怎么提高光伏发电的效率
您好!非常高兴能为您解答!小岛从技术角度帮您梳理了一下。
要稳定运营百万瓦(MW)级光伏发电业务并提高盈利能力,发电运营商必须具备电气设备知识,构建并运营适合的光伏发电系统。 与光伏发电系统的总体效率相关的有两个要素,一个是太阳能电池板本身的转换(发电)效率,另一个是如何使太阳能电池板所发电力损失最小地并入系统电网。后者取决于太阳能电池板的发电量与在系统电网接入点位置输出的电量之差。这一电量差被称为“中间损失”。一般来说,太阳能电池板的转换效率容易成为关注的焦点,但即便转换效率低一些,但增加电池板的面积及数量,就能获得相同的发电量。所以对于MW级光伏电站的系统设计来说,如何降低“中间损失”非常重要。 关于太阳能电池板的转换效率,需要留意的一点是,电池板上的电池单元(发电元件)的温度会会左右发电效率。尤其是使用结晶硅类单元的电池板,温度上升会导致转换效率明显下降。太阳能电池板的转换效率通常是在电池单元温度为25℃时测量的数值,但电池单元的温度达到25℃时,周围的气温往往会比之低20℃~30℃,在日本,除非在冬季,否则很难达到产品目录上标明的转换效率。 关于“中间损失”,日本新能源产业技术综合开发机构(NEDO)发布的《大规模光伏发电系统导入指南及辅助工具》(以下简称《指南》)介绍称,这种损失高达约20%。造成损失的原因有好几个,首先是布线造成的损失。布线越长损失越大。《指南》称,PCS之前的直流电布线部分会损失10%,PCS将直流电转换为交流电时会损失4.3%,从PCS到系统电网的交流电布线部分会损失1.6%。再加上远程管理系统及监控电源等站内负荷(2.0%)、为PCS机箱散热的功耗(1.1%)及PCS的待机功耗(1.6%),中间损失约为20%。顺便一提,TMEIC生产的PCS的效率为97%,采用这种PCS时,转换损失只有3%。太阳能电池板所发电力在流入系统电网卖出之前,会损失20%左右(点击放大) 提高MW级光伏电站系统总体效率的方法主要有以下三个:(1)缩短布线、(2)提高太阳能电池板及PCS等发电设备的效率、(3)提高接入电网时使用的升压变压器的效率。 缩短布线方面,太阳能电池板与PCS的配置十分重要,因为这会影响到太阳能电池板到PCS以及PCS到电网接入点的布线的长度。大多数光伏电站都会在铺设的太阳能电池板的正中间配置PCS,然后从此处开始沿直线将电线铺设到电网接入点,其原因就是这种方式的总布线长度最短,提高升压变压器的效率方面,由于这种设备是日本《节能法》中“领跑者制度”的对象,各公司展开了技术开发竞争,如果光伏电站选择高效率的产品,损失就会相应减少。
大概梳理了以上这些,希望绿合岛的回答能帮到您,如果您觉得满意,请麻烦您高抬贵手帮小岛采纳哟,祝您及您的家人永远幸福安康!
影响光伏发电站的发电量的因素比较多:
1、设备本身的缺陷影响效率,比如光伏组件、逆变器效率低,只能更换高效率的才能解决问题。2、组件的方位角和倾斜度不合适也会影响发电效率。3、天气和空气质量、当地日照时间原因影响发电效率。4、没有及时清洗组件表面尘土也会影响发电效率。
以上四种原因都可能导致光伏发电站的发电量达不到设计标准。你没有说明具体情况无法判断属于哪一种原因导致发电量达不到预期数值,另外计算理论发电量不能按装机容量计算,实际输出最高功率只能到达装机容量的75-85%,还要参考当地日照时长去计算。
提高光伏发电量技巧:
光伏组件的安装角度
光伏组件是影响发电量的最核心因素,光伏组件的转换率越高发电效果越好。光伏组件安装时要尽量面向太阳辐射量最大的角度和方向,安装角度一般是当地的纬度加5度,安装的方面角一般是正南稍偏西一点。
逆变器的电压范围
逆变器电压范围越宽,发电量越高。室外安装时,逆变器上面要装防雨防晒蓬,避免阳光直射和雨水浸泡。逆变器不直接暴露在太阳或其它热源下。逆变器必须放在一个空气流通的空间,逆变器分为强制风冷和自然散热两种,逆变器本身是一个发热源,所有的热量都要及时散发出来,不能放在一个封闭的空间,否则温度会越升越高。
系统配置标准化
有些光伏电站的系统配置是东拼西凑而成,可能用的部件并不差,但拼凑在一起效果却大打折扣。一套完美的标准化系统一定是经过无数次的匹配试验、数据对比、系统调试、安装论证,最后达到一个完美而稳定的发电量,才形成了一套完美的系统,这样的系统才叫标准化系统。
减少损耗
线路损耗,直流光伏线尽可能短,逆变器和电表之间距离也要短。系统的直流、交流回路的线损要控制在5%以内。为此,设计上要采用导电性能好的导线,导线需要有足够的直径。施工不允许偷工减料。系统维护中要特别注意接插件以及接线端子是否牢固。
电站的灰尘损失
组合损失,凡是串连就会由于组件的电流差异造成电流损失凡是并连就会由于组件的电压差异造成电压损失组合损失可以达到8%以上,中国工程建设标准化协会标准规定小于10%。为了减少组合损失,应该在电站安装前严格挑选电流一致的组件串联。组件的衰减特性尽可能一致。根据国家标准GB/T--9535规定,太阳电池组件的最大输出功率在规定条件下试验后检测,其衰减不得超过8%,隔离二极管有时候是必要的。
1,电站所在地点年太阳能辐射强度
2,光伏电池组件角度(面南,角度基本与当地维度相当,具体角度需要计算)
3,光伏组件效率(主要由使用年限决定,时间越长效率越低)
4,电气系统与控制系统效率(影响不大)
发电效率影响因素有:
外部因素1)光照强度,一般光照越强,发电效率越高。
2)温度,一般越热,组件的发电效率反而越低。
3)天气状况,如果经常有云经过,电池组件的发电效率会降低。
内部因素:1)光伏组件质量,越好的组件质量,发电效率越高。
2)光伏逆变器质量,好的光伏逆变器转换效率会越高。
3)汇流箱、升压站等产品质量均会有或多或少的影响。
独立户用系统效率:60-65%;
BIPV发电效率:70-75%;
大型并网光伏电站效率:75-80%。
当然跟踪支架系统对光伏组件的发电效率也有很大的提高,单轴倾纬度角跟踪一般可以提高51%,双轴高精度跟踪可以提高56%。
随着技术的发展,组件发电效率、逆变系统、储能系统的效率都会得到大大的提升,尤其是一些大型荒漠发电站因其没有储能系统所以整体效率可以做到85%左右。
2.采用聚光系统,增加光的辐照度,从而提高太阳能的利用率,这就是我们常说的聚光太阳能电池。
3.采用新型的太阳能电池结构。比如南京中电电气的选择性发射极太阳能电池、无锡尚德的Pluto冥王星电池、日本三洋公司的HIT太阳能电池、美国Sunpower公司的全背接触太阳能电池,特别是后二者实际工厂生产的效率已经达到20%,最近Sunpower在马来西亚的工厂生产的电池效率更是达到24%。
4.新理论太阳能电池(第三代太阳能电池)。比如热载流子太阳能电池,超晶格等等。