塑料加工的工艺性能有哪些?这些工艺性能对成型加工各有什么影响
塑料具有独特的成型性能,即良好的可挤压性、可模塑性、可延展性等,一句话归结为塑料的可塑性。1、塑料的可挤压性:是指塑料通过挤压作用变形时获得和保持形状的能力,研究塑料的挤压性质,能正确选择和控制制品所用的材料及成型工艺。2、塑料的可模塑性:是指塑料在温度和压力作用下产生变形和在模具中模塑成型的能力。具有可模塑性的塑料可通过注射、模压和挤出等成型方法制成各种形状的模塑制品。3、塑料的可延展性:是指塑料在一个或两个方向上受到压延或拉伸时变形的能力。利用这一性能,可通过压延或拉伸工艺生产薄膜、片材和纤维。
(密度)增大,其冷却后收缩率就是变小,从而导致产品外形尺寸偏大。注塑压力过小则反之。
2/6
注塑浇口过大,则塑料流经浇口时的压力损耗变小,则模腔内压力变大,会导致产品致密性(密度)增大,其冷却后收缩率就是变小,从而导致产品外形尺寸偏大。浇口过小则反之。
3/6
注塑速度(进料速度)过小,会导致塑料在模腔内的温度呈现阶梯式,冷却不匀,塑料产品变脆,塑性强度变小,对于压扁、爆破、打压试验都有很大的不利影响。
4/6
保压时间过长,则产品在模腔内冷却收缩过程中,向模具尺寸贴合,这样内径就会偏大,外径相对比在空冷或水冷条件下,冷却较慢,收缩时间就会延长,故外径偏小。保压时间长的优势在于容易控制尺寸,去除残留内应力。
5/6
模腔冷却温度过低或注塑温度过高,会导致塑料急速冷却,残留内应力增加,对强度不利。
6/6
模腔冷却温度过高,塑料产品会
一、收缩率
热塑性塑料成型收缩的情势及打算如前所述,影响热塑性塑料成型压缩的身分以下:
1.1塑料品种热塑性塑料成型进程傍边由于还存在结晶化形起的体积变革,内应力强,冻结在塑件内的残余应力大,分子取向性强等因素,因此与热固性塑料比较则收缩率较大,延长率范围宽、方向性明显,另外成型后的收缩、退火或调湿处理后的收缩率一般也都比热固性塑料大。
1.2塑件特性成型时熔融料与型腔表面打仗外层立即冷却形成低密度的固态外壳。因为塑料的导热性差,使塑件内层敏感冷却而形成收缩大的高密度固态层。所以壁厚、冷却慢、高密度层厚的则收缩大。另外,有无嵌件及嵌件构造、数量都直接影响料流方向,密度分布及收缩阻力大小等,所以塑件的特性对收缩大小、方向性影响较大。
1.3进料口体例、尺寸、散布这些成分直接影响料流方向、密度分布、保压补缩作用及成型时间。直接进料口、进料口截面大(特殊截面较厚的)则收增加但方向性大,进料口宽及长度短的则方向性小。距进料口近的或与料流方向平行的则紧缩大。
1.4成型前提模具温度高,熔融料冷却慢、密度高、膨胀大,特别对结晶料则因结晶度高,体积改变大,故收缩更大。模温散布与塑件表里冷却及密度均匀性也有关,间接影 响到各部分紧缩量巨细及方向性。别的,坚持压力实时光对缩短也影响较大,压力大、工夫长的则收减少但标的目的性大。注塑压力高,熔融料粘度差小,层间剪切应力小,脱模后弹性 回跳大,故收缩也可适量的减小,料温高、压缩大,但偏向性小。因而在成型时调解模温、压力、注塑速度及冷却时候等诸要素也可恰当变化塑件收缩情形。
模具设想时把柄种种塑料的收缩范畴,塑件壁厚、外形,进料口方式尺寸及漫衍环境,按经验断定塑件各部位的收缩率,再来计算型腔尺寸。对高精度塑件及难以把持收缩率时,一般宜用以下措施计划模具:
①对塑件外径取较小收缩率,内径取较大收缩率,以留有试模后修改的余地。
②试模判定浇注系统形式、尺寸及成型条件。
③要后处理的塑件经后处置确定尺寸变更状态(测量时必需在脱模后24小时以后)。
④按事实收缩状况矫正模具。
⑤再试模并可适本地修改工艺条件略微修正收缩值以满足塑件要求。
二、流动性
2.1热塑性塑料流动性大小,一般可从分子量大小、熔融指数、阿基米德螺旋线流动长度、表现粘度及流动比(流程长度/塑件壁厚)等一系列指数举办分析。分子量小,分子量分布宽,分子布局规整性差,熔融指数高、螺流动长度长、表现粘度小,流动比大的则流动性就好,对同一品名的塑料必须检查其说明书判断其流动性是否适用于注塑成型。按模具设计要求大要可将常常应用塑料的流动性分为三类:
①流动性好 PA、PE、PS、PP、CA、聚(4)甲基戍烯;
②流动性中等 聚苯乙烯系列树脂(如ABS、AS)、PMMA、POM、聚苯醚;
③活动性差 PC、硬PVC、聚苯醚、聚砜、聚芳砜、氟塑料。
2.2各种塑料的流动性也因各成型因素而变,主要影响的因素有如下几多点:
①温度料温高则流动性增大,但差别塑料也各有不同,PS(尤其耐袭击型及MFR值较高的)、PP、PA、PMMA、改性聚苯乙烯(如ABS、AS)、PC、CA等塑料的流动性随温度变更较大。对PE、POM、则温度增减对其流动性影响较小。所过去者在成型时宜调治温度来控制流动性。
②压力注塑压力增大则熔融料受剪切感召大,牢固性也增大,特别是PE、POM较为敏感,所以成型时宜调节注塑压力来操纵运动性。
③模具结构浇注零星的形式,尺寸,部署,冷却体系打算,熔融料流动阻力(如型面光明度,料道截面厚度,型腔形状,排气系统)等因素都直接影响到熔融料在型腔内的实际流动性,凡促使熔融料降低温度,增加流动性阻力的则流动性就降落。模具假想时应根据所用塑料的流动性,选用公平的结构。成型时则也可控制料温,模温及注塑压力、注塑速率等因素来适当地调理填充情况以满足成型需要。
三、结晶性
热塑性塑料按其冷凝时无浮现结晶气象可分辨为结晶型塑料与非结晶型(又称无定形)塑料两年夜类。
所谓结晶征象即为塑料由熔融状况到冷凝时,分子由独立移动,完全处于无次序状态,变因素子停止自由勾当,按稍微坚固的位置,并有一个使分子摆设成为正规模型的倾向的一种景象。
作为断定这两类塑料的外不雅观标准可视塑料的厚壁塑件的透明性而定,畸形结晶性料为不透明或半透明(如POM等),无定形料为透明(如PMMA等)。但也有例外情况,如聚(4)甲基戍烯为结晶型塑料却有高通明性,ABS为无定形料但却实在不透明。
在模具设计及抉择注塑机时应重视对结晶型塑料有以下要求及留心事故:
①料温上升到成型温度所需的热量多,要用塑化才干大的设备。
②冷却回化时放出热量大,要充分冷却。
③熔融态与固态的比重差大,成型收缩大,易发生缩孔、气孔。
④冷却快,结晶度低,收缩小,透明度高。结晶度与塑件壁厚有关,壁厚则冷却慢,结晶度高,收缩大,物性好。以是结晶性料应按请求必须节制模温。
⑤各向异性显明,内应力大。脱模后未结晶化的份子有连续结晶化偏向,处于能量不平衡情况,易发作变形、翘曲。
⑥结晶化温度范围窄,易发生未熔料末注入模具或堵塞进料口。
四、热敏性塑料及易水解塑料
4.1热敏性系指某些塑料对热较为敏感,在高温下受热时分较长或进料口截面太小,剪切作用大时,料温增高易发生变色、降解,剖析的倾向,存在这类特点的塑料称为热敏性塑料。如硬PVC、聚偏氯乙烯、醋酸乙烯共聚物,POM,聚三氟氯乙烯等。热敏性塑料在分解时发生单体、气体、固体等副产物,分内是有的分解气体对人体、配置、模具都有抚慰、堕落作用或毒性。因此,模具设计、决定注塑机及成型时都应留心,应选用螺杆式注塑机,浇注系统截面宜大,模具跟料筒应镀铬,不得有*角滞料,必须严格控制成型温度、塑猜中加入牢固剂,减弱其热敏性能。
4.2有的塑料(如PC)即使含有大量水分,但在高温、低压下也会发生分解,这类功效称为易水解性,对此必须预先加热单调。
五、应力开裂及熔体破裂
5.1有的塑料对应力敏感,成型时易产生内应力并质脆易裂,塑件在外力作用下或在溶剂作用下即发生开裂现象。为此,除在原料内加入添加剂提高开抗裂性外,对质料应过细枯燥,合理的筛选成型条件,以增长内应力和增加抗裂性。并应弃取合理的塑件形状,不宜设定嵌件等方法来尽管镌汰应力汇合。模具设计时应增大脱模斜度,选用公道的进料口及顶出机构,成型时应适当的调理料温、模温、注塑压力及冷却时间,尽量预防塑件过于冷脆时脱模,成型后塑件还宜停止后处置惩罚提高抗开裂性,消除内应力并禁止与溶剂接触。
5.2当必定融熔体流动速度的聚合物熔体,在恒温下经由喷嘴孔时其流速超出某值后,熔体名义产生明显横向裂纹称为熔体粉碎,有损塑件表面及物性。故在选用熔体固定速度高的聚合物等,应增大喷嘴、浇道、进料口截面,增添注塑速率,进步料温。
六、热机能及冷却速度
6.1各种塑料有不合比热、热传导率、热变形温度等热功能。比热高的塑化时须要热量大,应选用塑化本事大的注塑机。热变形温度高塑料的冷却功夫可短,脱模早,但脱模后要防备冷却变形。热传导率低的塑料冷却速度慢(如离子聚合物等冷却速度极慢),故必须充分冷却,要加强模具冷却成果。热浇道模具适用于比热低,热传导率高的塑料。比热大、热传 导率低,热变形温度低、冷却速度慢的塑料则不幸于高速成型,必须选用适当的注塑机及增强模具冷却。
6.2各类塑料按其种类特征及塑件形状,要求必须保持得当的冷却速度。所以模具必须按成型要求设定加热跟冷却系统,以连结必定模温。当料温使模温下降时应予冷却,以防范塑件脱模后变形,延伸成型周期,高涨结晶度。当塑料余热缺少以使模具保持一定温度时,则模具应设有加热系统,使模具保持在一定温度,以控制冷却速度,保证流动性,改进添补条件或用以掌握塑件使其缓慢冷却,避免厚壁塑件内外冷却不匀及提高结晶度等。对流动性好,成型面积大、料温不匀的则按塑件成型情况偶尔需加热或冷却交替应用或局 部加热与冷却并用。为此模具应设有呼应的冷却或加热零碎。
七、吸湿性
塑料中因有各种增添剂,使其对水分有差异的亲疏程度,所以塑料大致可分为吸湿、粘附水份及不吸水也不轻易粘附水分的两种,料中含水量必须控制在允许范围内,不然在高温、高压下水分变成气体或发生水解感化,使树脂起泡、流动性下降、名义及力学性能不良。所以吸湿性塑料必须按恳求采用切当的加热方法及尺度结束预热,在利用时防止再吸湿。
一.FDM
丝状材料选择性熔覆(Fused Deposition Modeling)快速原型工艺是一种不依靠激光作为成型能源、而将各种丝材(如工程塑料ABS、聚碳酸酯PC等)加热熔化进而堆积成型方法,简称FDM。
FDM快速原型技术的优点是:
1、 制造系统可用于办公环境,没有毒气或化学物质的污染;
2、 一次成型、易于操作且不产生垃圾;
3、 独有的水溶性支撑技术,使得去除支撑结构简单易行,可快速构建瓶状或中空零件以及一次成型的装配结构件;
4、 原材料以材料卷的形式提供,易于搬运和快速更换。
5、 可选用多种材料,如各种色彩的工程塑料ABS、PC、PPSF以及医用ABS等。
FDM快速原型技术的缺点是:
1、 成型精度相对国外先进的SLA工艺较低,最高精度0.127mm
2、成型表面光洁度不如国外先进的SLA工艺;
3、成型速度相对较慢
二、SLA
光敏树脂选择性固化是采用立体雕刻(Stereolithography)原理的一种工艺,简称SLA,是最早出现的一种快速成型技术。
SLA快速原型技术的优点是:
1、表面质量较好;
2、成型精度较高,精度在0.1mm(国内SLA精度在0.1—0.3mm之间,并且存在很大的波动性);
3、 系统分辨率较高。
SLA快速原型的技术缺点:
1、需要专用的实验室环境,成型件需要后处理,比如:二次固化,防潮处理等工序。
2、尺寸稳定性差,随着时间推移,树脂会吸收空气中的水分,导致软薄部分的翘曲变形,进而极大地影响成型件的整体尺寸精度;
3、氦-镉激光管的寿命仅3000小时,价格较昂贵,由于需对整个截面进行扫描固化,成型时间较长,因此制作成本相对较高。
4、 可选择的材料种类有限,必须是光敏树脂。由这类树脂制成的工件在大多数情况下都不能进行耐久性和热性能试验,且光敏树脂对环境有污染,使皮肤过敏。
5、 需要设计工件的支撑结构,以便确保在成型过程中制作的每一个结构部位都能可靠定位,支撑结构需在未完全固化时手工去除,容易破坏成型件。
三、SLS
粉末材料选择性烧结(Selected Laser Sintering)是一种快速原型工艺,简称SLS。
SLS快速原型技术的优点是:
1、 与其他工艺相比,能生产较硬的模具。
2、 可以采用多种原料,包括类工程塑料、蜡、金属、陶瓷等。
3、 零件的构建时间较短,可达到1in/h高度。
4、 无需设计和构造支撑。
SLS快速原型技术缺点是:
1、有激光损耗,并需要专门实验室环境,使用及维护费用高昂。
2、需要预热和冷却,后处理麻烦;
3、 成型表面粗糙多孔,并受粉末颗粒大小及激光光斑的限制。
4、 需要对加工室不断充氮气以确保烧结过程的安全性,加工成本高。
5、 成型过程产生有毒气体和粉尘,污染环境。
四、LOM
箔材叠层实体制作(Laminated Object Manufacturing)快速原型技术是薄片材料叠加工艺,简称LOM。
LOM快速原型技术的优点是:
1、成型速度较快,由于只需要使激光束沿着物体的轮廓进行切割,无需扫描整个断面,所以成型速度很快,因而常用于加工内部结构简单的大型零件。
2、无需设计和构建支撑结构。
LOM快速原型技术的缺点是:
1、有激光损耗,并需要专门实验室环境,维护费用高昂;
2、可实际应用的原材料种类较少,尽管可选用若干原材料,例如纸、塑料、陶土以及合成材料,但目前常用的只是纸,其他箔材尚在研制开发中;
3、必须进行防潮处理,纸制零件很容易吸湿变形,所以成型后必须立即进行树脂、防潮漆涂覆等后处
4、难以构建形状精细、多曲面的零件,仅限于结构简单的零件。
5、废料去除困难,所以该工艺不宜构建内部结构复杂的零件。
6、当加工室的温度过高时常有火灾发生。因此,工作过程中需要专职人员职守。
塑件自模具中取出冷却到室温后,发生尺寸收缩这种性能称为收缩性。由于收缩不仅是树脂本身的热胀冷缩,而且还与各成形因素有关,所以成形后塑件的收缩应称为成形收缩。
1、成形收缩的形式成形收缩主要表现在下列几方面:
(1)塑件的线尺寸收缩由于热胀冷缩,塑件脱模时的弹性恢复、塑性变形等原因导致塑件脱模冷却到室温后其尺寸缩小,为此型腔设计时必须考虑予以补偿。
(2)收缩方向性成形时分子按方向排列,使塑件呈现各向异性,沿料流方向(即平行方向)则收缩大、强度高,与料流直角方向(即垂直方向)则收缩小、强度低。另外,成形时由于塑件各部位密度及填料分布不匀,故使收缩也不匀。产生收缩差使塑件易发生翘曲、变形、裂纹,尤其在挤塑及注射成形时则方向性更为明显。因此,模具设计时应考虑收缩方向性按塑件形状、流料方向选取收缩率为宜。
(3)后收缩塑件成形时,由于受成形压力、剪切应力、各向异性、密度不匀、填料分布不匀、模温不匀、硬化不匀、塑性变形等因素的影响,引起一系列应力的作用,在粘流态时不能全部消失,故塑件在应力状态下成形时存在残余应力。当脱模后由于应力趋向平衡及贮存条件的影响,使残余应力发生变化而使塑件发生再收缩称为后收缩。一般塑件在脱模后10小时内变化最大,24小时后基本定型,但最后稳定要经30-60天。通常热塑性塑料的后收缩比热固性大,挤塑及注射成形的比压塑成形的大。
(4)后处理收缩有时塑件按性能及工艺要求,成形后需进行热处理,处理后也会导致塑件尺寸发生变化。故模具设计时对高精度塑件则应考虑后收缩及后处理收缩的误差并予以补偿。
2、收缩率计算塑件成形收缩可用收缩率来表示,如公式(1-1)及公式(1-2)所示。
(1-1) Q实=(a-b)/b×100
(1-2) Q计=(c-b)/b×100
式中:Q实—实际收缩率(%)
Q计—计算收缩率(%)
a —塑件在成形温度时单向尺寸(mm)
b —塑件在室温下单向尺寸(mm)
c —模具在室温下单向尺寸(mm)
实际收缩率为表示塑件实际所发生的收缩,因其值与计算收缩相差很小,所以模具设计时以Q计为设计参数来计算型腔及型芯尺寸。
3、影响收缩率变化的因素在实际成形时不仅不同品种塑料其收缩率各不相同,而且不同批的同品种塑料或同 一塑件的不同部位其收缩值也经常不同,影响收缩率变化的主要因素有如下几个方面。
(1)塑料品种各种塑料都有其各自的收缩范围,同种类塑料由于填料、分子量及配比等不同,则其收缩率及各向异性也不同。
(2)塑件特性塑件的形状、尺寸、壁厚、有无嵌件,嵌件数量及布局对收缩率大小也有很大影响。
(3)模具结构模具的分型面及加压方向,浇注系统的形式,布局及尺寸对收缩率及方向性影响也较大,尤其在挤塑及注射成形时更为明显。
(4)成形工艺 挤塑、注射成形工艺一般收缩率较大,方向性明显。预热情况、成形温度、成形压力、保持时间、填装料形式及硬化均匀性对收缩率及方向性都有影响。
如上所述模具设计时应根据各种塑料的说明书中所提供的收缩率范围,并按塑件形状、尺寸、壁厚、有无嵌件情况、分型面及加压成形方向、模具结构及进料口形式尺寸和位置、成形工艺等诸因素综合地来考虑选取收缩率值。对挤塑或注射成形时,则常需按塑件各部位的形状、尺寸、壁厚等特点选取不同的收缩率。
另外,成形收缩还受到各成形因素的影响,但主要决定于塑料品种、塑件形状及尺寸。所以成形时调整各项成形条件也能够适当地改变塑件的收缩情况。 热固性塑料在成形过程中在加热受压下转变成可塑性粘流状态,随之流动性增大填充型腔,与此同时发生缩合反应,交联密度不断增加,流动性迅速下降,融料逐渐固化。模具设计时对硬化速度快,保持流动状态短的料则应注意便于装料,装卸嵌件及选择合理的成形条件和操作等以免过早硬经或硬化不足,导致塑件成形不良。
硬化速度一般可从保持时间来分析,它与塑料品种、壁厚、塑件形状、模温有关。但还受其它因素而变化,尤其与预热状态有关,适当的预热应保持使塑料能发挥出最大流动性的条件下,尽量提高其硬化速度,一般预热温度高,时间长(在允许范围内)则硬化速度加快,尤其预压锭坯料经高频预热的则硬化速度显著加快。另外,成形温度高、加压时间长则硬化速度也随之增加。因此,硬化速度也可调节预热或成形条件予以适当控制。
硬化速度还应适合成形方法要求,例注射、挤塑成型时应要求在塑化、填充时化学反应慢、硬化慢,应保持较长时间的流动状态,但当充满型腔后在高温、高压下应快速硬化。 各种塑料中含有不同程度的水分、挥发物含量,过多时流动性增大、易溢料、保持时间长、收缩增大,易发生波纹、翘曲等弊病,影响塑件机电性能。但当塑料过于干燥时也会导致流动性不良成形困难,所以不同塑料应按要求进行预热干燥,对吸湿性强的料,尤其在潮湿季节即使对预热后的料也应防止再吸湿。
由于各种塑料中含有不同成分的水分及挥发物,同时在缩合反应时要发生缩合水分,这些成分都需在成形时变成气体排出模外,有的气体对模具有腐蚀作用,对人体也有刺激作用。为此在模具设计时应对各种塑料此类特性有所了解,并采取相应措施,如预热、模具镀铬,开排气槽或成形时设排气工序。
1、料筒温度
注射模塑过程需要控制的温度有料筒温度、喷嘴温度和模具温度等。前两个温度主要影响塑料的塑化和流动,而后一种温度主要是影响塑料的流动和冷却。每一种塑料都具有不同的流动温度,同一种塑料,由于来源或牌号不同,其流动温度及分解温度是有差别的,这是由于平均分子量和分子量分布不同所致,塑料在不同类型的注射机内的塑化过程也是不同的,因而选择料筒温度也不相同。
2、喷嘴温度
喷嘴温度通常是略低于料筒最高温度的,这是为了防止熔料在直通式喷嘴可能发生的“流涎现象”。喷嘴温度也不能过低,否则将会造成熔料的早凝而将喷嘴堵死,或者由于早凝料注入模腔而影响制品的性能。
3、模具温度
模具温度对制品的内在性能和表观质量影响很大。模具温度的高低决定于塑料结晶性的有无、制品的尺寸与结构、性能要求,以及其它工艺条件(熔料温度、注射速度及注射压力、模塑周期等)。
二、压力控制
注塑过程中压力包括塑化压力和注射压力两种,并直接影响塑料的塑化和制品质量。
1、塑化压力
(背压)采用螺杆式注射机时,螺杆顶部熔料在螺杆转动后退时所受到的压力称为塑化压力,亦称背压。这种压力的大小是可以通过液压系统中的溢流阀来调整的。在注射中,塑化压力的大小是随螺杆的转速都不变,则增加塑化压力时即会提高熔体的温度,但会减小塑化的速度。
此外,增加塑化压力常能使熔体的温度均匀,色料的混合均匀和排出熔体中的气体。一般操作中,塑化压力的决定应在保证制品质量优良的前提下越低越好,其具体数值是随所用的塑料的品种而异的,但通常很少超过20公斤/平方厘米。
2、注射压力
在当前生产中,几乎所有的注射机的注射压力都是以柱塞或螺杆顶部对塑料所施的压力(由油路压力换算来的)为准的。注射压力在注塑成型中所起的作用是,克服塑料从料筒流向型腔的流动阻力,给予熔料充模的速率以及对熔料进行压实。
三、成型周期
完成一次注射模塑过程所需的时间称成型周期,也称模塑周期。成型周期直接影响劳动生产率和设备利用率,因此在生产过程中,应在保证质量的前提下,尽量缩短成型周期中各个有关时间。在整个成型周期中,以注射时间和冷却时间最重要,它们对制品的质量均有决定性的影响。注射时间中的充模时间直接反比于充模速率,生产中充模时间一般约为3~5秒。
注射时间中的保压时间就是对型腔内塑料的压力时间,在整个注射时间内所占的比例较大,一般约为2~120秒(特厚制件可高达5~10分钟)。在浇口处熔料封冻之前,保压时间的多少,对制品尺寸准确性有影响。保压时间也有最惠值,已知它依赖于料温、模温以及主流道和浇口的大小。
如果主流道和浇口的尺寸以及工艺条件都是正常的,通常即以得出制品收缩率波动范围最小的压力值为准。冷却时间主要决定于制品的厚度,塑料的热性能和结晶性能,以及模具温度等。冷却时间的终点,应以保证制品脱模时不引起变动为原则,一般约在5~120秒钟之间。
冷却时间过长没有必要,不仅降低生产效率,对复杂制件还将造成脱模困难,强行脱模时甚至会产生脱模应力。成型周期中的其它时间则与生产过程是否连续化和自动化以及两化的程度等有关。
3) 对于壁薄制品,其尺寸也不能过大,因为大而薄的塑件,熔体充满型腔较为困难,有时尚未充满型腔前就已固化,或勉强充满,但塑件前端已不能很好地熔合而形成熔接痕,影响塑件的外观和强度。
4) 注塑机的注射量、锁模力、模板尺寸等对注塑制品大小均有不同程度的影响。
(2) 影响塑件尺寸精度的因素
1) 成型收缩率的波动塑料本身的特性和成型工艺条件对塑件成型收缩率以及收缩率的波动影响很大,如塑料结晶、流动性、弹性模量、料温,以及模具温度、注射压力、保压压力、塑化背压、成型周期等。均对收缩率产生不同程度的影响:
对于同一种塑料,合理的塑料制品结构、合理的成型工艺条件,合理的模具结构及其制造精度,可以减少塑件成型收?率的波动,获得较高的尺寸精度。
2) 模具结构及其制造精度在设计模具时,不但要考虑模具的分型面,以便塑件的成型和脱模,还要考虑塑件成型时熔料的流动性,即浇道的分布,浇口的位置、排气、模具的冷却或加热等。
在注塑成型时,模腔内要承受较高的压力,若模具的刚度不足,会使模具产生变形,从而降低塑件尺寸精度。此外,型腔的结构对刚度有较大影响,以整体模最好,框架模次之,镶拼模最差。但加工精度却是框架模最高、镶拼模次之,整体模最差,为此,两者要协同考虑。
模具的动、定模定位一般用导柱和导套,但由于有配合间隙存在,因此模腔可能发生偏移,使塑件尺寸精度下降,为此,可采用一些定位元件来消除间隙,以提高模具的定位精度。
3) 模具磨损模具在使用过程中会受到程度不同的磨损,主要是指型腔和运动部件,如导柱和导套等的磨损。当塑料中含有硬质填料、玻纤时,模腔的磨损尤为突出,这时模腔应选用耐磨性好的材料,或在其表面进行硬化处理。
金刚石、硬质合金、淬火钢、石英、玻璃、陶瓷等一般很难加工。电火花、电解、激光等多种加工方法使金刚石、聚晶(人造)金刚石制造的刀具、工具、拉丝模具等得到了广泛应用,材料的可加工性不再与硬度、强度、韧性、脆性等有直接关系。例如,对电火花线切割言、淬火钢比未淬火钢更易加工。特种加工技术使材料的可加工范围从普通材料发展硬质金、超硬材料和特殊材料。
2.改变了零件的典型工艺路线在传统加工中(磨削加工除外),切削加工、成形加工等都必须安排在淬火工序前进行,这是所有工艺人员必须遵守工艺准则,但特种加工的出现改变了这种一成不变的格式。由于特种加工基本上不受工件硬度的影响,为了避免加工后再进行淬火而引起变形一般都是先淬火、后加工,最为典型的加工方法是电火花线切割加工、电火花成形加工和电解加工。
特种加工的出现还对以往工序的“分散”和“集中”产生了影响。由于特种加工过程中没有显著的机械作用力机床、夹具、工具的强度和刚度不是主要问题,因此,即使是较大的、复杂的加工表面,也可使用一个复杂工具经过一次装夹、一道工序加工出来,工序比较集中。
3.缩短了新产品试制周期试制新产品时,采用特种加工技术可以直接加工出各种标准和非标准直齿轮,微型电动机转子硅钢片,各种变压器铁心,各种复杂、特殊的二次曲面体等零件,可以省去设计和制造相应的刀具、夹具、量具、模具以及二次工具的环节,大大缩短了试制周期。快速成型技术更是试制新产品的必要手段,改变了过去传统的产品试制模式。
4.产品零件的结构设计产生了很大的影响各种复杂冲模以往难以制造,一般做成镶拼式结构,在采用电火花线切割加工技术后,即使是硬质合金的模具或刀具也可以做成整体式结构。由于电解加工的出现,喷气发动机涡轮也可以采用带冠整体结构,大大提高了发动机的性能。
5.改变了对传统结构工艺性的衡量标准
方孔、小孔、深孔、弯孔、窄缝等被认为是工艺性很差的典型,对工艺设计人员来说是非常忌讳的甚至被认为是机械结构的禁区,但是对于电火花穿孔加工、电火花切割工来说方孔、圆孔的难易程度是一样的。喷油嘴小孔,喷丝头小异形孔,涡轮叶片上大量的小冷却深孔、窄缝,静压轴承和静压导轨的内油囊型腔等,在采用电火花加工技术以后,其工艺性到了改善。采用传统机械加工方法时,若在淬火工艺处理前漏掉钻定位销、铣槽等工,淬火处理后这种工件只能报废,现在则可以用电火花打孔、切槽等方法进行补救。而且,现在有为了避免淬火处理产生开裂、变形等缺陷,还特意把钻孔、开槽等工艺安排在淬火工艺处理之后,使工艺路线的安排更为灵活。
特种加工技术已经成为在国际竞争中取得成功的关键技术和尖端技术,国防工业、微电子工业等现代工业的发展都需要采用特种加工技术来制造相关的仪器、设备和产品。我国的特种加工技术既有广大的社会需求,又有巨大的发展潜力。目前,我国特种加工的整体技术水平与发达国家还存在着较大的差距,需要我们不断地拼搏和努力,加速开展相关工作,促进我国特种加工技术的研究开发和推广应用。
在成型过程中,塑料熔体在一定的温度、压力下填充模具型腔的能力成为塑料的流动性。
流动性的大小与塑料的分子结构有关,具有线型分子而没有或很少有交联结构的树脂流动性大。在塑料中加入填料,会降低树脂的流动性,而加入增塑剂或润滑剂,则可增加塑料的流动性。塑料合理的结构设计业可以改善流动性,例如,在流道和塑件的拐角处采用圆角结构时改善了熔体的流动性。