生物乙醇是怎么生产的 生产过程
原料:淀粉类、纤维素类 都是多糖
生产过程是糖发酵 淀粉类发酵,酿酒过程其实就是这样的。一类是以谷物发芽的方式,利用谷物发芽时产生的酶将原料本身糖化成糖份,再用酵母菌将糖份转变成酒精;另一类是用发霉的谷物,制成酒曲,用酒曲中所含的酶制剂将谷物原料糖化发酵成酒。
上面说的是淀粉发酵制得乙醇,生物乙醇要考虑效率一般采用多种酶淀粉使分解为葡萄糖然后利用酵母菌制乙醇。
实际过程就是
淀粉 在淀粉酶、糖化酶等作用下水解为葡萄糖等单糖,葡萄糖在无氧情况下经过酵母菌无氧呼吸将葡糖糖转化为乙醇,并为酵母菌自生提供能量。
酵母菌发酵过程如下图:
纤维素在纤维素酶等作用下分解为葡萄糖等单糖然后再利用酵母菌发酵产生乙醇
2种原料制生物乙醇的共同之处都要在多种酶作用下,把大分子的多糖分解为葡萄糖,再利用酵母菌发酵制乙醇完全一致。
比较两种生物乙醇来说,纤维素制乙醇更好,纤维素可以说在自然界取之不尽用之不竭,像植物秸秆等等,像以甘蔗为原料的制糖厂的废渣富含糖类和纤维素等等,较之要消耗粮食用淀粉发酵来制乙醇来说更具优势。只是现阶段有些技术问题没有很好解决
玉米湿法仅仅是利用淀粉发酵制乙醇,不就是酿酒过程么,这个老祖宗几千年前就会了
生物质到乙醇的目的:乙醛接受糖酵解过程中释放的NADH+H+被还原成乙醇.这是一个低效的产能过程。
意义:一些细菌能够通过HMP途径进行异型乳酸发酵产生乳酸、乙醇和CO2等,我们也可以称其为异型乙醇发酵,例如串珠菌进行的异型乙醇发酵总反应式为:葡萄糖+ADP+Pi——-乳酸+乙醇+CO2+ATP。
化学性质
乙醇的官能团是羟基(—OH),其化学性质主要由羟基和受它影响的相邻基团决定,主要反应形式是О—H键和C—О键的断裂。羟基的结构特征是氧的电负性很大,分子中的C—О键和O—H键都是极性键,因而乙醇分子中有2个反应中心。由于α-H和β-H受到C—О键极性的影响具有一定的活性,因此它们还能发生氧化反应和消除反应等。
以上内容参考:百度百科-乙醇
一氧化碳分子是不饱和的亚稳态分子,在化学上就分解而言是稳定的。常温下,一氧化碳不与酸、碱等反应,但与空气混合能形成爆炸性混合物,遇明火、高温能引起燃烧、爆炸,属于易燃、易爆气体。因一氧化碳分子中碳元素的化合价是+2,能被氧化成+4价,具有还原性;且能被还原为低价态,具有氧化性。在一定条件下,一氧化碳和水蒸气等摩尔反应生成氢气和二氧化碳:CO + H2O → H2+ CO2。在工业装置中,早期的一氧化碳变换反应通常分两段进行,即高(中)温变换和低温变换。高(中)温变换用铁系作催化剂,典型水蒸汽和一氧化碳比为3左右,在温度为300~500℃、空速为2000~4000 h-1的条件下,高温变换炉出口一氧化碳含量为2%~5%;低温变换用高活性铜锌催化剂,在温度为180~280℃、空速为2000~4000 h-1的条件下,低温变换炉出口一氧化碳含量为0.2%~0.5%、二氧化碳(carbon dioxide),一种碳氧化合物,化学式为CO2,化学式量为44.0095、常温常压下是一种无色无味[2]或无色无嗅而其水溶液略有酸味的气体,也是一种常见的温室气体、还是空气的组分之一(占大气总体积的0.03%-0.04%[5])。在物理性质方面,二氧化碳的熔点为-56.6℃,沸点为-78.5℃,密度比空气密度大(标准条件下),溶于水。在化学性质方面,二氧化碳的化学性质不活泼,热稳定性很高(2000℃时仅有1.8%分解),不能燃烧,通常也不支持燃烧,属于酸性氧化物,具有酸性氧化物的通性,因与水反应生成的是碳酸,所以是碳酸的酸酐。
二氧化碳一般可由高温煅烧石灰石或由石灰石和稀盐酸反应制得,主要应用于冷藏易腐败的食品(固态)、作致冷剂(液态)、制造碳化软饮料(气态)和作均相反应的溶剂(超临界状态)等。
生物乙醇通过发酵的微生物是指生物质到燃料酒精品种的转化。它可以单独使用或混合使用汽油作为由乙醇和汽油的汽车燃料。
体积浓度达到99.5%以上的无水乙醇,用玉米、甘蔗、薯类、秸秆等生物质原料生产而成。是环保高辛烷值燃料,也是可再生清洁能源。
燃料乙醇并非普通酒精或者无水乙醇,而是混配“变性剂”并适量加入乙醇汽油专用抗腐蚀剂之后成为“变性燃料乙醇”,经过检测符合变性燃料乙醇国家标准(GB-18350-2013)才能出厂按照一定比例与汽油“组分油”调和成为合格的车用乙醇汽油。
扩展资料
燃料乙醇可以单独或者与汽油混配成为燃料,是一种优良的燃油品质改善剂。燃料乙醇是燃油氧化处理的增氧剂,能够使汽油增加内氧燃烧充分,从而降低PM2.5,减少一氧化碳等污染物的排放,达到节能与环保目的。
并且,乙醇还具有极好的抗爆性能,辛烷值在 120 左右,作为提高汽油的高辛烷值的组分可以替代传统具有对地下水有污染的 MTBE。燃料乙醇目前已经美国、巴西、欧盟等部分国家以及我国部分省份得到广泛的推广使用。
生物乙醇是以生物质为原料生产的可再生能源,它可以单独或与汽油混配制成乙醇汽油作为汽车燃料。普通乙醇可以自己制作,可以利用玉米、高粱等发酵,经水解制成,工艺简单。
生物质能的主要利用形式包括直接燃烧、热化学转换和生物化学转换等3种途径。
1、直接燃烧
当前改造热效率仅为10%左右的传统烧柴灶,推广效率可达20%-30%的节柴灶这种技术简单、易于推广、效益明显的节能措施,被国家列为农村新能源建设的重点任务之一。生物质的直接燃烧和固化成型技术的研究开发主要着重于专用燃烧设备的设计和生物质成型物的应用。
现已成功开发的成型技术按成型物形状主要分为大三类:以日本为代表开发的螺旋挤压生产棒状成型物技术,欧洲各国开发的活塞式挤压制的圆柱块状成型技术,以及美国开发研究的内压滚筒颗粒状成型技术和设备。
2、热化学转换
是指在一定的温度和条件下,使生物质气化、炭化、热解和催化液化,以生产气态燃料、液态燃料和化学物质的技术。
①生物质气化:生物质气化技术是将固体生物质置于气化炉内加热,同时通入空气、氧气或水蒸气,来产生品位较高的可燃气体。它的特点是气化率可达70%以上,热效率也可达85%。生物质气化生成的可燃气经过处理可用于合成、取暖、发电等不同用途,这对于生物质原料丰富的偏远山区意义十分重大,不仅能改变他们的生活质量,而且也能够提高用能效率,节约能源。
②生物质碳化
生物质颗粒碳化燃料是各种生物质经过干燥、转性、混料、成型、碳化等复杂过程连续生产出来的一种新型燃料,其与煤性质相同,是可供各种燃烧机、生物质锅炉、熔解炉、生物质发电等的高效、可再生、环保生物质燃料,此种燃料在国际认证为零污染燃料。
③生物质热解
通常是指在无氧或低氧环境下,生物质被加热升温引起分子分解产生焦炭、可冷凝液体和气体产物的过程,是生物质能的一种重要利用形式。
3、生物质化学转换
通过生物质的厌氧发酵制取甲烷,用热解法生成燃料气、生物油和生物炭,用生物质制造乙醇和甲醇燃料,包括有机物质-沼气转换和生物质-乙醇转换等。沼气转化是有机物质在厌氧环境中,通过微生物发酵产生一种以甲烷为主要成分的可燃性混合气体即沼气。乙醇转换是利用糖质、淀粉和纤维素等原料经发酵制成乙醇。生物制氢,生物质通过气化和微生物催化脱氢方法制氢。
玉米——粉碎——蒸煮(糊化)——糖化(加糖化酶)——发酵(加酵母菌种)——蒸馏塔(蒸馏)——精馏塔(精馏)——酒精
酵母菌将糖发酵成酒精的过程不是简单的化学反应,其机理至今仍莫衷一是。
目前秸秆利用有几种方法,如秸秆粉碎后,添加其他物质,加压制成生物质颗粒燃料;秸秆气化燃料;秸秆液化等。
秸秆液化主要包括生物化学法制备燃料乙醇和热化学法制备生物油。前者一般指采用水解、发酵等手段将秸秆等生物质转化成燃料乙醇;后者则是通过快速热解液化、加压催化液化等进行转化。
热化学法制备生物油又有快速热解液化和加压液化和催化液化等技术,就是采用常压或高压、加热条件下,使生物质中的有机高聚物分子在隔绝空气的条件下迅速断裂为短链分子,生成含有大量可冷凝有机分子的蒸汽,蒸汽被迅速冷凝,同时获得液体燃料、少量不可凝气体和焦炭。液体燃料被称为生物油,为棕黑色黏性液体。生物油组成中99.7%是碳、氢、氧,含有数百种化合物,主要包括烷烃、芳烃等,及多种带有含氧官能团的苯酚类、醛类、酮类等芳香族环状化合物。基本不含醇类。生物油存在氧含量高(30%以上)、挥发性差,大多不稳定且易腐蚀,在空气中易构成沉积等缺点,很难直接作为燃料使用,还需要进行精制。
而以秸秆为原料生产乙醇,则完全是另一条工艺路线,或者说是完全不同的利用方式。已制得的生物油也没有办法再转化为乙醇了。即使有办法把生物油再转化为乙醇,工艺过于复杂,得率低,完全是得不尝失。
如果你想用秸秆转化为乙醇,直接用转化和微生物发酵法就可以了,为什么要先热解为生物油,再转化为乙醇呢?
就像是木头既可以做成桌子,也可以做成板凳。为什么不直接做成板凳,非要先做成桌子,然后再拆开改成板凳呢?