常用的芳磺酸的分离方法有哪几种?
1.碱熔定义
芳磺酸盐在高温下与与熔融的苛性碱作用,使磺酸基被羟基置换的反应叫碱熔。
2.芳磺酸碱熔定义
芳磺酸碱熔一般是向盛有熔融的碱熔锅中在高温下分批加入磺酸盐,碱过量25%左右,加完磺酸盐后,再升温反应一段时间,通过测定游离碱含量来控制反应终点。同时,为了防止凝锅现象,应将碱熔物快速放入热水中。产物的分离方法及副产物亚硫酸钠的利用,因酚类的性质不同而异。
芳磺酸盐的碱熔是工业生产中制备酚类的最早的方法,也是最重要的方法。该方法的优点是工艺过程简单,对设备要求不高,适用于多种酚类的制备。缺点是需要使用大量酸、碱,废液多,工艺较落后。因此一些生产吨位较大的酚类,如苯酚、间甲酚等,已改用其他更先进的生产工艺。但对于有些酚类化合物,如H酸、J酸、γ酸等,世界各国仍然采用磺酸碱熔路线。
最常用的碱熔剂是苛性钠,其次是苛性钾。苛性钾的活性大于苛性钠,苛性钾比苛性钠的价格贵得多。当需要更活泼的碱熔剂时,则需使用苛性钾与苛性钠的混合物。使用混合碱的另一个优点是其熔点可低于300℃,适用于要求较低温度的碱熔过程。苛性碱中含有水分时,也可使其熔点降低。
实验室制法:苯胺氧化水解法:
Ph-NH2+NaNO2——(Ph-N2+),(Ph-N2+)+H3O+=Ph-OH+N2
工业制法:1.由异丙苯制备:C6H6+CH3CH=CH2——Ph-CH(CH3)2,
Ph-CH(CH3)2+O2——Ph-C(CH3)-OOH,再加水——Ph-OH+CH3COCH3
2.由芳磺酸制备:C6H6+H2SO4浓——Ph-SO3H
Ph-SO3H+NaSO3——(NaOH熔融)Ph-ONa——水解
知识拓展之浓溴水和稀溴水对制备的影响:
苯酚和溴水反应的原理是这样的:酚羟基与苯环的共轭作用使羟基邻,对位的电子云密度增大了,所以酚羟基的邻对位亲核能力很强,易在苯环上发生亲电取代反应。而这个反应不一定非得是浓溴水,稀溴水也反应。至于为何课本强调要浓溴水和苯酚反应?原因是产物在苯酚的水溶液中易溶,所以要想看到沉淀,溴水必须过量,而浓溴水只需少许就过量了。
①卤化物的水解 通常用氢氧化钠水溶液作水解剂,反应通式如下:
R—X+NaOH-—→R—OH+NaX-
Ar—X+2NaOH—→Ar—ONa+NaX+H2O式中R、Ar、X分别表示烷基、芳基、卤素。脂链上的卤素一般比较活泼,可在较温和的条件下水解,如从氯苄制苯甲醇;芳环上的卤素被邻位或对位硝基活化时,水解较易进行,如从对硝基氯苯制对硝基酚钠。
②芳磺酸盐的水解 通常不易进行,须先经碱熔,即以熔融的氢氧化钠在高温下与芳磺酸钠作用生成酚钠,后者可通过加酸水解生成酚。如萘-2-磺酸钠在300~340℃常压碱熔后水解而得2-萘酚。某些芳磺酸盐还需用氢氧化钠和氢氧化钾的混合碱作为碱熔的反应剂。芳磺酸盐较活泼时可用氢氧化钠水溶液在较低温度下进行碱熔。
③胺的水解 脂胺和芳胺一般不易水解。芳伯胺通常要先在稀硫酸中重氮化生成重氮盐,再加热使重氮盐水解。反应通式如下:
Ar—NH2+NaNO2+2H2SO4
—→Ar—N+2HSO-4+NaHSO4+2H2O
Ar—N+2HSO4+H2O—→ArOH+H2SO4+N2
如从邻氨基苯甲醚制邻羟基苯甲醚(愈创木酚)。芳环上的氨基直接水解,主要用于制备1-萘酚衍生物,因它们有时不易用其他合成路线制得。根据芳伯胺的结构可用加碱水解、加酸水解或亚硫酸氢钠水溶液水解。如从1-萘胺-5-磺酸制1-萘酚-5-磺酸便是用亚硫酸氢钠水解。
④酯的水解 油脂经加碱水解可得高碳脂肪酸钠(肥皂)和甘油制脂肪酸要用加酸乳化水解。低碳烯烃与浓硫酸作用所得烷基硫酸酯,经加酸水解可得低碳醇。
⑤ 淀粉水解; c6H22o11(麦芽糖)+H2O C6H12O6
但酚的性质找到一些!
酚的羟基直接与苯环的sp2杂化的碳原子相连,这与脂肪族化合物中的烯醇很相似。另外,由于 酚的羟基氧原子的未共用电子对与苯环的共轭作用,不但使苯酚成稳定化合物,而且也有利苯酚的离解。
弱酸性
酸性比较:碳酸>苯酚>水。 酚比醇的酸性强,是由于酚式羟基的O-H键易断裂,生成的苯氧基负离子比较稳定,使苯酚的离解平衡趋向右侧,而表现弱酸性。酚式羟基的氢除能被金属取代外,还能与强碱溶液生成盐(如酚钠)和水。 若在苯酚钠的水溶液中通入二氧化碳,即有游离苯酚析出。这是因为苯酚酸性比碳酸弱,所以酚盐能被碳酸所分解。 C6H5ONa+CO2+H2O→C6H5OH+NaHCO3 由于酚的酸性弱于碳酸,所以酚只能溶于氢氧化钠而不溶于碳酸氢钠。实验室里常根据酚的这一特性,而与既溶于氢氧化钠又能溶于碳酸氢钠的羧酸相区别。此方法也可用于中草药中酚类成分与羧酸类成分的分离。
傅-克反应
苯酚也容易发生傅 - 克酰基化和烷基化反应。但是,酚羟基要三氯化铝作用形成铝盐,因此需要用较多的三氯化铝来催化反应,得到对和邻酰基苯酚。邻酰基酚中酚羟基的氢与酰基氧原子之间可以形成氢键,这使它在非极性溶液中的溶解度较大,利用该特性采用重结晶的方法能分离这个异构体。 傅 - 克反应需要以硝基苯或二硫化碳为溶剂,若以三氟化硼为催化剂,酚和羧酸也能直接反应得到酰基代酚。 苯酚与邻苯二甲酸酐在浓硫酸或无水氯化锌作用下发生上述的酰基化反应,两分子苯酚与一分子酸酐缩合后得到酚酞这一最为常用的酸碱指示剂。酚酞在 pH 小于 8.5 的溶液中为无色液体,当 pH 大于 9 时,形成电荷离域范围很大的粉红色的共轭双负离子。酚的烷基化反应一般以醇或烯烃在浓硫酸催化下进行,反应不容易控制在单取代阶段。
氧化反应
酚类易被氧化,但产物复杂。纯苯酚系无色结晶,在空气中放置后,就能逐渐氧化变为粉红色、红色或暗红色。苯酚如用酸性重铬酸钾强烈氧化,则生成对苯醌。 邻苯二酚和对苯二酚比苯酚更容易被氧化成相应的醌,但间苯二酚不能被氧化为相应的醌。醌是一般都具有颜色。
与FeCl3的显色反应
大多数的酚能与氯化铁的稀水溶液发生显色反应。不同的酚与氯化铁反应呈显不同的颜色。例如,苯酚、间苯二酚、1,3,5-苯三酚与氯化铁溶液作用,均显紫色;甲苯酚呈蓝色;邻苯二酚、对苯二酚呈绿色;1,2,3-苯三酚呈红色,α-萘酚为紫色沉淀,β-萘酚则为绿色沉淀等。此显色反应常用以鉴别酚类的存在。 具有羟基与sp2杂化碳原子相连的结构( —C=C—OH )结构的化合物能与FeCl3的水溶液显示特殊的颜色一般的醇式羟基无此反应,故也可用来区别醇与烯醇。
苯环上的取代反应
酚羟基由于p-π共轭而难于被取代,但苯环上的氢原子可被取代,发生卤化、硝化和磺化等反应,并且羟基是邻、对位定位基,对苯环有活化作用,故酚比苯更容易进行亲电取代反应。 1、卤化 苯酚水溶液与溴水反应立刻生成三溴苯酚白色沉淀,环境检测中常用来对苯酚定性或定量测定; 2、硝化 苯酚在室温下可被稀硝酸硝化,生成邻、对位硝基化合物。使用稀硝酸即可生成邻硝基苯酚和对硝基苯酚的混合物。如使用浓硝酸和浓硫酸的混合物作硝化剂则可生成二硝基苯酚或三硝基苯酚。2,4,6-三硝基苯酚俗称苦味酸,酸性比苯酚强得多。
方法介绍
酚类化合物通常以酚的衍生物来命名,在酚的前面加上芳环的名称,以此作为母体,在加上其他取代基的名称和位置,多元酚则称之为二酚、三酚等等。有些酚类化合物可以用羟基化合物命名。 酚的制备方法和醇有所不同,目前主要有以下几类方法。
1卤代物的水解
芳香卤代物的水解不如脂肪族卤代物那么容易,一般需要加温加压在工业生产上进行,反应可能是经过苯炔中间体过程。当卤素的邻对为上有吸电子基团存在时,芳环受到缺电活化,使水解反应容易发生。
2磺酸盐碱熔法
芳磺酸用亚硫酸钠 Na2SO3 中和为芳磺酸钠盐再有碱熔融后酸化得到酚。 这是生产苯酚最早的一个方法。反应中要用到强酸强碱,污染大,反应步骤又长,自动话生产率低,当分子中含有羰基、卤素、氨基、硝基等官能团时,在高温生产时还容易受到氧化等副反应的影响,这些因素都限制了这个反应的应用价值。然而,这个反应产率高,纯度也还可以,副产物 Na2SO3 和 SO3 可反复使用,设备简单,无论在实验室还是工业上都仍有应用价值,像间二苯酚、对甲苯酚,苯酚等产品还主要是由此法产生。
3重氮盐水解
芳香烃硝化还原得到苯胺后再制得重氮盐,重氮盐水解后得到苯酚。 目前工业生产苯酚的最主要方法是用异丙苯空气氧化法,该方法除了生成苯酚外,还得到丙酮这一重要工业原料。
4格氏反应
芳香卤代物格氏反应和硼酸酯作用后再水解也是实验室里得到酚的一个好方法。
1-硝基苯在铁和盐酸的作用下生成1-苯胺;1-苯胺在盐酸和亚硝酸存在的条件下0至5摄氏度,生成重氮盐;重氮盐和氯化铜作用生成氯苯;氯苯和水在420至520摄氏度有铜催化剂的条件下生成苯酚和氯化氢。
苯酚石炭酸羟基苯phenolHydroxybenzene
理化性质
无色针状结晶或白色结晶,有特殊气味,遇空气和光变红,遇碱变色更快。分子式C6-H6-O。分子量94.11。相对密度1.071。熔点40.85℃(超纯,含杂质熔点提高)。沸点181.9℃。闪点79.44℃(闭杯),85℃(开杯)。自燃点715℃。蒸气密度3.24。蒸气压0.13kPa(40.1℃)。蒸气与空气混合物燃烧限1.7~8.6% 。1克溶于约15ml水(0.67%,25℃加热后可以任何比例溶解),12ml苯。易溶于醇、氯仿、乙醚、丙三醇、二硫化碳、凡士林、碱金属氢氧化物水溶液,几乎不溶于石油醚。水溶液pH值约为6.0。
酚能腐蚀橡胶和合金。与碱作用生成盐。遇热、明火、氧化剂、静电可燃。与三氯化铝+硝基苯、丁二烯、过二硫酸、过一硫酸发生剧烈反应,引起燃烧爆炸。能与氧化剂发生反应。
水解的原理是盐电离出的离子结合了水电离出的氢离子和氢氧根离子生成弱电解质分子的反应,是物质与水发生的导致物质发生分解的反应(不一定是复分解反应)也可以说是物质与水中的氢离子或者是氢氧根离子发生反应。
芳磺酸盐的水解通常不易进行,须先经碱熔,即以熔融的氢氧化钠在高温下与芳磺酸钠作用生成酚钠,后者可通过加酸水解生成酚。
如萘-2-磺酸钠在300~340℃常压碱熔后水解而得2-萘酚。某些芳磺酸盐还需用氢氧化钠和氢氧化钾的混合碱作为碱熔的反应剂。芳磺酸盐较活泼时可用氢氧化钠水溶液在较低温度下进行碱熔。
扩展资料:
无机盐的水解分四类:
一、强酸强碱盐不发生水解,因为它们电离出来的阴、阳离子不能破坏水的电离平衡,所以呈中性。
二、强酸弱碱盐,我们把弱碱部分叫弱阳,弱碱离子结合从水中电离出来的氢氧根离子,破坏了水的电离平衡,使得水的电离正向移动,结果溶液中的氢离子浓度大于氢氧根离子浓度,使水溶液呈酸性。
三、强碱弱酸盐,我们把弱酸部分叫弱阴,同理弱阴结合从水中电离出来的氢离子,使得溶液中氢氧根离子浓度大于氢离子浓度,使溶液呈碱性。
四、弱酸弱碱盐,弱酸部分结合氢,弱碱部分结合氢氧根,生成两种弱电解质,再比较它们的电离常数Ka、Kb值的大小(而不是水解度的大小),在一温度下,弱电解质的电离常数(又叫电离平衡常数)是一个定值;
这一比较就可得出此盐呈什么性了,谁强呈谁性,电离常数是以10为底的负对数,谁负得少谁就大。总之一句话,盐溶液中的阴、阳离子结合着从水中电离出来的氢离子或氢氧根离子能生成弱电解质的反应叫盐类的水解。
卤化物的水解
通常用氢氧化钠水溶液作水解剂,反应通式如下:
R—X+H2O-─→R—OH+HX
Ar—X+2H2O─→Ar—OH+HX+H2O式中R、Ar、X分别表示烷基、芳基、卤素。脂链上的卤素一般比较活泼,可在较温和的条件下水解,如从氯苄制苯甲醇;芳环上的卤素被邻位或对位硝基活化时,水解较易进行,如从对硝基氯苯制对硝基酚钠。
酯的水解
油脂在酸或碱催化条件下可以水解.
① 酸性条件下的水解
在酸性条件下水解为甘油(丙三醇) 高级脂肪酸.
C17H35COO-CH2 CH2-OH
C17H35COO-CH +3H2O ==== CH-OH + 3C17H35COOH
C17H35COO-CH2 CH2-OH
② 碱性条件下的水解
在碱性条件下水解为甘油 高级脂肪酸盐.
C17H35COO-CH2 CH2OH
C17H35COO-CH +3NaOH ==== CH2OH + 3C17H35COONa
C17H35COO-CH2 CH2OH
两种水解都会产生甘油.
油脂在碱性条件下的水解反应称为皂化反应.
工业上就是利用油脂的皂化反应制取肥皂.
低碳烯烃与浓硫酸作用所得烷基硫酸酯,经加酸水解可得低碳醇。
淀粉/纤维素水解
(C6H10O5)n(淀粉/纤维素)+nH2O→nC6H12O6(葡萄糖)
蔗糖水解
C12H22O11(蔗糖)+H2O→C6H12O6(果糖)+C6H12O6(葡萄糖)
麦芽糖水解
C12H22O11(麦芽糖)+H2O→2C6H12O6(葡萄糖)
芳磺酸盐的水解
通常不易进行,须先经碱熔,即以熔融的氢氧化钠在高温下与芳磺酸钠作用生成酚钠,后者可通过加酸水解生成酚。如萘-2-磺酸钠在300~340℃常压碱熔后水解而得2-萘酚。某些芳磺酸盐还需用氢氧化钠和氢氧化钾的混合碱作为碱熔的反应剂。芳磺酸盐较活泼时可用氢氧化钠水溶液在较低温度下进行碱熔。
胺的水解
脂胺和芳胺一般不易水解。芳伯胺通常要先在稀硫酸中重氮化生成重氮盐,再加热使重氮盐水解。反应通式如下:
Ar—NH2+NaNO2+2H2SO4
─→Ar—N+2HSO-4+NaHSO4+2H2O
Ar—N+2HSO4+H2O─→ArOH+H2SO4+N2
如从邻氨基苯甲醚制邻羟基苯甲醚(愈创木酚)。芳环上的氨基直接水解,主要用于制备1-萘酚衍生物因它们有时不易用其他合成路线制得。根据芳伯胺的结构可用加碱水解、加酸水解或亚硫酸氢钠水溶液水解。如从1-萘胺-5-磺酸制1-萘酚-5-磺酸便是用亚硫酸氢钠水解。
磺化碱熔法:用浓硫酸磺化剂,将苯进行磺化生成苯磺酸。苯磺酸用氢氧化钠中和得到苯磺酸钠,后者与氢氧化钠共熔得到苯酚钠。苯酚钠经酸化得到苯酚。
异丙苯法:丙烯与苯在三氯化铝的催化下,于80-90摄氏度进行烃基化反应,得到异丙苯。异丙苯用空气在100-120摄氏度和300-400kPa压强下氧化生成过氧化氢异丙苯。过氧化氢异丙苯用硫酸在60℃下常压裂解为丙酮和苯酚。
氯苯水解法:苯和氯气在铁的催化下氯代,得到氯苯。氯苯与氢氧化钠水溶液在高温高压下进行催化水解,生成苯酚钠,经酸化得到苯酚。氯苯的氯很不活泼,需要在高温高压下,并且用催化剂催化才能顺利水解。