1500v光伏电站测试需要注意哪些问题?
一、为何1500V系统是大势所趋
相对于1000V系统,1500V系统的优势不言而喻,首先,规模效益节约成本:如电缆,汇流箱,和逆变器。其次,降低安装和维护成本,因为不需要那么多逆变器来把直流转换为交流,以1MW系统为例.直流侧输入电压提高后,每串可连接更多组件,比传统的1000V系统组串长度可以增加50%,子串数量减少了58个,汇流箱数量也相应减少了3个,DC(直流)侧线缆使用量减少,同时, 电气设备(汇流箱、直流柜、逆变器)的单位功率密度提升,安装、维护等方面工作量也减少,在一定程度上促进了光伏系统成本的降低。
二、1500V光伏系统面对的挑战
虽然1500V系统优势明显,但带来的挑战也不容忽视,首先是对于系统中各环节的安全要求提升, 1500V系统电压的组件要选择质量更佳、要求更为严格和苛刻的接线盒、背板、连接器等,同时对逆变器要求更高需要采用更复杂的拓扑结构和更高电压等级的功率器件以及直流开关设备。从1000V升到1500V,需要整个行业的协同合作,电站业主、EPC企业、组件、逆变器、汇流箱、线缆等全行业各环节共同协作。
最重要的是,对于电站现场测试,如何找到适合的测量工具尤为重要,据了解,目前市场上针对1500V电站运维的仪器厂家凤毛菱角,德国貌似有厂家有类似产品,包括:
1)1500V电压表
电压量程:1000V AC/1500V DC
大于24v电压自动开机测量
电阻量程:1-1999kΩ
极性显示
IP65防护等级
重量270g
2)绝缘电阻测试仪
绝缘测试电压:0-5000V可调
绝缘电阻范围:0-100GΩ
极化指数/吸收比
温湿度传感器可选
手提箱设计
3)功率分析仪
1-7通道可选,针对集中和组串式逆变器都有解决方案
搭配高精度分压器,电压可测3KV(6/12Kv可选)
三种不同精度模块可选
双A/D采样技术,不同滤波下的功率同时显示
触屏操作,自定义显示界面
标配4G大容量存储,可选配到320G
独有的大口径传感器满足苛刻测试环境
4)电能质量分析仪
中文触屏操作界面
每周波512点采样
30/300/3000A三挡可调柔性探头
VNC远程控制,无需暴露在危险环境中操作
一键生成最新版国标报告
5)1500V电站专用安规和IV曲线综合测试仪
专为1500V电站系统研发
测试电压2000V电流30A
IP67防护等级
无需连接电脑可以查看IV曲线
6)白天EL测试仪
专利技术实现白天EL测试,提升效率和安全
支持PV模组类型:c-Si,CIS和a-Si
有效检测PID衰减等1500V系统容易出现的问题
320 camera和640camera可选
IP54防护等级
可以依靠其他发电组件供电无需带电源
三、小结
将直流电压提升到1500V是降本增效的重要变革,可以使每一串接连更多组件,减少了逆变器使用的直流缆线和汇流箱逆变器的数量,减少的线损也能充分提升输出电量,整体可以将系统PR提升1%-2%之间,目前数个1500V系统电站正在建设中。未来随着标准与技术的不断完善和改进,组件等相关配套设备的不断成熟,1500V光伏系统必将成为主流。德国GMC-I做为欧洲仪器仪表行业的领导者,必将密切关注行业动态,不断研发适合光伏电站现场使用的测量仪器。
6月5日,科士达在上海新国际博览中心展馆发布新品逆变器
《中国能源报》:光伏行业补贴逐年退坡,行业预计将在2021年实现平价上网。科士达作为一家深耕光伏领域多年的企业,您如何看待平价上网前期光伏行业的发展?您认为在2019-2020年的窗口期,光伏行业需要面对哪些挑战?
肖怀宇: 平价上网是光伏未来的必然趋势。从目前的整体成本上来看,只有在部分利用小时数超过1500小时的区域可以达到, 但目前在全国开展平价是不现实的 。而随着技术的提升和整体成本的下降,一旦全国范围内都实现了光伏平价,市场将是巨大的,我们对光伏平价的前景十分有信心。
在窗口期,我认为要面临两个问题。第一是如何坚持到平价时代到来,第二练好内功, 也就是保证品质和并控制成本 。近年来,科士达一直执行“稳中有进”的理念,不管是资产负责率和现金流都优于同行。我们的UPS和充电桩业务一直在 健康 发展,逆变器也在全球市场做了布局,去年“531政策”出来以后对我们造成一些影响,但对我们整个全球产品的销售和出货没有根本的影响,所以会有比较好的平衡。
《中国能源报》:随着光伏平价上网迫近,降本增效成为光伏行业的迫切需求。逆变器作为光伏发电的关键设备,科士达智能逆变器将如何助力光伏实现这一目标?
肖怀宇: 科士达作为设备供应商,如何在保证品质的情况下降低成本是我们的工作重心。科士达的产品已经得到了光伏市场主流客户的认可,但我们仍需要不断提高品质, 保证在整个生命周期内低的故障率 。在成本方面,逆变器在光伏里的成本只有5%左右,除了通过增加单机容量、降低逆变器的成本以外,我认为更重要的是通过逆变器来降低整个系统的成本以及后期运维成本。
随着平价上网目标的临近,1500V光伏发电系统在降低初始投资、度电成本以及增加系统发电量方面的优势明显,目前已成为助推平价上网的利器。科士达秉承“因地制宜、科学设计”的理念,在1500V光伏发电系统中可以提供包含逆变器、汇流箱、中压系统、监控系统及电站控制系统在内的全套1500V解决方案,以优质的产品和服务助力平价上网和服务客户。
《中国能源报》:新的发展形势对逆变器的功率等级、电压等级、容配比等指标都提出了更高的要求,科士达将如何实现技术的更新迭代?您认为逆变器的技术升级将带来哪些新功能?
肖怀宇: 针对平价上网项目,科士达围绕核心设备被光伏逆变器投入了大量的人力、物力及财力一直在不断地 探索 和研究,产品的功率等级、功率密度、散热能力、可靠性、稳定性以及产品的电压等级和容配比等方面一直是我们研究的重点。在功率等级这方面,科士达集中式逆变器推出了单机功率为1500V/3.125MW的机型,组串式逆变器我们推出了单机为1500V/100kW-175kW的产品,可以针对性地匹配国内外客户各种平价上网项目的需求。
在容配比方面,我们的全系列产品都可以满足1.3倍以上超配应用,可以更好的降低客户的LCOE;为适应组件技术及光伏系统技术的发展,我们的产品都可以兼容双面组件的接入,最大限度的提升客户发电量,产品在环境温度50度的环境下满足1.1倍过载长期运行,确保在恶劣环境下不降额,集成夜间SVG功能、IV曲线扫面功能、直流拉弧监测等功能,从而帮助客户降低初始投资、提升系统发电量、调高系统的可靠性和稳定性。
《中国能源报》:“光储充”作为光伏领域的新突破口,多地已积极布局“光储充”一体化示范项目,科士达如何看待“光储充”项目的未来发展前景?
肖怀宇: 光伏系统必然配搭储能系统,光伏发电系统是将太阳能转换成电能的发电系统,在全球减少碳排放的大趋势下,光伏发电凭借资源易获取,成本快速下降,安装规模灵活且环境限制小的特点,在较发达地区各国的能源结构中占比不断增大。
作为国内电芯企业的目标市场,光伏储能项目中,对电池需求较大的主要集中在大型光伏并网储能系统和家用离网或并网储能系统。 光储充最核心的就是“储” ,要么是光储、储充、光储充一体化,至于商业模式则可能包括数据中心的储能方案、工商业侧充电桩加储能、电网侧调频、分布式储能等。
《中国能源报》:早在20多年前,科士达UPS产品就已进入欧美市场,经过二十多年发展,请问科士达目前在海外市场有何布局?
肖怀宇: 科士达UPS产品经过多年的海外拓展已经发货一百多个国家,在行业研究机构IHS的排名中UPS发货量全球排名第六位,全国第一位。光伏的海外市场开发相对来说晚一点,目前我们在独联体和东南亚区域都取得了一些突破,去年的IHS逆变器发货量排名我们也进入全球前十。
科士达针对海外的光伏重点市场已经设立了十几个办事处,中长期来看我们比较看好欧洲已实现平价上网的部分区域,光照条件优越的中东地区,以及电力缺口较大的拉美地区。 另外我们认为未来最大的机会还是在储能,储能市场的扩大仍然在于电池成本的进一步降低 。科士达和宁德时代已经宣布设立合资公司专攻储能系统解决方案,双方强强合作的结果未来将会在储能市场上拿到较大份额。
End
欢迎分享给你的朋友!
出品 | 中国能源报(ID:cnenergy)
责编 | 卢奇秀
推荐阅读
行业竞争激烈,各家都拿出看家本领(文末有美女哟)!
光伏行业强强整合时代正式开启,华能集团将收购协鑫新能源51%控股权
2019 SNEC 现场 | 隆基新品亮相,将加速平价上网
1500V光伏测仪Profitest pv1500
1、虽然1500V系统优势明显,但带来的挑战也不容忽视,首先是对于系统中各环节的安全要求提升, 1500V系统电压的组件要选择质量更佳、要求更为严格和苛刻的接线盒、背板、连接器等,同时对逆变器要求更高需要采用更复杂的拓扑结构和更高电压等级的功率器件以及直流开关设备。从1000V升到1500V,需要整个行业的协同合作,电站业主、EPC企业、组件、逆变器、汇流箱、线缆等全行业各环节共同协作。
2、最重要的是,对于电站现场测试,如何找到适合的测量工具尤为重要,据了解,目前市场上针对1500V电站运维的仪器厂家凤毛菱角,德国GMC-I集团深耕光伏测试行业多年,针对1500V系统已推出或即将推出多款光伏专用测试仪表。
光伏板一般都是按照功率计算的,买多少瓦多少瓦,一般不按照不谈论尺寸。只有在大面积安装的光伏板材时才论尺寸的。
光伏板组件是一种暴露在阳光下便会产生直流电的发电装置,由几乎全部以半导体物料(例如硅)制成的薄身固体光伏电池组成。
由于没有活动的部分,故可以长时间操作而不会导致任何损耗。简单的光伏电池可为手表及计算机提供能源,较复杂的光伏系统可为房屋提供照明,并为电网供电。 光伏板组件可以制成不同形状,而组件又可连接,以产生更多电力。
天台及建筑物表面均会使用光伏板组件,甚至被用作窗户、天窗或遮蔽装置的一部分,这些光伏设施通常被称为附设于建筑物的光伏系统。
功率计算
太阳能交流发电系统是由太阳电池板、充电控制器、逆变器和蓄电池共同组成;太阳能直流发电系统则不包括逆变器。为了使太阳能发电系统能为负载提供足够的电源,就要根据用电器的功率,合理选择各部件。下面以100W输出功率,每天使用6个小时为例,介绍一下计算方法:
1.首先应计算出每天消耗的瓦时数(包括逆变器的损耗):
若逆变器的转换效率为90%,则当输出功率为100W时,则实际需要输出功率应为100W/90%=111W;若按每天使用5小时,则耗电量为111W*5小时=555Wh。
2.计算太阳能电池板:
按每日有效日照时间为6小时计算,再考虑到充电效率和充电过程中的损耗,太阳能电池板的输出功率应为555Wh/6h/70%=130W。其中70%是充电过程中,太阳能电池板的实际使用功率。
作为一家以逆变器为核心竞争力的行业龙头,阳光电站正在经历着一场业务突围战。而核心主力军是光伏电站业务部门。这期间,从乙方变为与甲方拼刀刃,考验着阳光电源的领导力、驾驭力,更考验阳光电源的智慧与利益平衡术。
文 / 一山 世纪新能源网
据多位知情人士向世纪新能源网透露,作为光伏逆变器龙头之一的阳光电源已经连续多次失利新能源投资前三的大型集团逆变器集采第一中标人。起因是2019年下半年,阳光电源的电站开发业务部门“截胡了”该集团子公司在北方某项目的开发权,引发双方一线人员激烈矛盾。随后该集团一度暂停其阳光电源所有逆变器等业务合作。而阳光电源相关负责人在接受世纪新能源网采访时表示,该集团利用其自身体量大、规模大,多次在其他项目上要求其退出项目开发权,从而引发双方矛盾升级。
光伏十年发电成本降低90%以上,以逆变器产品为例。早年集中式逆变器单瓦价格可以卖到4-5元,而2020年最新的成交价格已低至0.1元左右,组串逆变器也不高于0.2元。不仅如此,2020年老对手华为先后斩获华能4.3GW组串订单、大唐4.125GW、广核1GW组串订单。上能、锦浪 科技 、固德威等先后登陆资本市场,更让阳光电源在国内逆变器业务上遭遇前所未有的围剿局面。
为应对制造业务的薄利润,越来越多的单一设备企业,希望通过向下游集成获取更高的产品溢价。阳光电源作为其中的代表,电站新业务与下游客户的纷争只是缩影之一,未来阳光电源将走向何方?又有哪些机会和挑战?本文将从阳光电源的营收业绩、产品构成、产业布局探寻阳光电源的变与不变。
阳光电源,毋庸多言的实力光伏企业,其成立于1997年,至今已走过23个春秋。截至目前,其已经成长为全球顶尖的太阳能、风能、储能、电动 汽车 等新能源电源设备的研发、生产、销售和服务为一体的高新技术企业和主要供应商之一。其生产的光伏逆变器、风电变流器、储能系统居行业前列。
2019年,阳光电源将使用多年的公司使命更新为“让人人享用清洁电力”,标志了阳光电源将立足新能源装备业务,加快清洁能源系统集成及投资建设业务发展。阳光电源的电站集成业务模式主要包括EPC和BT两种,收益来源包括逆变器销售、EPC、项目公司股权转让等。
据阳光电源介绍该公司提供的EPC与传统的EPC一建了之不同。光伏电站是非常好的资产,但同时光伏电站也是重资产行业,对于大多数企业来说,投资光伏电站考验期长期的资本运营管理能力。阳光电源为了解决客户的问题,不仅成立了项目前期开发公司、还成立了后期运维公司、漂浮支架公司等,这相当于阳光电源从开发——建设——转让——25年运维行程了全方位保姆服务。解决了投资商以前不仅出钱、还要出力成为行业专家的尴尬局面。这样创新的模式,也应赢得的客户的信赖,据阳光电源公开数据显示,其目前长期合作央企包括三峡、吉电股份,同时也在积极拓展其他合作伙伴。
一、阳光电源2019答卷
• 实现营收130.03亿元,同比增长25.41%,摆脱了“增收不增利”的怪圈
• 电站系统集成业务收入79亿元,同比增长35%
• 逆变器收入39亿元,同比增长7%
• 储能业务5.43亿元,同比增长42%
• 逆变设备出货超1亿千瓦,成为全球首家破“亿”千瓦的逆变器企业
• 发布全球最大功率1500V组串逆变器SG225HX
• 高压逆变项目获得国家重点研发计划专项支持
• 实现磷酸铁锂、三元锂储能系统双箭齐发,累计参与全球储能项目超900个
• 累计开发建设光伏、风力电站超9GW,成为系统集成技术隐形冠军
2019“收入构成”:
品牌影响力:
•2019年全球新能源企业500强,排名前100
•2019年度中国储能产业“最具影响力企业奖”
•2019中国电动 汽车 核心零部件100强
全球销售及服务网络:
• 全球已成立20+分子公司,构建全球销售网络
• 遍布全球50+售后服务网络,实现全球24小时快速响应
• 美国、巴西等多国市占率第一,东南亚地区保持30%以上的市场份额
二、阳光电源的机会(实力)
业绩增加主要是EPC电站业务、储能业务等。
1.EPC电站业务
2019年从年初的第一批平价上网申报到年中的项目竞价企业确定,基本决定了全年的电站投资商市场格局:
2019年第一批平价和竞价项目中主要企业的项目规模(下表)
(上述数据源于“智汇光伏”)
由上述表格可以发现:投资企业共获得8825MW平价上网项目,占第一批平价上网项目总规模的60%;共获得8649MW竞价上网项目,占此次竞价项目总规模的38%;获得项目总容量17.5GW,占第一批平价上网和竞价项目总规模的49%。而阳光电源以2430MW的项目规模成为仅次于国家电投的最大黑马,力压央企中广核,两者之间的竞争亦可见一斑。
最终,阳光电源2019年光伏电站系统集成业务实现收入79亿元,同比增长35.30%。继2018年EPC模式中标的格尔木领跑者基地I标项目和格尔木领跑者基地II标项目并网后,2019年EPC模式中标的天合铜川领跑者基地项目和铜川宜君领跑者基地项目成功并网。阳光电源2018年完成并网的项目1.5G W左右,2019年通过BT或EPC模式承建的并网光伏发电项目在2.5GW左右,国内市场占有率稳步快速提升。
2.储能业务
2019年阳光电源补全了储能产品线,储能产品已涵盖三元和磷酸铁锂两大体系,全面覆盖0.5C到4C的能量型和功率型的应用场景,实现了磷酸铁锂储能系统、三元锂储能系统“双发展”。目前可提供单机功率5~2500kW的储能逆变器、锂电池、能量管理系统等储能核心设备。
同时,阳光电源加大全球储能战略布局,储能系统广泛应用于德国、英国、日本等多个国家,国外业务收入明显增长:在北美,阳光电源仅工商业储能市场份额就超过了15%;在澳洲,通过与分销商的深度合作,阳光电源户用光储系统市占率超10%。
在美国佛罗里达州5MW+1.5MW /3.836MWh大型光伏储能项目中,阳光电源提供的1500V直流耦合光伏+储能系统整体解决方案,实现了中国直流耦合先进技术在美国市场的首次应用。其是继密苏里州1MW/2.2MWh、马萨诸塞州15MW/32MWh、德克萨斯州10MW/42MWh等大型储能项目之后,阳光电源在北美市场取得的又一佳绩。另外,成功签约的马萨诸塞州15MW/32MWh储能项目,成为当地光储样板工程。
此外,阳光电源作为储能系统集成商参与了欧洲最大的电池储能电站英国门迪100MW/100MWh项目;签约英国最大的光储融合项目——34.7MW光伏+27MW/30MWh储能大型项目,其中阳光电源不仅提供全球领先的1500V箱式中压逆变器,还为客户提供最优化的储能一体化解决方案,以及高度集成储能逆变器、锂电池等核心设备;与Smart Power公司合作签约德国30MWh储能调频项目……
在国内市场,60MW/120MWh!阳光电源的储能变流-升压系统一体化解决方案 ,助力湖南电网正式迈入储能时代;青海省首个风电储能项目——青海乌兰55MW/110MWh风储融合项目,阳光电源为其提供涵盖储能变流器及锂电池的集成化系统解决方案;参与国内最大的单体用户侧锂电储能项目——江苏扬子江船厂17MW/38.7MWh用户侧储能项目,阳光电源开启了大规模锂电储能技术在用户侧领域应用的新征程……
截至2019年底,阳光电源累计参与全球重大储能项目超900个,其中光储融合项目已在美国、日本、英国、马尔代夫、澳洲、非洲等国家和区域,以及在中国西藏、青海、甘肃等地区得到深入应用,所有项目运行稳定,零安全事故,在调频调峰、辅助可再生能源并网、微电网、工商业及户用储能等领域积累了大量运行数据和广泛的应用经验。
阳光电源2019年年报显示,公司储能业务继续保持高速增长,实现营业收入5.43亿元,同比增长41.77%。
3.逆变器成绩
2019年阳光电源逆变器出货量17.1GW,同比增长2.4%,其中国内出货量8.1GW,同比下跌31.9%,这与国内光伏装机总量变动趋势基本一致;国外出货量9GW,同比大涨87.5%,快于海外装机总量增长幅度。截至2019年底,阳光电源逆变设备全球累计装机量突破100GW,成为全球首家突破“亿”千瓦的逆变器企业。截止2020年6月,阳光电源逆变器装机突破120GW。
根据,彭博新能源 财经 (BNEF)发布的《2019年全球最具融资价值报告》显示,阳光电源逆变器在融资项目量和可融资性方面均位列全球第一。
Wood Mackenzie公布的全球逆变器市场最新报告显示,2019年全球逆变器的出货量为126.735GW,同比增长18%。华为、阳光电源、SMA成为全球前三大逆变器巨头。
报告显示亚太地区(不包括日本、印度)占2019年全球出货量53%的市场份额,而中国市场出货量为38.477GW,占亚太地区份额的58%。
亚太市场,华为的出货量占比是26%,阳光电源17%,上能电气10%,古瑞瓦特6%,SMA、固德威及特变电工均为5%;
中国市场,华为占比34%,阳光电源21%,上能电气11%,古瑞瓦特、锦浪 科技 、固德威、正泰电源系统闯入前十;
印度市场,华为(市占率20%,第一)、阳光电源(第三),上能电气、特变电工、古瑞瓦特、锦浪 科技 、固德威等都在列;
欧洲市场达全球市场的21%,华为占31%,古瑞瓦特、阳光电源、固德威、锦浪 科技 紧随其后。
美国市场占全球份额的16%,阳光电源占比18%,正泰占5%,成为美国逆变器竞技场前九位仅存的中国选手。
拉美市场占全球份额的7%。华为占比19%,阳光电源占9%,锦浪 科技 、固德威、古瑞瓦特进入前列。
中东及非洲市场,占全球份额4%。华为占比升到21%,阳光电源占比10%,古瑞瓦特和特变电工也进入了前十。这些新兴市场也是中国逆变器厂家开疆拓土的良好舞台。
三、阳光电源的危机(挑战)
1.与客户抢食导致连锁反应是否还会发生?
PS:争夺与合作并行
随着2020年光伏竞价项目上报时间的截止,目前全国已有内蒙古、贵州、广东、新疆、陕西、河北、宁夏、江西、河南、青海、山东11个省份主管部门或者电网公司明确了该省2020年参与全国竞价光伏项目名单。另外,还有青海、陕西、湖南、辽宁、河北、广东、广西、湖北8省公布了平价光伏项目名单。根据统计,目前公布的名单竞/平价合计超过60GW,辽宁、四川、云南和山西等省份还将有超过5GW的光伏规模等待竞争。从光伏们梳理的部分装机规模较大投资商名单来看,能够入围初步名单的确彰显了一家投资企业的项目开发能力。
(表格数据来源于“光伏们”)
从表单可以看出,TOP 20的企业中,央企与民企的数量基本相当,但在项目规模上仍旧有较大差距。
其中,国家电投、大唐以绝对优势领先,项目开发总规模均超过4GW。紧随其后的电力央企是中广核与华能。而第一梯队中的央企中核集团在光伏电站领域的“野心”不容小觑,其在5月份刚完成3GW的组件集采。
TOP 10中的民营企业梯队由阳光电源、特变电工以及河北国顺新能源担纲。在2019年平价、竞价光伏项目中一跃成为“黑马”的阳光电源在2020年持续发力,以276万千瓦的总规模,位列第四,这也是前五名中唯一一家民企;特变电工作为最大的光伏电站EPC企业,也在今年的资源争夺战中取得了硕果。
第一梯队中,阳光电源、特变电工以及中国能建是典型的光伏电站EPC企业,这些企业开发的光伏电站项目在建成之后大部分仍将转给电力央企或者国企,中国电建、中国能建为代表的设计院系与民营光伏制造企业在光伏电站EPC领域同台竞技。
从此表单还可以看出,在项目开发能力大PK中,民营企业仍具有相当的优势,同时不少民营企业也开始意识到一点——通过与央企、国企合作等形式崭露头角,其中包括隆基、天合光能、东方日升、晶澳等。
有人评价2020年光伏电站开发资源的抢手程度丝毫不亚于最火爆的2017年,对于央企/国企来说,无论是出于清洁能源占比的配额考核还是看好光伏平价的收益率,都或多或少地加大了新能源的投资力度。
而对于民营企业来说,通过项目合作开发获得设备订单以及专区EPC利润可能才是当下较为关键的,但也有部分民营企业意识到光伏平价之后的价值所在,例如林洋能源已在计划自持平价光伏电站,该公司在河北以及安徽市场均获得了不错的业绩。
2.电站业务能否长久支撑业绩增加
曹仁贤:很多人看不上电站业务,实质上这是一个很好的业务。
光伏逆变器是阳光电源的发家业务,也是“命根子”。不过,如今似乎更“偏爱”电站系统集成业务。2012-2013年,逆变器市场刚刚经历一次洗牌,不少国外品牌纷纷退出中国,而国内企业之间的价格战厮杀又扑面而来。不久,国内光伏标杆电价上网政策应运而生,市场快车道开启。
彼时,阳光电源在传统逆变器业务基础上,开始转战电站系统集成业务,一方面扩大逆变器市场份额,与其他竞争对手之间筑起一道屏障。
随后,阳光电源的电站系统集成业务营收开始超过逆变器,一路狂飙突进,并于2019年营收占比突破60%,接近80亿元。事实上,2019年国内光伏市场景气度并不高,全球新增光伏装机30.11GW,同比下滑31.6%。但阳光电源在项目开发上却大举挺进,并于2019年拿下超2400MW的竞价和平价项目,规模位居民企之首。“很多人看不上电站业务,实质上这是一个很好的业务。”曹仁贤曾公开表示。
据了解,阳光电源的电站集成业务模式主要包括EPC和BT两种,但与传统的有有所不同。电站业务收益来源包括逆变器销售、EPC、项目公司股权转让等。曹仁贤认为,把电站作为资产运营出售是行不通的,一定要把它作为一个产品来运营,要制定全生命周期的解决方案,其核心是上游项目开发和下游战略客户的培育,这种商业模式决定了(业务)可持续性。
四、阳光电源的布局(求变)
逆变器毛利减少,竞争激烈,未来主业发展方向?
①全球看好光伏大有未来
光伏发展迅猛,形势喜人,全球能源结构也在加速转型,光伏日渐成为可再生能源的主力军。德国、英国、西班牙等欧洲发达国家,都纷纷提出了停止使用煤电的时间表;中国也提出到2030年,非石化能源的占比要达到20%;但就目前来看,光伏发电占比仍然较小,只占全球发电量的约2%;虽然占比很小,但光伏发电却保持30%的高位增长。这说明世界各国都在看好光伏的发展。
②降本提效依靠 科技 突破
光伏产业链包括上游:硅料的采集,硅片、硅棒、硅锭的生产中游:光伏电池和组件的制作下游:光伏电站系统的集成与运营。现在我国已经形成了完整的光伏产业链,目前行业已到国内光伏企业引领全球技术进步的阶段,同时也越来越趋于市场化驱动。从近年政府发布的政策来看,一方面不断下调标杆上网电价,减少补贴,倒逼企业进行技术研究降低其发电成本;另一方面鼓励企业使用高效产品,如“领跑者”、“超跑者”计划,不断促进行业进行技术创新以提高发电效率。
针对大型地面电站,2019年的巴西圣保罗南美太阳能博览会上,阳光电源展示了1500V降本增效利器——全球单机功率最大的组串式逆变器SG250HX和6.8MW中压逆变一体化解决方案。其中SG250HX拥有12路MPPT,每两个组串一路MPPT设计,有效提升复杂地形电站的发电量整机IP66防护和C5防腐的高防护等级,支持6.3MW方阵设计,带来更低的LCOE,可有效应对南美光伏市场对于成本和效率的严苛要求。
据了解,截止2019年末,阳光电源研发人员占比超过40%,在合肥人均薪酬达到20万元。目前累计获得专利权1,232项,其中发明477件、实用新型655件、外观设计100件。
2019年研发费6.35亿元,同比增长31%,全年新增249项专利权,均系自主研发取得,其中国外专利42件,国内发明专利84项。另有526项新增专利申请,其中国外专利83项、国内发明专利264项。
2019年12月,公司完成阳光云8.0研发设计,业务覆盖光伏、风电、储能等多能综合管理,应用于户用、分布式、扶贫、地面多种电站,构建全场景集成管理方案,结合深度联合分析和AI,进一步提升IV组串在线诊断特性,面向不同市场提供易用友好的监控方案,一键式建站,智能运维,通过GDPR验证测试,系统更安全。可见公司非常重视研发,研发投入全部费用化,并没有通过资本化增加利润,进一步增强了公司的盈利质量。
家庭光伏解决方案目前已成为全球首个荣获德国TÜV认证的户用品牌。据了解,TÜV认证项目专家组对阳光家庭光伏展开的此次系统认证历时半年多,分别从关键设备品质、系统设计、安装流程、培训规范、系统验收、发电量以及收益等全方位进行评估认定。印证了阳光家庭光伏强大而稳定的系统集成以及多发电的尖端特性。
③布局风光储电氢始于足下
阳光电源董事长曹仁贤曾公开表示,到2025年,行业可以实现两件事,第一件是深度的储能融合,第二件事,太阳能制氢。根据曹仁贤的测算,光伏制氢成本在0.15元一度电,大幅度低于太阳能成本。在2019年度业绩报告的未来发展规划方面,阳光电源表示将大力推进风光储电氢协同发展。聚焦风光储电氢主航道,持续构建市场及技术协同竞争优势,打造风光储电氢系统解决方案,实现风光储电氢业务协同增长。
长江证券在阳光电源2020年中报预告点评中表示,上半年阳光电源业绩高于预期,主要原因在于Q2逆变器海外销售放量,带动逆变器业务量利齐升;同时EPC 确认规模及储能业务亦贡献同比增量。根据海关数据,2020 年1-5 月阳光电源实现逆变器出口量6.18GW(含印度工厂),同比增速超50%;出口金额1.89 亿美金,排名全球第一,贡献主要业绩增量。上半年国内市场装机规模预计12-15GW左右,以30%左右市场份额估算,预计公司国内逆变器出货量在3.5-4.5GW左右。整体预计公司上半年逆变器出货总量为10-12GW,较去年上半年7GW 左右增长明显。同时,毛利率较高的海外出货占比快速提升使逆变器业务盈利水平预计同比大幅改善,推动逆变器利润增长。
2019 年竞价项目抢装,电站2020Q2 加速确认。2020Q1 电站因疫情影响确认规模约100MW 左右,2020Q2 去年竞价项目630 抢装,电站加速确认带动上半年EPC 确认规模近1GW,较去年500MW 左右的规模亦实现高增。
储能业务方面,阳光电源表示有望凭借技术协同优势进一步打造风光储电氢系统解决方案,实现风光储电氢业务协同增长,逐步贡献新增量。
氢电领域,2019年7月22日,山西省榆社县政府与合肥阳光新能源 科技 有限公司举行了300MW光伏和50MW制氢综合示范项目签约仪式。2019年9月25日,阳光电源在山西省屯留区吾元镇举行200MW光伏发电项目(一期)开工暨二期500MW光伏制氢项目签约仪式。2019年10月20日,阳光电源与中国科学院大连化学物理研究所在合肥签订制氢产业化战略合作协议,成立“PEM电解制氢技术联合实验室”。
进入2020年8月,阳光电源与白城市签约1GW“风光储氢”智慧能源综合利用示范项目。项目主要建设300MW风电、700MW光伏、200MW氢能和100MW/200MWh储能系统。
曹仁贤表示,阳光电源将大力推进风光储电氢协同发展,聚焦风光储电氢主航道,持续构建市场及技术协同竞争优势,打造风光储电氢系统解决方案,实现风光储电氢业务协同增长。但对于阳光电源而言,在新能源制氢领域2020仅有一座500kW规模氢能发电站并网运行,风光大规模制氢仍需等待技术试验和成熟。
展望未来,一个多元化的阳光电源正在形成。不论是逆变器、EPC、储能亦或是氢能的相关产业,都是阳光电源重点布局方向。在其业务开疆拓土之初也必然会有各种矛盾与利益交织,能够支撑企业最大营收的业务也必然拥有更多的话语权,但正如阳光电源接受媒体采访时多次强调立足新能源装备制造的基石永远不会改变。而这场突围战,更可能是持久战。
1.1项目简介及选址
本项目电站选址地位于湖南省湘潭市雨湖区的响塘学校屋顶上,经过去现场实地的了解和勘测后,此学习周围无森林无高大树木,附近也无任何其他房屋,距离其最近的房屋也有数十米的距离,该屋顶无女儿墙无其他建造物,是一个平面的屋顶,其屋长为43米,宽为32米。
本项目将在此学校屋顶上建造一个100kw的并网型光伏电站,实施全额上网措施。选址卫星图如图1-1所示,选址平面图如图1-2所示。
图1-1 选址地卫星图
图1-2 选址平面图
1.2 项目位置及气象情况
经过百度地图的计算,得出了此地经纬度为:北纬27.96,东经为112.83,是属于亚热带温湿气候区,典型的冬冷夏热气温,年降雨量充足达1450毫米,最高气温为夏季的41.8度,最低气温为冬季的-12.1度,年均气温17度。该项目所在地最高海拔为793米,最低海拔达30.7米,总的平均海拔为48.2米。该地年总辐射量经过PVsyst软件的计算后,得出了1116.6的值,不是特别高,属于第三类资源区,但建设一个电站也不是特别亏。湘潭市地理位置图如图1-3所示。
图1-3湘潭市地理位置
图1-4年均总辐射值
1.3项目设计依据
本项目设计依据如下:
《光伏发电站设计规范》GB50794-2012
《电力工程电缆设计规范》GB50217-1994
《光伏系统并网技术要求》GB/T19939-2005
《建筑太阳能光伏系统设计与安装》10J908-5
《光伏发电站接入电力系统技术规范》GB/T19964-2012
《光伏发电站接入电力系统设计规范》GB/T5086-2013
《光伏(PV)系统电网接口特性》GB/T20046-2006
《电能质量公用电网谐波》GB/T14549-19933
《电能质量三相电压允许不平衡度》GB/T15543-1995
《晶体硅光伏方阵I-V特性的现场测量》GB/T18210-2000
二、电站系统设计
2.1组件选型
组件是电站中造价最高的设备,投资一个电站几乎一半的钱是砸这组件上去了,为此我们选择的组件一定要是最适合本电站的,不管是组件效率还是组件的其他参数在同功率组件下都应该保持最佳,这样才不会亏本。
组件的类型有很多,以不同的材料来说,组件又分为了晶硅组件、薄膜组件,在电站中使用最多的便是晶硅型组件,而晶硅型组件又分为单晶硅和多晶硅,它们都是市场上十分热门的组价。
单晶硅的效率比多晶硅高了很多,其使用寿命时间也长了不少,但价格方面却比多晶硅高了很多,但考虑到平价上网的时代,单晶硅的价格远远不如过去那样昂贵,所以本电站选取的组件为单晶型组件。
表2-1伏组件对比表
组件品牌及型号
晶科
Swan Bifacial 400 72H
晶科
Swan Bifacial 405 72H
晶澳
JAM72S10 400MR
最大功率(Pmax)
400Wp
405Wp
400Wp
最佳工作电压(Vmp)
41V
41.2V
41.33V
组件转换效率(%)
19.54%
19.78%
19.9%
最佳工作电流(Imp)
9.76A
9.83A
9.68A
开路电压(Voc)
48.8V
49V
49.58V
短路电流(Isc)
10.24A
10.3A
10.33A
工作温度范围(℃)
-40℃~+85℃
-40℃~+85℃
-40℃~+85℃
最大系统电压
1000/1500V DC(IEC/UL)
1000/1500VDC(IEC/UL)
1000/1500VDC (IEC)
最大额定熔丝电流
20A
20A
20A
输出功率公差
0~+5W
0~+5W
0~+3%
最大功率(Pmax)的温度系数
-0.350%/℃
-0.35%/℃
-0.35%/℃
开路电压(Voc)的温度系数
-0.290%/℃
-0.29%/℃
-0.272%/℃
短路电流(Isc)的温度系数
0.048%/℃
0.048%/℃
0.044%/℃
名义电池工作温度(NOCT)
45±2℃
45±2℃
45±2℃
组件尺寸:长*宽*厚(mm)
2031*1008*30mm
2031*1008*30mm
2015*996*40mm
电池片数
72
72
72
第一款组件晶科Swan Bifacial 400 72H和第二款组件晶科Swan Bifacial 405 72H的型号牌子都一样,除功率和其效率有点差距之外,其他的参数基本一样,但其第二款组件晶科Swan Bifacial 405 72H组件的效率高,相同尺寸不同效率下,选择第二款组件更好。
第三款组件晶澳JAM72S10 400MR是3款组件里效率最高的组件,比第一款和第二款分别高了0.37%和0.12%,并且尺寸和部分温度系数也是3款里面最小的,开路电压和工作电压以及短路电流等参数也是3款组件中最高的,从数据上来看,第三款组件晶澳JAM72S10 400MR是3款里最棒的组件。
综合上面的分析,本项目最终选择第3款组件晶澳JAM72S10 400MR作为本项目的组件使用型号。组件图如图2-1所示。
图2-1 组件图
2.2最佳倾斜角和方位角设计
本电站建造在平面屋顶上,该屋顶无任何的倾角,由于组件是依靠着太阳光发电,但每时每刻太阳都是在运动着,为此便会与组件形成一个角度,该角度影响着组件的发电量,对于采取固定支架安装方式的电站来说,选择一个最合适的角度能够让电站发电量达到最高,因此最佳倾角这个概念便被引出了。
对于本电站而言,根据其PVsyst软件的计算后,得出了湘潭最佳倾角为18度时,方位为0度时,电站一年下来的发电量能够达到最高。PVsyst最佳方位角、倾斜角模拟图如图2-2所示。
图2-2 PVsyst最佳方位角、倾斜角模拟图
2.3组件排布方式
本项目选址地屋顶长43米,宽为29米,采取横向排布方式无法摆下其电站中的整个阵列,因此本项目组件方式采取竖向排布,中间间距20mm。如图2-3所示。
图2-3 组件排列方式
2.4组件间距设计
太阳照射到一个物体上时,由于该物体遮住了光,使得光不能直射到地上时,该物体便会产生一个阴影投射到地上,而电站中的组件也类似于此,前一个组件因光产生的阴影投射到另一个组件上时,被照射的组件便会受到影响,进而影响整个电站,这对于电站来说是一个严重的问题,因此在设计其组件之间的间距时,一定要保证阴影的距离不会触及组件。
图2-4间距图
在公式2-1中:
L是阵列倾斜面长度(4050mm)
D是阵列之间间距
β是阵列倾斜角(18°)
为当地纬度(27.96°)
把以上数值代入公式后计算得:
2-5组件计算图
根据结果,当电站中的子方阵间距大于2119mm时,子方阵与子方阵便不会受到影响。
图2-6方阵间距图
2.5逆变器选型
逆变器是电站中其转换电流的设备,十分的重要,而逆变器的种类比较多,对于本项目电站来说,选择组串式逆变器最佳,因此本项目选择了3款市场上热卖的组串式逆变器。
表2-2 逆变器参数对比表
逆变器品牌及型号
华为
SUN2000-100KTL-C1
华为
SUN2000-110KTL-C1
固德威
HT 100K
最大输入功率
100Kw
110Kw
150Kw
中国效率
98.1%
98.1%
98.1%
最大直流输入电压(V)
1100V
1100V
1100V
各MPPT最大输入电流(A)
26A
26A
28.5A
MPPT电压范围(V)
200 V ~ 1000 V
200 V ~ 1000 V
200V ~ 1000V
额定输入电压(V)
600V
600V
600V
MPPT数量/输入路数
10/20
10/20
10/2
额定输出功率(KW)
100K W
110K W
100K W
最大视在功率
110000 VA
121000 VA
110000 VA
最大有功功率 (cosφ=1)
110KW
121K W
110KW
额定输出电压
3 × 220 V/380 V, 3 × 230 V/400 V, 3W+N+PE
3 × 220 V/380 V, 3 × 230 V/400 V, 3W+N+PE
380, 3L/N/PE 或 3L/PE
输出电压频率
50 Hz,60Hz
50 Hz,60Hz
50 Hz
最大输出电流(A)
168.8A
185.7 A
167A
功率因数
0.8 超前—0.8 滞后
0.8超前—0.8滞后
0.99 (0.8超前—0.8滞后)
最大总谐波失真
<3%
<3%
<3%
输入直流开关
支持
支持
支持
防孤岛保护
支持
支持
支持
输出过流保护
支持
支持
支持
输入反接保护
支持
支持
支持
组串故障检测
支持
支持
支持
直流浪涌保护
Type II
Class II
具备
交流浪涌保护
Type II
Class II
具备
绝缘阻抗检测
支持
支持
支持
残余电流监测
支持
支持
支持
尺寸(宽 x 高 x 厚)
1,035 x 700 x 365 mm
1,035 x 700 x 365 mm
1005*676*340
重量(kg)
85kg
85kg
93.5kg
工作温度(°C)
-25°C~60°C
-25°C~60°C
-25~60℃
3款逆变器的功率均在100kw以上,其效率也都是一模一样,均只有98.1%,其额定输出电压也都为600V,对于本电站来说,这3款逆变器都能使用,但可惜本电站只会从中选择一个最合适的品牌。
第一款逆变器华为SUN2000-100KTL-C1和第二款逆变器华为SUN2000-110KTL-C1是同种类同型号,但不同功率的逆变器,这两款逆变器大部分数据都一模一样,但第二款逆变器功率比第一款逆变器功率高了10k,比本电站的容量也高了10k,并且价格了略微高了那么点,选用第一款逆变器不仅省钱而且还不会造成功率闲置无处使用,最大发挥逆变器的作用,因此第1款比第2款逆变器好。
第三款逆变器是固德威HT 100K,它的最大输入功率高达150kw,明明是一个100kw的逆变器,但其输入功率却不同我们往常见的逆变器一样,它居然还高了50k,如果选用这款逆变器,那么阵列输入的功率超过100都能承受。虽然最大输入功率很恐怖,但其他参数正常,对比第一款逆变器,仅只是部分参数略微差了点,总体是几乎没什么太大的差别。
本项目根据上述的分析和对其逆变器的需求,最终选择了固德威HT 100K型逆变器为本电站逆变器。
2.6光伏阵列布置设计
2.6.1串并联设计
图2-7串并联计算
公式2-3、2-4中:
Kv——光伏组件的开路电压温度系数-0.00272
K——光伏组件的工作电压系数-0.0035
t/——光伏组件工作环境极限高温(℃)60
Vpm——光伏组件的工作电压(V)41.33
VMPPTmax——逆变器MPPT电压最大值(V)1000
VMPPTmin——逆变器MPPT电压最小值(V)200
Voc——光伏组件开路电压(V)49.58
N——光伏组件串联数(取整)
t——光伏组件工作环境极端低温(℃)-12.7
——逆变器允许的最大直流输入电压(V)1100
把以上数值代入公式中计算可得:
5.5≤N≤21
经计算,本电站最终选取20块组件为一阵列。如图2-6组件串并联设计图。
图2-8组件串并联设计图
2.6.2项目方阵排布
据2.6.1的结果,每一个阵列共有20块组件,单块组件的功率是400w,一个阵列便是8kw,而本电站的总容量为100kw,总计是需要13个阵列。本电站建设地屋顶长43米,宽为32米,可以完整的摆放电站中的所有子方阵。如图2-9所示。
图2-9项目方阵排布图
2.7基础与支架设计
2.7.1水泥墩设计
本电站所建地点是公办学校,属于公共建筑,如果使用其打孔安装方式,便有可能使得其屋顶因时间长久而漏水,一旦漏水便需要进行维修,这也是得花费一些金钱,又因是学校,开工去维修可能将使部分学生要做停课处理,因此为了避免这个麻烦,本电站还是选择最常见的水泥墩来做基础设计。
考虑到学校有许多的学生,突然出现了事故,作为电站建设者肯定会有责任,因此为了避免组件出现任何事故,特地将水泥墩设计为一个正方形,其长宽高都为500mm,这样的重量大大降低了事故的发生率。如图2-10水泥墩设计图和2-11电站整体水泥墩设计所示。
图2-10水泥墩设计
图2-11电站整体水泥墩设计图
2.7.2支架设计
都已经把基础设计水泥墩做好了,那么接下来则是考虑水泥墩上的支撑设备支架,对于支架的设计最重要的一点就是在选材上,一般电站中的支架会持续使用到电站报废为止,使用时间长达二十多年三十多年甚至更久,对此支架的选型便是十分的重要,其使用寿命必须得长,抗腐蚀能力强。如图2-12支架设计图所示。
图2-12支架设计图
2.8配电箱选型
配电箱在光伏电站里又分为直流配电箱和交流配电箱,对于本电站来说,是选择其交流配电箱。配电箱的容量是根据其逆变器的容量选择,必定不能小于其逆变器的容量,否则可能会出现配电箱过压的情况,然后给电站造成事故危险。
配电箱具备配电、汇电、护电等多种功能,是本电站必须要又的设备,经过配电箱型号的对比,本电站最终选择了昌松100kw光伏交流逆变器。
表2-3配电箱参数
项目名称
昌松100kw光伏交流配电箱
项目型号
100kw交流配电箱
额定功率
100KW
额定电流
780A
额定频率
50Hz
海拔高度
2500m
环境温度
-25~55℃
环境湿度
2%~95%,无凝霜
2.9电缆选配
电站分为两类电,一类是直流电,必须使用直流电缆运输;一类是交流电,必须使用交流电缆运输,切记不可以乱搭配使用,否则将会造成电缆出线问题,电站设备出现问题。
直流电缆选型一般都是选择PV1-F-1*4mm²光伏专用直流电缆
交流电缆:
P:逆变器功率100KW
U:交流电电压380V
COSΦ:功率因数0.8
=
=190A
=0.035Ω
=976W
线损率:976/100000=0.9%<2%,符合光伏电缆设计要求。
据其计算结果和下图电缆参数表,本电站最终选择ZRC-YJV22 7Omm2交流电缆。如图2-13电缆参数图所示。
图2-13 电缆参数图
2.10防雷接地设计
防雷接地是绝大多数光伏电站都必须要做的,目的就是防止雷击破幻电站,损坏人民的生命以及财产,特别是对于本电站而言,建设点是在学校,而学校不仅人多而且易燃物也多,一旦雷击劈到电站上,给电站造成了任何事故,都有可能把整个学校给毁了,为此本电站一定需要做好防雷接地设计。
本电站防雷方式采取常用的避雷针进行避雷,接地则是为电站中各个设备接地端做好接地连接。
图2-14防雷接地设计图
2.11电气系统设计及图纸
本电站装机总容量为100kw,由260块光伏组件组成,形成了13个阵列,每个阵列20块组件,然后连接至逆变器,逆变器变电后接入配电箱,最后再连接国家电网。
图2-15电气系统设计图
三、电站成本与收益
3.1电站项目设备清单
根据当地市场的物价,预估出了一个本电站预计投资表。
表3-1设备清单表
序号
设备
型号
单位
数量
单价
(元)
价格
(万元)
1
组件
晶澳JAM72S10 400MR
块
260
1.77
18.4
2
逆变器
固德威HT 100K
台
1
3.3w
3.3
3
直流电缆
PV1-F-1*4mm²
米
1500
5.2
0.78
4
交流电缆
ZRC-YJV22 70mm2
米
100
72
0.72
5
支架
\
套
39
556
2.17
6
水泥墩
500*500*500mm
个
78
250
1.95
7
配电箱
昌松100kw光伏交流配电箱
台
1
1.3w
1.3
8
运输费
\
总
18
1000
1.8
9
其他
\
\
\
\
4.15
10
人工费
\
\
\
\
7
合计:41.57万元
3.2电站年发电量计算
本电站总容量为100kw,而电站选址地的年总辐射量为1116.6,首先发电量便达到了89328度电。
(式3-1)
Q=100*1116.6*0.8=89328度
Q——电站首年发电量
W——本项目电站总容量(85KW)
T——许昌市年日照小时数(1258.2H)
——系统综合效率(0.8)
任何设备一旦使用,便就开始慢慢磨损了,其效率也是一年比一年差,即便是光伏组件也不例外。组件首年使用一年后,为了适应其环境,自身的效率瞬间就降低2.5%,而后的每年则是降低0.7%,将至80%左右时,光伏组件也是已经运行了25年。
表3-2电站发电量
发电年数
功率衰减
年末功率
年发电量(kWh)
累计发电量(kWh)
第1年
2.5%
97.50%
89328.000
89328.000
第2年
0.7%
96.80%
87094.800
176422.800
第3年
0.7%
96.10%
86469.504
262892.304
第4年
0.7%
95.40%
85844.208
348736.512
第5年
0.7%
94.70%
85218.912
433955.424
第6年
0.7%
94.00%
84593.616
518549.040
第7年
0.7%
93.30%
83968.320
602517.360
第8年
0.7%
92.60%
83343.024
685860.384
第9年
0.7%
91.90%
82717.728
768578.112
第10年
0.7%
91.20%
82092.432
850670.544
第11年
0.7%
90.50%
81467.136
932137.680
第12年
0.7%
89.80%
80841.840
1012979.520
第13年
0.7%
89.10%
80216.544
1093196.064
第14年
0.7%
88.40%
79591.248
1172787.312
第15年
0.7%
87.70%
78965.952
1251753.264
第16年
0.7%
87.00%
78340.656
1330093.920
第17年
0.7%
86.30%
77715.360
1407809.280
第18年
0.7%
85.60%
77090.064
1484899.344
第19年
0.7%
84.90%
76464.768
1561364.112
第20年
0.7%
84.20%
75839.472
1637203.584
第21年
0.7%
83.50%
75214.176
1712417.760
第22年
0.7%
82.80%
74588.880
1787006.640
第23年
0.7%
82.10%
73963.584
1860970.224
第24年
0.7%
81.40%
73338.288
1934308.512
第25年
0.7%
80.70%
72712.992
2007021.504
3.3电站预估收益计算
根据湖南省的标准电价,我们电站发的每度电能够有0.45元收入,持续运行25年后,将会获得2007021.504*0.45=903159元,也就是90多万,减去我们为电站投资的41.57万,我们25年内能够获得大约50万的纯利润收入
参考文献
[1]王思钦.分布式光伏发电系统电能计量方案[J].农村电工,2019,27(09):37.
[2]谷欣龙.光伏发电与并网技术分析[J].科技资讯,2019,17(24):31+33.
[3]黄超辉,陈勇,任守宏.基于应用的光伏电站电缆优化设计[J].电子工业专用设备,2019,48(03):67-71.
[4]余茂全,张磊.基于PVSYST的光伏发电系统仿真研究[J].安徽水利水电职业技术学院学报,2019,19(02):35-39.
[5]谭阳.家用太阳能分布式光伏并网发电系统研究[J].电子制作,2019(09):94-95+91.
[6]石培进.发展分布式光伏电站的可行性分析[J].山东工业技术,2019(12):183.
[7]蒋飞. 光伏发电项目的投资决策方法研究[D].华东理工大学,2013.
[8]陈坤. 光伏发电系统MPPT控制算法研究[D].重庆大学,2013.
[9]徐瑞东. 光伏发电系统运行理论与关键技术研究[D].中国矿业大学,2012.
[10]任苗苗. 光伏发电三相并网逆变器的研究[D].兰州交通大学,2012.
目前我国光伏电站采用的逆变器结构主要有:集中式光伏逆变器系统、组串式光伏逆变器系统、集散式光伏逆变器系统以及微型逆变器等。下面简单介绍一下集中式逆变器和组串式逆变器的的特点(后期会陆续介绍其他类型的逆变器):
>>>>
1.1集中式光伏逆变器
集中式光伏逆变系统是大型光伏电站普遍采用的电能变换装置,也是目前最为成熟的技术方案之一。集中式光伏逆变系统采用一路最大功率点跟踪(MPPT)输入,集中MPPT寻优、集中逆变输出,
集中式逆变器是将很多光伏组串经过汇流后连接到逆变器直流输入端,集中完成将直流电转换为交流电的设备。集中式逆变器通常使用单级两电平三相全桥拓扑结构,大功率IGBT和SVPWM调制算法,通过DSP控制IGBT发出两电平方波,通过LCL或LC滤波器滤波后输出满足标准要求的正弦波。
集中式逆变器常见的输出功率为500kW、630kW,以500kW集中式逆变器应用业绩最多,集中式逆变器转换效率通常>98.3%,中国效率>97.5%,每台逆变器具有1路MPPT,MPPT电压跟踪范围为500V~850V,2台逆变器组成1MW方阵,通过一个双分裂绕组变压器升压后接入35kV中压电网。
目前国内还有最新的直流1500V集中式逆变器,单价功率1.25~3.125MW,采用逆变升压一体结构,组成2.5MW~6.4MW的发电系统,适合目前平价电站的建设。
>>>>
集中式逆变器的优点:
1、安装相对简单,更方便维护。
2、该逆变系统采用单级式控制方式,控制相对简洁,相关技术比较成熟,单位系统造价低。
>>>>
集中式逆变器的缺点:
单台集中式光伏逆变器仅具备一路MPPT路数,针对光伏电池板组件之间存在的匹配偏差,无法做到对每一光伏电池板组串精确地跟踪控制,造成电池板利用效率降低。特别是山地电站的大规模涌现,其应用场景受地形限制,无法保证所有组串朝向、倾角按照最优方式配置,单路MPPT方案的集中式光伏逆变器很难满足现场应用要求。
>>>>
1.2组串式光伏逆变器
组串式光伏逆变系统最初是针对屋顶光伏等小型光伏发电系统设计的,可直接接入低压电网,不需要隔离变压器或升压变压器,特别适合于低压并网的分布式光伏发电。
为了更好地解决光伏电池板组件“失配”造成的发电量的损失,在大型光伏电站中也出现了以小功率组串式光伏逆变器组成的光伏逆变系统,通过对光伏电池板组件子方阵的分散MPPT优化,交流汇接并联后集中升压并网,从而较好的解决了大型光伏电站因光伏电池板组件“失配”导致的发电量损失。
组串式逆变器是基于模块化的概念,将光伏方阵中的每个光伏组串连接至指定逆变器的直流输入端,各自完成将直流电转换为交流电的设备。组串式逆变器通常使用两级三电平三相全桥拓扑结构,选用中小功率IGBT和SVPWM调制算法,通过DSP控制IGBT发出三电平方波,通过LCL或LC滤波器滤波后输出满足标准的正弦波。
组串式逆变器常见的输出功率为1~10kW、20kW~40kW、50kW~80kW,逆变器的最大转换效率为98%以上,中国效率高达98.4%以上,每台逆变器具有多路的MPPT,MPPT电压范围通常为200V~1000V(1~5kW小功率逆变器的MPPT范围一般是80V~500V,直接接入用户电网侧),通过交流汇流后经双绕组变压器接入35kV中压电网。
一旦组件暴露在光源下,可能产生致命的直流电压,因此,应避免接触带电元件,在进行
任何连接或断开连接的操作之前,注意隔离带电电路。
只有经过授权和受过培训的人员才可以接触组件或太阳能系统,或对其进行操作。操作人
员必须牢记佩戴能承受工作电压高于1000V DC的绝缘手套和工作靴,(对于TSM-PE05A.**,
PE14A.**系列组件,绝缘手套需要能承受工作电压高于1500V DC)
当进行导电连接操作时,请摘除所有金属首饰,使用妥善的绝缘工具,穿戴合适的个人防护
用品以降低电击的风险。
不要站立或踩踏组件上方。
不要损坏或划伤组件的前后表面
勿用玻璃破碎或背板撕裂的组件。破碎的组件不能被修复,接触组件表面或边框的任何区
域都会导致触电。
不要拆卸组件或去处组件的任何部分。
防止污物堵塞插头,不要使用被污染的插头进行接插连接。
请勿在组件潮湿或在大风天气时安装或处理组件。
确保连接器的绝缘体间没有间隙,任何间隙都可能产生电弧,从而导致火灾和/或触电的
危险。
考虑余下组件或组件串,确保每个组件及组件串的极性没有接反。
请勿在这些太阳能组件上人为地聚集阳光。
天合光能的组件已经过认证,可进行电压在1000Vdc以下的应用等级A级安装作业
(TSM-PE05A.**, PE14A.**系列组件,低于1500V DC)。任何时候均不得超过该最大电压。
在低于25℃的工作温度下,如果组件电压升高超出数据表规定的值,则在设计光伏系统时
应将这一情况考虑在内。
不要使用水来扑灭电源处的火势。
不要在组件上行走。
不要断开负载中的组件,以避免电弧和电击。如果需要,可在组件表面盖一层不透明材料。
对于IEC标准下的组件,在正常情况下,太阳能光伏组件产生的电流和/或电压可能高于标
准测试条件下报告的值。相应地,在确定导体的额定电流、熔断器规格和连接光伏组件输
出端控制器的规格时,此组件上标注的Isc和Voc 值应乘以一个1.25的因数。
国家电网规定:8kW及以下可接入220V,8-400kW接入380V,400kW-6MW可接入10kV,10MW可接入35kV。因此400kW以下的光伏电站可直接接入380/220低压电网。如果电站容量超过400kW并中压电网,中大功率电站,一般使用大功率组串式逆变器,目前1000V系统,逆变器输出电压有480V、500V、540V等多种,1500V系统,逆变器输出电压有690V和800V两种,逆变器后级接升压隔离变压器,这个电压目前没有相应的标准,那到底哪一个电压好呢?
从机器成本上看,同等功率的逆变器,输出电压越高,电流就越小,成本越低,从这点看似乎电压越高越好,但综合考虑前级升压的效率,以及器件的寿命和组件配置的灵活性,1000V系统系统中,电压480V是比较适合,1500V系统,电压800V是比较适合。