高于其他氯酚在长江沉积物中的残留。此外, 张兵等测定洞庭湖区底泥沉积物中PCP 的含量也高达48.3 mg/kg (干污泥)。有监测数据报道, 台湾高雄地区的土壤环境中2-CP 的含量为28103.6 mg/kg[22]。Apajalahti 等检测了利用CPs 防腐的木材加工厂周围的土壤样品, 结果表明样品中PCP 含量达1 g/kg。

2.3 水生生物体

污染物在生物体内的富集效果可用生物富集因子(Bioconcentration Factors, BCF) 来评价。水生植物一般需要1020 min 的时间来完全吸收CPs,对绝大多数植物来说, CPs 的吸收速率随着pH 的升高而减小, 随着温度的升高而增大。对于水生动物或微生物而言, 动物类型、化合物种类和富集条件等因素对水中或食物中CPs 的BCF 有一定影响。蛤砺对PCP 的BCF 为41  78, 河螺对2,4,6-TCP 的BCF 可达7403 020。鳟鱼、金鱼对水中2,4-DCP 的BCF 分别为10 和34, 而藻类对2,4-DCP的BCF 高达257。Kondo 等报道青鳉鱼对2,4-DCP 在其体内的BCF 因CPs 种类和浓度不同而有所差异, 例如: PCP 的累积能力较2,4- DCP 和2,4,6-TCP 更高当2,4-DCP 暴露浓度为0.23 g/L和27.3 g/L 时, 其对青鳉的BCF 值分别为340 和92当PCP 的暴露浓度为0.07 g/L 和9.7 g/L 时,其对青鳉的BCF 分别为4 900 和2 100。不同鱼类对2,4,6-TCP 的BCF 值也有所不同, 一般在250310之间浮动。王芳等对鲫鱼开展了毒性试验,其研究结果表明鲫鱼的胆、肝、肾和肌肉等器官和组织对CPs 都有明显的吸收, 其中以胆对CPs 的吸收能力最强, 其BCF 值高达2 0006 300。

3 氯酚类化合物的去除方法

目前, 处理CPs 污染物的方法主要集中在生物处理技术、物理化学法、化学还原法和化学氧化法等。

3.1 生物处理技术

CPs 的生物处理技术主要是微生物以CPs 为碳源和能源, 在新陈代谢过程中将CPs 分解去除,主要有好氧生物法、厌氧生物法、厌氧/好氧联合法等工艺。好氧法降解CPs 机理主要有2 种理论:① 氧化开环-脱氯机制:例如, 4-CP 在好氧菌Pseudomonassp. 的单氧化酶的催化作用下, 发生邻位氧化作用生成4-氯-儿茶酚, 然后4-氯-儿茶酚在1,2-双加氧酶的催化诱导下邻位开环生成氯代顺顺粘糖酸, 接着氯代顺顺粘糖酸通过内酯化作用脱去氯原子, 并被氧化成马来酰基乙酸, 进入三羧酸循环(Tricarboxylic Acid Cycle, TAC) , 最终被矿化成CO2 和H2O。② 氧化脱氯-开环机制:Flavobacterium sp. 和Rhodococcuschlorophenolicus 可在好氧条件下将CPs 苯环氧化生成氯代二酚, 接着逐步脱去氯取代基生成单氯二酚或对苯酚, 然后氧化开环, 进一步被矿化成CO2和H2O, PCP 被好氧菌Flavobacterium sp。此外, 好氧微生物在有氧条件下可成功处理含CPs 浓度达0.11.2 g/L 的工业废水。

微生物降解PCP 的反应机理主要是厌氧微生物在无氧条件下, 发生还原脱氯及厌氧发酵, 其主要厌氧降解的途径包括前端还原脱氯、后续厌氧发酵,即PCP 在厌氧条件下还原脱氯生成低氯酚和苯酚。然后, 苯酚在被产乙酸菌的作用下转化为乙酸, 乙酸在产甲烷菌的作用下最终转化成甲烷与CO2 。周岳溪等利用升流式厌氧污泥床反应器(UASB)在中温条件下处理PCP 废水发现, PCP 在厌氧条件下经间位脱氯生成2,3,4,6-Tetra-CP, 接着间位脱氯生成2,4,6-TCP, 继续邻位脱氯生成2,4-DCP, 接着对位脱氯生成2-Mono-CP, 最后矿化生成CH4 和CO2。Armenante 等研究了厌氧/好氧组合工艺处理2,4,6-TCP 废水, 结果指出: 在厌氧阶段,

氧微生物作用下, 以甲酸、乙酸和琥珀酸为电子供体, 使2,4,6-TCP 还原脱氯生成2,4-DCP 和4-CP在好氧阶段, 好氧微生物在有氧条件下将脱氯产物2,4-DCP 和4-CP 完全降解。Arora 等分别研究了CPs 在好氧和厌氧条件下的降解机理, 指出: 在好氧条件下, CPS 在细菌作用下形成对应的氯邻苯酚或(氯) 对苯二酚, 进而进入三酸羧酸循环在厌氧条件下, CPs 通过还原脱氯作用形成苯酚, 进一步转化为苯甲酸, 最终矿化为CO2。

3.2 物理化学法

物理化学法用于CPs 的去除, 主要是基于吸附材料的吸附去除。Hameed 等制备了椰壳活性炭用于去除2,4,6-TCP, 研究发现其吸附等温线符合Langmuir 模型, 在30 ±C 条件下最大单层吸附容量达到716.10 mg/g。Ren 等通过磷酸活化香蒲纤维前体制备了具有比表面积大(890.27 m2/g) 和多种功能团(羟基、内酯、羧基等) 的活性炭吸附材料,可有效去除水中2,4-DCP 和2,4,6-TCP。Nourmoradi等通过阳离子表面活性剂十六烷基三甲基溴化铵(HDTMA) 和十四烷基三甲基溴化铵(TTAB) 修饰蒙脱土(Mt) 用于水中4-CP 的吸附去除, 其研究表明HDTMA-Mt 和TTAB-Mt 的吸附容量分别为29.96 mg/g 和25.90 mg/g, 相比之下, HDTMA-Mt 更有利于水中4-CP 的去除。Mubarik 等利用甘蔗渣制备了具有较大比表面积的圆柱形多孔结构的生物炭材料用于2,4,6-TCP 的吸附去除, 结果表明, 在多种有机污染物共存条件下, 生物炭也可有效去除2,4,6-TCP, 且最大吸附容量为253.38 mg/g。

3.3 化学还原法

化学还原法处理CPs 污染物, 主要基于零价金属体系的还原脱氯作用Morales 等利用Pd(0)/Mg(0) 双金属体系可以在常温常压条件下将异丙醇/水溶液中的4-CP,2,6-DCP、2,4,6-TCP 和PCP 完全脱氯, 尤其是化学性质极其稳定的PCP其研究结果表明, 利用1.0g 浓度为2.659 g/L 的`20 目的Pd/Mg 双金属合金可在48 h 内将2.48 mmol/L 的PCP 完全脱氯, 且产物中也仅检测到易进一步氧化降解的环己醇和环己酮。零价铁渗透氧化硅混合物对2,4,6-TCP、2,4-DCP、4-CP 等氯酚类化合物的还原脱氯效果与CPs苯环上氯取代基的个数成正比, 即脱氯效果随着氯取代基数目的增多而增强, 其产物鉴定与反应机理研究表明, 零价铁渗透氧化硅催化还原脱氯降解CPs, 主要是零价铁提供电子进攻C—Cl 键, 发生逐级脱氯, 最终生成苯酚。此外, Zhou 等对比研究了Pd/Fe 双金属纳米合金与Pt/Fe、Ni/Fe、Cu/Fe 和Co/Fe 等双金属纳米颗粒对4-CP、2,4-DCP 及2,4,6-TCP 等氯酚类化合物的还原脱氯效果, 结果表明, Pd/Fe 合金纳米颗粒的还原脱氯效果明显优于其他双金属体系, 且CPs 还原脱氯规律符合准一级动力学模型, 但是脱氯效果随苯环氯取代基个数的增多而降低, 即4-CP>2,4-DCP >2,4,6-TCP。该研究与零价铁渗透氧化硅混合物还原降解CPs 脱氯效果相反。

4 总结与展望

目前, 关于CPs 污染物的降解和去除技术研究取得了显著的成果, 但是每种技术都有其自身的优势和缺陷。生物法的投资和运行成本相对较省, 但是需要特定种群驯化, 且处理周期相对较长此外,CPs 的毒性相对较大, 对微生物的生长代谢可能产生不良影响。物理化学吸附法用时短, 处理效果好,但吸附仅是发生了污染物的相转移过程, 没有从根本上消除污染物同时, 吸附后的固体吸附剂材料无论再生还是处理处置都会在一定程度上造成环境的二次污染再者, 常用吸附材料活性炭可有效吸附去除水中CPs, 但是吸附后活性炭的再生相对比较困难, 这将间接增加废水的处理成本。氯代物的毒性随着氯原子数目的增多而增强, 化学还原脱氯可实现CPs 的有效脱氯脱毒, 但是污染物无害化处理的终极目标是实现其矿化, 而化学还原脱氯只停留在脱氯的环节, 不能实现CPs 的开环和矿化。基于自由基反应的AOPs 具有氧化效率高、反应速率快、反应条件温和等优点, 在有机污染物降解尤其是CPs 污染物降解和去除方面得到了快速发展, 但这些常用的AOPs 都有一定局限性, 如O3 氧化技术需要现场制备氧化剂O3, 且产率较低, 这将进一步增加能耗, 间接增加运行成本H2O2、过硫酸盐等氧化剂的投入也需要较高的成本, 且过硫酸盐经氧化还原过程转化为硫酸盐, 增加了体系的离子强度和盐度, 可能会对后续处理工艺产生不良影响钴、镍、银等金属离子催化剂, 为有毒重金属, 将其引入反应体系势必会增加环境风险或造成二次污染自由基反应降解CPs 过程中可能还会生成毒性更强的'多氯代二次污染物等。因此, 需要研发绿色、高效、廉价的单元处理技术或联合工艺实现氯酚类污染物的无害化处理。例如: 培育驯化耐高毒性、反应高效菌群研发可再生吸附剂将化学还原脱氯与高级氧化技术耦合, 形成分段式高级还原-氧化技术, 分步实现还原脱氯和氧化矿化, 避免多氯代二次污染的产生耦合生物还原脱氯与高级氧化技术, 实现CPs污染物的高效化、无害化处理。

迷人的自行车
无聊的火龙果
2026-02-06 06:15:23
“”衣“”。。 新型合成纤维制成的衣料,柔软舒适且价格便宜耐用。衣料由天然纤维到人造纤维,再到现今发展的合成纤维,染料由最初的天然染料到现在的合成染料、活性染料,无不体现了化学对衣着发展的贡献,化学使衣着由最初的遮盖效用,变为如今的美观、便利、具有特殊功能的效用,它极大丰富了衣着的样式、材质、用途

“”住 “”。。。 新型合成材料的应用,使生活更加舒适.

只有木材、沙和石子是天然的建筑材料,但它们需要用合成的化学物质粘连起来和加以保护。水泥是一种化学产品,正如用在层压板中的胶粘剂和用在钉子中的金属都是化学产品一样。玻璃是化学家制出来的,经改进后的产物如耐热玻璃(商品名叫Pyrex玻璃)变得更坚韧。油漆是化学家设计和创造的,很多现代化的固体材料也是如此。塑料是人工合成的,它们用于厨房和浴室用具上,也用在商品名称叫Formica的胶木板及其有关材料、饮料瓶、餐具和器皿上。瓷器是由化学家制造的,并用于厨房和浴室的洗涤池和其它固定装置上。金属是从矿石经化学变化制成的。铝金属曾一度是实验室的珍品,但利用一种电化学方法,现在它可以容易地从氧化铝制得。

至少有一部分的地毯和装饰用的褶皱织物要用合成纤维和用合成的染料来着色。冰柜和空调器用特种化学品作为冷却剂;燃气炉和煤气灶可用合成气或天然气,其燃烧过程发生的仍是化学变化。我们的居室用燃气或用石油工业生产的燃油来取暖,这种燃油是从自然界的粗油经精炼和化学改进后得到的。我们用合成的化学产品和用化学加工工业制成的材料,如灰泥或墙板,外壁板和屋顶板以及地砖和地毯来使我们的建筑隔热。炉灶本身和分配热能的管道是由化学产品——金属,绝热材料和陶瓷所制成。

电流通过外包绝缘体的铜线进入我们的家庭,两者都属化学加工工业的产品。电源插座要用塑料和金属,照明用的白炽灯和荧光灯完全是由化学产物制成。

甚至进入住宅的水也是经化学净化的,以除去污染物和致病的细菌。在使用涉及化学检验和化学净化的现代卫生设施以前,已被污染的用水是引起人类各种疾病的主要原因。

""行“”。。。。 新能源使交通工具发生革命性变化,空前地方便了人们的出行

一辆机动车中的每件东西都是化学加工业的一种产品。金属和油漆是显而易见的,但在一辆现代的汽车中,塑料的用量是非常大的。特种塑料被选用,因为它们质强和量轻。较轻的车辆耗油也少。

制造轮胎用的橡胶经过一种被称为硫化作用的方法处理而变得坚韧。硫化作用是将橡胶分子化学地连结起来,使材料变得更坚韧和更为实用。

引擎舱内的“橡皮”软管根本不是橡胶的,而是更耐油和耐热的,类似于橡胶的合成材料。防冻液是一种合成的化学药品;蓄电池是化学的一种产品;车厢的内装潢通常用合成品或者是经化学鞣化的皮革制成品,车座里充填合成的泡沫塑料。车窗用有塑料为夹层的安全玻璃以防破碎。燃油和润滑油是加有化学添加剂的石油化学产品,以便产生更佳的抗爆行为和使润滑具有更为良好的全天候性能。

有时,将原始石油加以蒸馏就能得到燃油或润滑油,但也有用化学方法,利用催化剂将石油中的天然大分子“裂化”成较小的分子,作为汽油之用。

在石油炼制厂中见到一些巨大和高耸的塔是作蒸馏用的;另外的一些塔是供化学加工生产更有用的化学品。润滑油中加入各种化学药品使它们有更佳的抗磨性并使它们在一定温度范围内较好地发挥其作用。

化学的一项现代应用是在车辆排气系统中装入催化转化器来降低污染。它们用铂、铑和其它物质将氧化氮、一氧化碳和未燃尽的碳氢化合物转化成较低毒害的化学品。

在机动车工业中,大量的化学家参与研究和开发。事实上,在美国三大汽车制造商的研究室内,化学家是科学家中的最大群体。他们正在研制更优良的催化转化器和设法使燃油燃烧得更彻底而减少污染(点燃本身就是一个化学过程,它的本质现在已经搞清)。化学家们正在试图改变车辆的上漆方法,以便免用有机溶剂,他们也在设法用现代的塑料和陶瓷来替代汽车上较多的金属,同时他们正在设法改进蓄电池,使电动汽车变得更具吸引力(机动车工业的环境化学情况将在第4章中深入讨论)。

飞机有特殊的要求。没有质强量轻的铝就不可能有飞机。它需要用特种塑料和特种燃油。太空飞行需要甚至更为专用的化学品,包括能产生推动力非常大的火箭燃料和由合成材料制成的特种衣着。下一次当你乘坐一辆汽车或一架飞机时或者可能乘坐一架太空穿梭机时,请试找一下有什么东西是不属于现代化学的产物。你不会成功的,除非你发现了一木片或可能是一些棉花或羊毛之类,但即使如此,它们也是经过化学处理和化学涂渍的

追问:

我问的是催化剂,你有没有搞错?

回答:

绿色催化剂的应用及进展

摘要]对新型绿色催化剂杂多化合物的研究进展进行了综述,主要介绍了杂多化合物在催化氧化、烷基化、异构化等石油

化工领域的研究现状,并对其应用和发展前景做了总结和评述。

[关键词]杂多化合物;绿色化工催化剂;展望

随着人们对环保的日益重视以及环氧化产品应

用的不断增加,寻找符合时代要求的工艺简单、污染

少、绿色环保的环氧化合成新工艺显得更为迫切。20

世纪90年代后期绿色化学[1,2]的兴起,为人类解决化

学工业对环境污染,实现可持续发展提供了有效的手

段。因此,新型催化剂与催化过程的研究与开发是实

现传统化学工艺无害化的主要途径。

杂多化合物催化剂泛指杂多酸及其盐类,是一类

由中心原子(如P、Si、Fe、B等杂原子及其相应的无机

矿物酸或氢氧化物)和配位原子(如Mo、W、V、Ta等多

原子)按一定的结构通过氧原子桥联方式进行组合的

多氧簇金属配合物,用HPA表示[3-6]。HPA的阴离子结

构有Keggin、Dawson、Anderson、Wangh、Silverton、

Standberg和Lindgvist 7种结构。由于杂多酸直接

作为固体酸比表面积较小(<10 m2/g),需要对其固

载化。固载化后的杂多酸具有“准液相行为”和酸碱

性、氧化还原性的同时还具有高活性,用量少,不腐蚀

设备,催化剂易回收,反应快,反应条件温和等优点而

逐渐取代H2SO4、HF、H3PO4应用于催化氧化、烷基化、异

构化等石油化工研究领域的各类催化反应。

1杂多酸在石油化工领域的研究进展

随着我国石油化工工业的快速发展,以液态烃为

原料制取乙烯的生产能力在不断增长,而产生的副产

物中有大量的C3~C9烃类,其化工综合利用率却仍然

较低,随着环保法规对汽油标准中烯烃含量的严格限

制,如何在不降低汽油辛烷值的情况下,生产出高标

号的环境友好汽油已是我国炼油业面临的又一个技

术难题。目前,催化裂化副产物C3~C9烃类的催化氧

化、烷基化、芳构化以及C3~C9烃类的回炼技术已成

为研究的热点。因此,催化裂化C3~C9烃类的开发与

应用将有着强大的生产需求和广阔的市场前景。

1.1催化氧化反应

杂多酸(盐)作为一类氧化性相当强的多电子氧

化催化剂,其阴离子在获得6个或更多个电子后结构

依然保持稳定。通过适当的方法易氧化各种底物,并

使自身呈还原态,这种还原态是可逆的,通过与各种

氧化剂如O2、H2O2、过氧化尿素等相互作用,可使自身

氧化为初始状态,如此循环使反应得以继续。用杂多

酸作催化剂使有机化合物催化氧化作用有两种路线

是可行的[7]:①分子氧的氧化:即氧原子转移到底物

中;②脱氢反应的氧化。

将直链烷烃进行环氧化是生产高辛烷值汽油的

重要途径之一。Bregeault等[8]研究了在CHCl3-H2O

两相中,在作为具有催化活性的过氧化多酸化合物的

前体的杂多负离子[XM12O40]n-和[X2M18O62]m-以及同多

负离子[MxOy]z-(M=Mo6+或W6+;X=P5+,Si4+或B3+)的存在

下,用过氧化氢进行1-辛烯的环氧化反应时,负离子

[BW12O40]5-、[SiW12O40]4-和[P2W18O62]6-都是非活性的,并

且许多光谱分析法表明它们的结构在反应过程中没

有发生变化。[PMo12O40]3-表现出很低的活性,而

[PW12O40]3-、H2WO4和[H2W12O42]10-都表现出高活性。反应

中Keggin型杂多负离子[PW12O40]3-被过量的过氧化

氢分解而形成过氧化多酸{PO4[WO(O2)2]4}3-和

[W2O3(O2)4(H2O)2]2-,而这两种活性物种在环氧化反应

中起到了重要的作用。

1.2烷基化反应

石油炼制工业上,烷烃烷基化、烯烃烷基化及芳烃烷基化反应是生产高辛烷值清洁汽油组分的环境

友好工艺。但以浓硫酸和氢氟酸作为催化剂的传统烷

基化工艺因氢氟酸的毒性和浓硫酸的严重腐蚀性受

到了很大的限制。

C4抽余液是蒸气裂解装置产生的C4馏份经抽提

分离丁二烯后的C4剩余部分,其中富含大量的1-丁

烯和异丁烯。如何利用C4抽余液中的异丁烯和1-丁

烯是C4抽余液化工利用的关键。异丁烯是一种重要

的基本有机化工原料,主要用于制备丁基橡胶和聚异

丁烯,也用来合成甲基丙烯酸酯、异戊二烯、叔丁酚、

叔丁胺等多种有机化工原料和精细化工产品。1-丁

烯是一种化学性质比较活泼的a-烯烃,其主要用途

是作为线性低密度聚乙烯(LLDPE)的共聚单体,也用

于生产聚丁烯、聚丁烯酯、庚烯和辛烯等直链或支链

烯烃、仲丁醇、甲乙酮、顺酐、环氧丁烷、醋酸、营养药、

农药等。特别是自20世纪70年代LLDPE工业化技术

开发成功以来,随着LLDPE工业生产的蓬勃发展,国

内外对1-丁烯的需求与日俱增,已成为发展最快的

化工产品之一。

刘志刚[9]等用浸渍法制备了Cs+、K+、NH4+的SiPW12

杂多酸盐类和SiO2负载的SiPW12杂多酸,在超临界

条件下评价了它们对异丁烷和丁烯烷基化的催化作

用。结果表明,它们的活性和选择性大小顺序是当阳

离子数相同时,Cs+盐>K+盐>NH4+盐。

(NH4)2.5H1.5SiW12O40尽管催化活性不高,但对C8产物的

选择性达到83.48%;Cs2.5H1.5SiW12O40具有很高的催化

活性,但其对C8产物的选择性却只有62.47%。

1.3异构化反应

汽油的抗爆性用异辛烷值表示,直链烃异构化是

生产高辛烷值汽油的重要手段。C5~C6烷烃骨架异构

化旨在提高汽油总组成的辛烷值,反应受平衡限制,

低温有利于支链异构化热动力学平衡。为达到最大的

异构化油产率,C5~C6烷烃异构化应在尽可能低的温

度和高效催化剂存在下进行。烷烃骨架异构化是典型

的酸催化反应,最近发现有较多的固体酸材料(其酸

强度高于H-丝光沸石)可用于轻质烷烃骨架异构化,

其中,最有效的有基于杂多酸(HPA)的催化材料和硫

酸化氧化锆、钨酸化氧化锆(WOx-ZrO2)。

2绿色催化剂

绿色化学对催化剂也提出了相应的要求[1,2]:(1)

在无毒无害及温和的条件下进行;(2)反应应具有高

的选择性,人们将符合这两点的催化剂称之为绿色催化剂。

由于一些杂多酸化合物表现出准液相行为,极性

分子容易通过取代杂多酸中的水分子或扩大聚合阴

离子之间的距离而进入其体相中,在某种意义上吸收

大量极性分子的杂多酸类似于一种浓溶液,其状态介

于固体和液体之间,使得某些反应可以在这样的体相

内进行。作为酸催化剂,其活性中心既存在于“表相”,

也存在于“体相”,体相内所有质子均可参与反应,而

且体相内的杂多阴离子可与类似正碳离子的活性中

间体形成配合物使之稳定。杂多酸有类似于浓液的

“拟液相”,这种特性使其具有很高的催化活性,既可

以表面发生催化反应,也可以在液相中发生催化反

应。准液相形成的倾向取决于杂多酸化合物和吸收分

子的种类以及反应条件。正是这种类似于“假液体”的

性质致使杂多酸即可作均相及非均相反应,也可作相

转移催化剂。陈诵英[10]等用二元杂多酸为催化剂,双

氧水为氧化剂,醋酸为溶剂,催化氧化三甲基苯酚

(TMP)合成三甲基苯醌(TMBQ),这与传统方法先用发

烟硫酸磺化TMP,然后在酸性条件下用固体氧化剂氧

化得到TMBQ相比,能减少排放大量废水以及10 t以

上的固体废物,且其摩尔收率可达86%,大大提高了

原子利用率。刘亚杰[11]等采用一种性能优良的环境友

好的负载型杂多酸催化剂(HRP-24)合成二十四烷基

苯。HR-24属于一种大孔、细颗粒、强酸性的固体酸

催化剂,大孔和细颗粒有利于大分子烯烃的扩散,且

不容易被长链烯烃聚合形成的胶质堵塞孔道,而强酸

性可使催化剂在较低温度下就具有较高的催化活性。

实验表明,在反应温度和压力较低的情况下(120℃

和0.1~0.2 MPa),烯烃的转化率和二十四烷基苯的

选择性都接近100%。Furuta等[12]采用Pd-H3SiW12O40

催化乙烯在氧气和水存在下氧化一步合成了乙酸乙

酯,简化合成工艺,与绿色化学相适应。刘秉智[13]以活

性炭负载磷钼钨杂多酸为催化剂,用30%双氧水催化

氧化苯甲醇合成苯甲醛,苯甲醛收率可达74.8%。与

国内同类产品的生产工艺相比,其具有催化活性好,

反应条件温和,生产成本低廉,催化剂可重复使用,对

设备无腐蚀性,不污染环境,是一种优良的新型合成

工艺路线,具有一定的工业开发前景。

3展望

虽然绿色化工催化剂理论发展逐渐得到完善,但

大多数催化剂仍停留在实验阶段,催化剂性能不稳

定,制备过程复杂,性价比低是制约其工业化应用的

主要原因,但从长远角度考虑,采用绿色化工催化剂

是实现生产零污染的一个必然趋势。环境友好的负载

型杂多酸催化剂既能保持低温高活性、高选择性的优

点,又克服了酸催化反应的腐蚀和污染问题,而且能

重复使用,体现了环保时代的催化剂发展方向。今后

的研究重点应是进一步探明负载型杂多酸的负载机

制和催化活性的关系,进一步解决活性成分的溶脱问

题,并进行相关的催化机理和动力学研究,为工业化

技术提供数据模型,使负载型杂多酸早日实现工业化

生产,为石油化工和精细化工等行业创造更大的经

济、社会效益。

追问:

我只要生活中的催化剂例子啊,说那么多一点边都不贴

回答:

你的肝脏天天分泌过氧化氢酶..催化能力是氯化铁的千倍..摆平你新陈代谢产生的过氧化氢

你的口水里有大量的淀粉酶...超快加速分解淀粉..转换成麦芽糖.

你的胃里有胃蛋白酶..可以把蛋白质分解成氨基酸..

...要想找例子..你自己就是一个大例子

腼腆的超短裙
灵巧的绿草
2026-02-06 06:15:23

纳米材料是指在三维空间中至少有一维处于纳米尺寸(0.1-100 nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。

纳米结构是以纳米尺度的物质单元为基础按一定规律构筑或营造的一种新体系。它包括纳米阵列体系、介孔组装体系、薄膜嵌镶体系。对纳米阵列体系的研究集中在由金属纳米微粒或半导体纳米微粒在一个绝缘的衬底上整齐排列所形成的二位体系上。

而纳米微粒与介孔固体组装体系由于微粒本身的特性,以及与界面的基体耦合所产生的一些新的效应,也使其成为了研究热点,按照其中支撑体的种类可将它划分为无机介孔复合体和高分子介孔复合体两大类,按支撑体的状态又可将它划分为有序介孔复合体和无序介孔复合体。

在薄膜嵌镶体系中,对纳米颗粒膜的主要研究是基于体系的电学特性和磁学特性而展开的。美国科学家利用自组装技术将几百只单壁纳米碳管组成晶体索“Ropes”,这种索具有金属特性,室温下电阻率小于0.0001Ω/m将纳米三碘化铅组装到尼龙-11上,在X射线照射下具有光电导性能, 利用这种性能为发展数字射线照相奠定了基础。

扩展资料:

纳米新材料

纳米新材料配方是一门在100 纳米以内空间内,通过自然更改直接排序原子与分子创造出来的新纳米材料的项目。纳米新材料与该领域是现代力量和现代技术创新的起点,新的规律和原理的发现与全新的理念创设给予基础科学,提供了新的机会,这会成为许多领域的重要改革新动力。纳米新材料配方由于SAIZU细小,拥有很多奇特的性能。

1988年Baibich 等第一次在纳米Fe/ Cr MS里发现磁电阻变化率达到百分之五十,与一般的ME比起来要大一个级别,并且是负值的,各向一样,称作GMR 。之后还在纳米体系的、隧道结和Perovskite结构、颗粒膜中发现巨ME。里面Perovskite结构在一九九三年是发现且具有极大ME,叫做CMR ,在隧道结中找到的为TMR。

参考资料来源:百度百科-纳米材料

老迟到的小蜜蜂
幽默的店员
2026-02-06 06:15:23
多酚氧化酶

一类含铜的氧化还原酶

多酚氧化酶是一类含铜的氧化还原酶[1]。编号:EC 1.10.3.1[1](编号:EC 1.14.18.1[2])。催化邻苯二酚氧化成邻苯二醌,也能作用于单酚单加氧酶的底物[1]。淡黄至暗褐色粉末或液体。溶于水,不溶于乙醇。有吸湿性。相对分子质量约为125000,最适pH为6.5,最适温度为2℃[2]。

多酚氧化酶是种末端氧化酶类,可将电子直接传递给分子氧。它在茶中的主要作用是催化儿茶素形成邻醍,进一步形成茶黄素等色素物质和香气成分等[3]。

中文名

多酚氧化酶

外文名

Polyphenol oxidase[2]

Tyrosinase[2]

Phenlase[2]

别名

儿茶酚氧化酶[3]

分子量

约为125000

CAS登录号

9002-1-2

研究简史理化性质制备方法应用领域储存运输检测方法自然界分布现状展望TA说

研究简史

多酚氧化酶(,PPO)是自然界中分布极广的一种金属蛋白酶,普遍存在于植物、真菌、昆虫的质体中,甚至在土壤中腐烂的植物残渣上都可以检测到多酚氧化酶的活性。由于其检测方便,是被最早研究的几类酶之一。自1883年Yoghid发现日本漆树液汁变硬可能和某种活性物质相关,1938年Keilin D.和Mann G.研究了蘑菇多酚氧化酶的提取和纯化,得到多酚氧化酶并将这类酶称为polyphenol oxidase。多酚氧化酶又称儿茶酚氧化酶,酪氨酸酶,苯酚酶,甲酚酶,邻苯二酚氧化还原酶,是六大类酶中的第一大类氧化还原酶。

多酚氧化酶的共同特征是能够通过分子氧氧化酚或多酚形成对应的醌。在广义上,多酚氧化酶可分为三大类:单酚单氧化酶(酪氨酸酶tyrosinase,EC.1.14.18.1)、双酚氧化酶(儿茶酚氧化酶catechol oxidse,EC.1.10.3.2)和漆酶(laccase,EC.1.10.3.1)。在这三大类多酚氧化酶中,儿茶酚酶主要分布在植物中,微生物中的多酚氧化酶主要包括漆酶和酪氨酸酶。现在大部分文献所说的多酚氧化酶一般是儿茶酚氧化酶和漆酶的统称。

理化性质

酶蛋白具有一般蛋白质的特性,在高温或低温条件下有易变性失活的特点。各类酶均有其活性的最适温度范围,一般在30C~50℃范围内酶活性最强。酶若失活、变性,则就丧失了催化能力。酶的催化作用具有专一性,如多酚氧化酶,只能使茶多酚物质氧化,聚合成茶多酚的氧化产物茶黄素、茶红素和茶褐素等;蛋白酶只能促使蛋白质分解为氨基酸。茶叶加工就是利用酶具有的这种特性,用技术手段钝化或激发酶的活性,使其沿着茶类所需的要求发生酶促反应而获得各类茶特有的色香味。如绿茶加工过程中的杀青就是利用高温钝化酶的活性,在短时间内制止由酶引起的一系列化学变化,形成绿叶绿汤的品质特点。红茶加工过程中的发酵就是激化酶的活性,促使茶多酚物质在多酚氧化酶的催化下发生氧化聚合反应,生成茶黄素、茶红素等氧化产物,形成红茶红叶红汤的品质特点。

制备方法

由丝状菌(AlternariaAsp. nigerCorio-lus)或担子菌(CyathusPolyporus cinereusPycno porus coc-cineusPolyporusTrametes) 的培养液,用室温以下的水提取后,再在低温下用冷的乙醇、含水乙醇或丙酮处理而得。亦可由蘑菇提取而得[2]。

应用领域

酶制剂

用于红茶制造等[2]。

储存运输

密封包装后贮于阴冷处[2]。

检测方法

活性测定

常用检压法和分光光度法。前者应用多酚氧化酶(PPO)可催化儿茶素等底物在有氧条件下的氧化还原反应,根据底物的氧化速率与单位酶浓度和单位时间内的耗氧量成正比这一原理,用瓦氏呼吸仪测定反应过程中的耗氧量求得PPO活性的大小,此方法设备简便,但操作复杂,误差较大。后者利用邻苯二酚和D-儿茶素在PPO催化下生成有色产物,其显色物质在460纳米处有最大吸收,吸收值在单位时间内的变化和单位酶活性成正比,计算PPO活性强度。操作方法简便,重现性好。与检压法原理相似的方法有氧电极法,应用也较多。

自然界分布

植物中的多酚氧化酶及作用

在植物(如苹果、荔枝、菠菜、马铃薯、豆类、茶叶、桑叶、烟草等)组织中,PPO是与内囊体膜结合在一起的,天然状态无活性,但将组织匀浆或损伤后PPO被活化,从而表现出活性。在果蔬细胞组织中,PPO存在的位置因原料的种类、品种及成熟度的不同而有差异,绿叶中PPO活性大部分存在于叶绿体内[7];马铃薯块茎中几乎所有的亚细胞部分都含有PPO,含量大约与蛋白质部分相同[8];在茶叶中的PPO分为游离态和束缚态,前者主要存在于细胞液中属可溶态PPO,而后者则主要存在于叶绿体、线粒体等细胞器中,与这些细胞器的膜系统或其他特异部位结合呈不溶态[9],ThanarajS.N.(1990)研究了茶树新梢中PPO活性及多酚含量对红茶品质的影响,发现PPO活性强,多酚含量高,对红茶品质有利,相反则利于绿茶的生产[10];新鲜的苹果中,多酚氧化酶几乎全部存在于叶绿体和线粒体中。从这两部分分别制备的PPO,其底物专一性稍有差异[11]。刘乾刚认为,PPO在细胞内除了存在于叶绿体及线粒体上外,细胞壁也可能存在PPO,且对发酵产生影响,细胞只要轻微破损便有PPO的作用。多酚氧化酶是一种质体酶,有些研究人员认为多酚氧化酶可能仅存在于质体中[12],缺乏质体的组织就不存在多酚氧化酶,例如筛管和筛胞等,但是有质体的组织也可能没有多酚氧化酶,如C4植物叶。含有质体的植物组织不一定都存在多酚氧化酶,而多酚氧化酶一定在含有质体的植物组织中。

随分子生物学的发展,象西红柿、苹果等的多酚氧化酶的基因已被克隆。浙江大学赵东等[12]对茶树多酚氧化酶的克隆及其序列进行了比较。从已经克隆的多酚氧化酶的基因看,均属于基因家族,多则6-7个基因。这些基因的表达具有时空差异和组织特异性(PPO在幼龄组织中表达,在成熟组织中不表达),表明多酚氧化酶的基因在植物中所起的作用不同。高等植物组织发生褐变主要是PPO作用的结果,PPO催化多酚氧化为醌,醌聚合并与细胞内蛋白质的氨基酸反应,结果产生黑色素沉淀。

微生物漆酶

漆酶是三大类多酚氧化酶中作用底物最广的一类。漆酶最早是在1883年由Yoshida首先从漆树液中发现的,后来人们又从大量的真菌体中发现了漆酶。漆酶来源很多,结构各异,不同来源的漆酶表现出来的催化特性相差较大。即便是同一来源,如同一白腐菌菌种,也可分泌出不同性质的漆酶组分,包括氧化能力、最适pH、底物专一性等,因此催化氧化作用也各不相同。漆酶分子中的铜离子是漆酶催化反应的活性中心,在催化氧化过程中起决定作用。

在真菌中,漆酶大多分布在担子菌(Basidimycetes)、多孔菌(Polyporus)、子囊菌(A-somycetes)、脉孢菌(Neurospora)、柄孢壳菌(Po-dospora)和曲霉菌(Aspergillus)等真菌中。担子菌中的白腐菌是目前获得漆酶的主要来源。Givaudan等还从稻根上的生脂固氮螺菌(Azospirillum lipoferum)中分离出细菌漆酶。

黄乾明等以粗毛栓菌(Trametes gallica)为出发菌,通过紫外诱变处理其担抱子、PDA-RBBR平板变色法初筛、ABTS法测定培养液漆酶酶活力复筛,获得1株漆酶高产诱变菌株SAH-12。

黄俊等(2006)从森林树木根部土壤中分离得1株具有漆酶活性的细菌菌株,并鉴定该细菌属于克雷伯氏菌(Klebsiella)属,命名其为Klebsiella sp-601。这是首例报道Klebsiella细菌具有漆酶活性。

微生物酪氨酸酶

酪氨酸酶,又叫单酚氧化酶,它可以氧化L-酪氨酸合成L-多巴和黑色素。在高等动物和人类中酪氨酸酶的活性高低与黑色素的形成速率有关,缺乏此酶活性将引起白化病。

有报道说,一种假单胞菌(Pseudomonas sp.)具有高产酪氨酸酶的能力,另一种细菌即弗氏柠檬杆菌(Cibrobacter freundii)在L一酪氨酸诱导下能高效表达酪氨酸酶的催化活性,经小试试验可获得L-多巴产量9.5g/L,为其中试生产奠定了基础。

蔡信之等分离并鉴定出嗜麦芽假单胞菌(Pseudomonas maltophilia)AT18能够稳定地产生酪氨酸酶,并催化产生黑色素。他们已将该菌的酪氨酸酶基因(mel)片断克隆到E.coli质粒载体pUC18上,构建了产生黑色素的工程菌E.coli/pwSY。

现状展望

植物PPO的研究现状及展望

PPO与抗病性的关系人们已进行了广泛的研究[32]。植物在抵御病原微生物的侵染过程中,抗性相关酶发挥了重要作用,这主要包括了酚类代谢系统中的一些酶和病原相关蛋白家族PPO通过催化木质素及醌类化合物形成,构成保护性屏蔽而使细胞免受病菌的侵害,也可以通过形成醌类物质直接发挥抗病作用。目前已比较成功的有:黄瓜对黑星病的抗性,苹果对轮纹病的抗性,香蕉对束顶病的抗性,柠檬对流胶病的抗性,甘薯对蔓割病的抗性,水稻对白叶枯病的抗性等等。

茶叶中所有化学成分中,儿茶素与多酚氧化酶尤为重要,除绿茶、黄茶外,各种茶叶的加工都是基于儿茶素在多酚氧化酶催化下的氧化作用,即所谓的“发酵”过程。有的学者在红碎茶加工中,利用茶幼果作为外源PPO的载体,以一定比例用于红碎茶加工过程,结果发现能明显提高成茶的TF含量,减少TB含量。还有的学者进行了内源酶发酵研究,以期望能在茶饮料中有所应用,改善滋味。

多酚氧化酶是引起果蔬酶促褐变的主要酶类,PPO催化果蔬原料中的内源性多酚物质氧化生成黑色素,严重影响制品的营养,风味及外观品质。这些情况对生产者与消费者均是不希望看到的,仅在少数几种食品的生产中,人们利用了PPO的作用,如茶叶、咖啡、黑葡萄中的多酚氧化酶。

微生物PPO的研究现状及展望

随着微生物发酵投人少、见效快、易控制等特点的凸显,开发微生物中的多酚氧化酶成了研究者关注的热点。微生物中的漆酶对氧化酚类或芳胺类等多种底物的氧化起催化作用,从而使其在含酚废水的处理、环境中酚类毒物的降解、饮料加工、食用和药用菌生产、饲料工业及医药卫生等各个领域有着广泛应用。而利用微生物发酵合成酪氨酸酶也已成为研制治疗白瘫风、帕金森病和老年痴呆症等疾患药物的努力方向。

由于自然界中存在着大量结构不同的多酚类物质,而催化这些酚类物质氧化的多酚氧化酶也是不同的。如果从微生物中筛选出有效的酶源或者利用酶修饰、基因异源表达和基因工程菌的构建等技术创造出有效的微生物酶源,这将着深远意义。

大力的大山
唠叨的老虎
2026-02-06 06:15:23
给你提供两本书,希望能有所帮助。

《高性能酚醛树脂及其应用技术》/唐路林

《酚醛树脂及其应用》 黄发荣

另外在期刊数据库中有好多这样的文章,可以看看。

失眠的楼房
深情的眼睛
2026-02-06 06:15:23
二○○七年五月

纳米科技带给我们的哲学思考

摘要:纳米技术是指在纳米尺度下对物质进行制备、研究和工陶瓷材料公司业化,以及利用纳米尺度物质进行交叉研究和工业化的一门综合性技术体系。纳米科技的发展拓展了人类认识微观世界的能力,可以在微观尺度探索人类和世界的奥秘。但另一方面,我们也应看到纳米技术的不当应用带来的灾难,本文在总结纳米科技的成就基础上运用哲学辨证法思考纳米科技的危害。

关键词:纳米科技 哲学反思 解决之道

正文

1纳米科技及其成就

1.1什么是纳米

纳米是英文namometer的译音,是一个物理学上的度量单位,1纳米是1米的十亿分之一;相当于45个原子排列起来的长度。通俗一点说,相当于万分之一头发丝粗细。就像毫米、微米一样,纳米是一个尺度概念,并没有物理内涵。当物质到纳米尺度以后,大约是在1—100纳米这个范围空间,物质的性能就会发生突变,出现特殊性能。这种既具不同于原来组成的原子、分子,也不同于宏观的物质的特殊性能构成的材料,即为纳米材料。如果仅仅是尺度达到纳米,而没有特殊性能的材料,也不能叫纳米材料。过去,人们只注意原子、分子或者宇宙空间,常常忽略这个中间领域,而这个领域实际上大量存在于自然界,只是以前没有认识到这个尺度范围的性能。纳米尺度范围的性能表现在小尺寸效应、比表面效应、量子尺寸效应等。第一个真正认识到它的性能并引用纳米概念的是日本科学家,他们在20世纪70年代用蒸发法制备超微离子,并通过研究它的性能发现:一个导电、导热的铜、银导体做成纳米尺度以后,它就失去原来的性质,表现出既不导电、也不导热。磁性材料也是如此,象铁钴合金,把它做成大约20—30纳米大小,磁畴就变成单磁畴,它的磁性要比原来高1000倍。80年代中期,人们就正式把这类材料命名为纳米材料。

1.2 &nbs工艺陶瓷模具p纳米科技

纳米科技是指在0.1至100nm

纳米材料是究领域中最富有活力、对未来经济和社会发展有着十分重要影响的研究对象,也是纳米科技中最为活跃、最接近应用的重要组成部分。近年来,纳米材料和纳米结构取得了引人注目的成就。例如,存储密度达到每平方厘米400g的磁性纳米棒阵列的量子磁盘,成本低廉、发光频段可调的高效纳米阵列激光器,价格低廉高能量转化的纳米结构太阳能电池和热电转化元件,用作轨道炮道轨的耐烧蚀高强高韧纳米复合材料等的问世,充分显示了它在国民经济新型支柱产业和高技术领域应用的巨大潜力。正像美国科学家估计的“这种人们肉眼看不见的极微小的物质很可能给予各个领域带来一场革命”。纳米材料和纳米结构的应用将对如何调整国民经济支柱产业的布局、设计新产品、形成新的产业及改造传统产业注入高科技含量提供新的机遇。研究纳米材料和纳米结构的重要科学意义在于它开辟了人们认识自然的新层次,是知识创新的源泉。由于纳米结构单元的尺度(1~100urn)与物质中的许多特征长度,如电子的德布洛意波长、超导相干长度、隧穿势垒厚度、铁磁性临界尺寸相当,从而导致纳米材料和纳米结构的物理、化学特性既不同于微观的原子、分子,也不同于宏观物体,从而把人们探索自然、创造知识的能力延伸到介于宏观和微观物体之间的中间领域。纳米材料诞生州多年来所取得的成就及对各个领域的影响和渗透一直引人注目。进入90年代,纳米材料研究的内涵不断扩大,领域逐渐拓宽。一个突出的特点是基础研究和应用研究的衔接十分紧密,实验室成果的转化速度之快出乎人们预料,基础研究和应用研究都取得了重要的进展。

4纳米产业发展趋势

(1)信息产业中的纳米技术:信息产业不仅在国外,在我国也占有举足轻重的地位。2000年,中国的信息产业创造了gdp5800亿人民币。纳米技术在信息产业中应用主要表现在3我眼中的纳米的论文个方面:①网络通讯、宽频带的网络通讯、纳米结构器件、芯片技术以及高清晰度数字显示技术。因为不管通讯、集成还是显示器件,都要原器件,美国已经着手研制,现在有了单电子器件、隧穿电子器件、自旋电子器件,这种器件已经在实验室研制成功,而且可能在2001年进入市场。②光电子器件、分子电子器件、巨磁电子器件,这方面我国还很落后,但是这些原器件转为商品进入市场也还要10年时间,所以,中国要超前15年到20年对这些方面进行研究。③网络通讯的关键纳米器件,如网络通讯中激光、过滤器、谐振器、微电容、微电极等方面,我国的研究水平不落后,在安徽省就有。④压敏电阻、非线性电阻等,可添加氧化锌纳米材料改性。

(2)环境产业中的纳米技术:纳米技术对空气中20纳米以及水中的200纳米污染物的降解是不可替代的技术。要净化环境,必须用纳米技术。我们现在已经制备成功了一种对甲醛、氮氧化物、一氧化碳能够降解的设备,可使空气中的大于10ppm的有害气体降低到0.1ppm,该设备已进入实用化生产阶段;利用多孔小球组合光催化纳米材料,已成功用于污水中有机物的降解,对苯酚等其它传统技术难以降解的有机污染物,有很好的降解效果。近年来,不少公司致力于把光催化等纳米技术移植到水处理产业,用于提高水的质量,已初见成效;采用稀土氧化铈和贵金属纳米组合技术对汽车尾气处理器件的改造效果也很明显;治理淡水湖内藻类引起的污染,最近已在实验室初步研究成功。

(3)能源环保中的纳米技术:合理利用传统能源和开发新能源是我国当前和今后的一项重要任务。在合理利用传统能源方面,现在主要是净化剂、助燃剂,它们能使煤充分燃烧,燃烧当中自循环,使硫减少排放,不再需要辅助装置。另外,利用纳米改进汽油、柴油的添加剂已经有了,实际上它是一种液态小分子可燃烧的团簇物质,有助燃、净化作用。在开发新能源方面国外进展较快,就是把非可燃气体变成可燃气体。现在国际上主要研发能量转化材料,我国也在做,它包括将太阳能转化成电能、热能转化为电能、化学能转化为电能等。

(4)纳米生物医药:这是我国进入wto以后一个最有潜力的领域。目前,国际医药行业面临新的决策,那就是用纳米尺度发展制药业。纳米生物医药就是从动植物中提取必要的物质,然后在纳米尺度组合,最大限度发挥药效,这恰恰是我国中医的想法。在提取精华后,用一种很少的骨架,比如人体可吸收的糖、淀粉,使其高效缓释和靶向药物。对传统药物的改进,采用纳米技术可以提高一个档次。

(5)纳米新材料:虽然纳米新材料不是最终产品,但是很重要。据美国测算,到21世纪30年代,汽车上40%钢铁和金属材料要被轻质高强材料所代替,这样可以节省汽油40%,减少co2,排放40%,就这一项,每年就可给美国创造社会效益1000亿美元。此外,还有各种功能材料,玻璃透明度好但份量重,用纳米改进它,使它变轻,使这种材料不仅有力学性能,而且还具有其他功能,还有光的变色、贮光,反射各种紫外线、红外线,光的吸收、贮藏等功能。

(6)纳米技术对传统产业改造:对于中国来说,当前是纳米技术切入传统产业、将纳米技术和各个领域技术相结合的最好机遇。首先是家电、轻工、电子行业。合肥美菱集团从1996开始研制纳米冰箱,可折叠的pvc磁性冰箱门封不发霉,用的是抗菌涂料,里面的果盘都采用纳米材料,发展轻工、电子和家用电器可以带动涂料、材料、电子原器件等行业发展;其次是纺织。人造纤维是化纤和纺织行业发展的趋势,中国纺织要在进入WTO后能占据有利地位,现在就必须全方位应用纳米技术、纳米材料。去年关于保温被、保温衣的电视宣传,提到应用了纳米技术,特殊功能的有防静电的、阻燃的等等,把纳米的导电材料组装到里面,可以在11万伏的高压下,把人体屏蔽,在这一方面,纺织行业应用纳米技术形势看好;第三是电力工业。利用纳米技术改造20万伏和11万伏的变压输电瓷瓶,可以全方位提高11万伏的瓷瓶耐电冲击的性能,而且釉不结霜,其它综合性能都很好;第四是建材工业中的油漆和涂料,包括各种陶瓷的釉料、油墨,纳米技术的介入,可以使产品性能升级。

纳米科技的发展和纳米材料的不断研制,给我们的生活带来了翻天覆地的变化,极大地改变着我们的生活,但是纳米材料的安全性问题引起人们的关注。

对纳米科技的反思

从“纳米牙膏”到“纳米护肤霜”,全球目前已有300多种号称使用纳米技术的产品上市了。纳米技术开始走进人们的生活圈。但与此同时,人们对纳米材料可能的、潜在的安全性问题却一直心有余悸。

早在3年前,就有几份报告让人对“纳米”这个极具发展前景的新兴技术感到迷惑。在2003年美国化学学会年会上,有3个研究小组发表了纳米材料具有特殊毒性的报告。美国宇航局的研究小组发现碳纳米管会进入小鼠肺泡,形成肉芽瘤,这是肺结核病的典型特征。杜邦公司的一个研究小组也发现了类似的结果。纽约罗切斯特大学的研究者让老鼠在含有直径为20纳米聚四氟乙烯颗粒的空气中待15分钟,大多数实验鼠在随后4小时内死亡,而另一组大鼠暴露在含直径为120纳米颗粒的空气中,则安然无恙。该研究小组在另一项实验中还发现纳米颗粒能够进入大鼠的嗅球,并迁移到大脑。

目前,人们关注的纳米技术安全性问题主要集中在:纳米微粒对人类健康的潜在风险和对环境的负面影响。尽管纳米材料毒理的问题现在还说不清楚,但专家都同意需要对纳米科技的潜在风险及其负面影响进行专门研究。

纳米技术这个名词的发明者———美国麻省理工学院的埃里克·德雷斯勒早在1986年出版的《创造的引擎》一书中,就详尽描述了操作原子大小物质的各种纳米技术的现状、未来发展潜力和危险。这样他既激起了人们对纳米技术的兴趣,也让许多人对纳米技术的未来忧心忡忡。“纳米技术的危险性远远高出它的益处。”整个90年代,这种论点一直在科学界中广泛存在。2000年底,《发现》杂志曾评出21世纪20大危险,纳米技术与行星撞地球及全球疫病一道,并列为其中之一。那么,在科学家眼中,纳米技术的危险又在哪里呢?这还得从德雷斯勒说起。在他的书中,德雷斯勒设想过一种叫做“装配工”的纳米机械通过原子的抓取和放置,这种人造的分子大小的纳米机械能够像人体内的蛋白质和酶一样,制造出任何东西,比如电视机和电脑———当然,也包括它们自己。科学家们由此开始担心:这些装配工如果能够听从人的善意指挥,固然是一件好事,但如果控制程序出现错误或被人恶意利用,是否会像计算机蠕虫病毒那样无限度自我复制下去,从而覆盖并毁灭整个地球?

相关阅读:

新型建筑材料有哪些+碳纳米管化学纪事ChroniclesofCarbonNa...

发表于2007-12-1800:41|碳纳米管化学佛山世界现代设计史论文陶瓷模具纪事八发信人:...

新型建筑材料有哪些&科学家展望未来世界

关键字:发展世界国家成为人类创新科技人们未来服饰未来世界的食品低热量低胆固醇随着现代科技的迅猛发展...

新型建筑材料有哪些!人文科技走进科学科学知识科学新闻科学论文

研究纳米技术的科陶瓷材料学家都有这样的感觉:他们实际上是在——探寻宇宙万物的最终秘密它不是小尺寸的...

科技新闻::孩子们眼中的纳米爸爸$新型建筑材料有哪些

今年刚40岁的王中林博士是美国佐治亚理工学院材料科学系教授,佐治亚理工学纳米科氧化物基金属陶瓷学和...

新型建筑材料有哪些&科学家展望未来世界

关键字:发展世界国家成为人类创新科技人们未来服饰未来世界的食品低热量低胆固醇随着现代科技的迅猛发展...

新型建筑材料有哪些科学家展望未来世界

关键字:发展世界国家成为人类创新科技人们未来服饰未来世界的食品低热量低胆固醇随着现代科技的迅猛发展...