乙醇如何变成乙醛 (化学方程式)
化学式为:
乙醇变成乙醛一般使用乙醇脱氢法。在添加钴、铬、锌或其他化合物的铜催化剂作用下,乙醇脱氢生产乙醛。
乙醇具有还原性,可以被氧化(催化氧化)成为乙醛甚至进一步被氧化为乙酸。酒精中毒的罪魁祸首通常被认为是有一定毒性的乙醛(乙醇在体内也可以被氧化,但较缓慢,因为没有催化剂),而并非喝下去的乙醇。
扩展资料:
实际上是铜先被氧化成氧化铜;然后氧化铜再与乙醇反应,被还原为单质铜(黑色氧化铜变成红色)。
乙醇也可被高锰酸钾氧化成乙酸,同时高锰酸钾由紫红色变为无色。
因为乙醇可以电离出极少量的氢离子,所以其只能与少量金属(主要是碱金属)反应生成对应的有机盐以及氢气:
乙醇可以和卤化氢发生取代反应,生成卤代烃和水。
通式: (X为卤素)
注意:通常用溴化钠和中等浓度的硫酸的混合物与乙醇加热进行该反应,故常有红棕色气体(溴单质)产生。
乙醛与新制的氢氧化铜:CH₃CHO+2Cu(OH)₂→ CH₃COOH+Cu₂O↓+2H₂O(加热)(生成砖红色Cu₂O沉淀)
乙醛和氢气反应生成乙醇,是加成反应:CH₃CHO+H₂→CH₃CH₂OH
参考资料来源:百度百科——乙醇
参考资料来源:百度百科——乙醛
1、乙烯直接氧化法,乙烯和氧气通过含有氯化钯、氯化铜、盐酸及水的催化剂,一步直接氧化合成粗乙醛,然后经蒸馏得成品。
2、乙醇氧化法,乙醇蒸气在三百到四百摄氏度以下,以银、铜或银铜合金的网或粒作催化剂,由空气氧化脱氢制得乙醛。
3、乙炔直接水合法,乙炔和水在汞催化剂或非汞催化剂作用下,直接水合得到乙醛。
4、乙醇脱氢法,在添加钴、铬、锌或其他化合物的铜催化剂作用下,乙醇脱氢生产乙醛。
乙炔生成乙醛的主要方法是乙炔在催化作用下液相水合法生成乙醛。
乙炔液相水合法已有60多年的工业化历史,至今工业化还在采用,该法以乙炔为原料,乙炔用电石水解得到,耗电量大,而且需要有毒的汞盐做催化剂,污染环境,故其发展受到限制。
扩展资料:
除了乙炔在催化作用下液相水合法生成乙醛。工业生产乙醛的主要方法还有三种:
1、乙醇氧化脱氢法或者乙醇脱氢法。
乙醇氧化脱氢法虽然技术成熟,乙醛的产量高,但这种方法在相当程度上取决于乙醇的来源。
如果乙醇来自粮食加工,这种乙醇的价格高,特别是对于粮食不富裕的情况下则更不可取。
如果是来自于农副产物,如谷糠、蔗渣等,这样的原料价格较为低廉,乙醇的另外一种来源是由乙烯合成,如果是这样,就不如直接用乙烯去合成乙醛更为有利。
2、丙烷—丁烷气相直接氧化法。
丙烷—丁烷气相氧化制乙醛的方法,一方面受到原料产地的限制,同时氧化物比较复杂,分离困难,乙醛收率不高。
3、乙烯均相氧化法。
乙烯直接氧化法是直接以石油裂解乙烯为原料一步合成,原料来源丰富,工艺过程简单,反应条件温和,选择性高,易于实现工业化,是生产乙醛最经济的一种方法。
一般使用乙醇脱氢法,在添加钴、铬、锌或其他化合物的铜催化剂作用下,乙醇脱氢生产乙醛。
化学方程式为:2C₂H₅OH+O₂→2CH₃CHO+2H₂O(条件是Cu或Ag做催化剂,加热)。
乙醇在常温常压下是一种易燃、易挥发的无色透明液体,低毒性,纯液体不可直接饮用;具有特殊香味,并略带刺激;微甘,并伴有刺激的辛辣滋味。
乙醇具有还原性,可以被氧化(催化氧化)成为乙醛甚至进一步被氧化为乙酸。
用途
乙醇是一种很好的溶剂,能溶解许多物质,所以常用乙醇来溶解植物色素或其中的药用成分;也常用乙醇作为反应的溶剂,使参加反应的有机物和无机物均能溶解,增大接触面积,提高反应速率。例
如,在油脂的皂化反应中,加入乙醇既能溶解NaOH,又能溶解油脂,让它们在均相(同一溶剂的溶液)中充分接触,加快反应速率。
乙醇的用途很广,可用乙醇制造醋酸、饮料、香精、染料、燃料等。医疗上也常用体积分数为70%~75%的乙醇作消毒剂等,在国防化工、医疗卫生、食品工业、工农业生产中都有广泛的用途。
kt/a生产装置。
(1)乙酸酯化法
乙酸酯化法是传统的乙酸乙酯生产方法,在催化剂存在下,由乙酸和乙醇发生酯化反应而得。
ch3ch2oh+ch3cooh=ch3cooch2ch3+h2o
乙醇
乙酸
乙酸乙酯
水
反应除去生成水,可得到高收率。该法生产乙酸乙酯的主要缺点是成本高、设备腐蚀性强,在国际上是属于被淘汰的工艺路线。
(2)
乙醛缩合法
在催化剂乙醇铝的存在下,两个分子的乙醛自动氧化和缩合,重排形成一分子的乙酸乙酯。
2ch3cho→ch3cooch2ch3
乙醛
乙酸乙酯
该方法20世纪70年代在欧美、日本等地已形成了大规模的生产装置,在生产成本和环境保护等方面都有着明显的优势。
(3)乙醇脱氢法
采用铜基催化剂使乙醇脱氢生成粗乙酸乙酯,经高低压蒸馏除去共沸物,得到纯度为99.8%以上乙酸乙酯。
2c2h5oh→ch3cooch2ch3+h2
乙醇
乙酸乙酯
氢
(4)
乙烯加成法
在以附载在二氧化硅等载体上的杂多酸金属盐或杂多酸为催化剂的存在下,乙烯气相水合后与气化乙酸直接酯化生成乙酸乙酯。
ch2ch2+ch3cooh=ch3cooch2ch3
乙烯
乙酸
乙酸乙酯
该反应乙酸的单程转化率为66%,以乙烯计乙酸乙酯的选择性为94%。rhone-poulenc
、昭和电工和bp等跨国公司都开发了该生产工艺。
1.乙烯直接氧化法
乙烯和氧气通过含有氯化钯、氯化铜、盐酸及水的催化剂,一步直接氧化合成粗乙醛,然后经蒸馏得成品.
2.乙醇氧化法
乙醇蒸气在300-480℃下,以银、铜或银-铜合金的网或粒作催化剂,由空气氧化脱氢制得乙醛.
3.乙炔直接水合法
乙炔和水在汞催化剂或非汞催化剂作用下,直接水合得到乙醛.因有汞害问题,已逐渐为他法取代.
4.乙醇脱氢法
在添加钴、铬、锌或其他化合物的铜催化剂作用下,乙醇脱氢生产乙醛.
5.饱和烃类氧化法.
原料消耗定额:乙炔水合法每吨产品消耗99%乙炔610kg;乙醇氧化法消耗95%乙醇1200kg;乙烯氧化法(一步法)消耗99%乙烯710kg,氧气(99%)300立方米.市售工业品乙醛,乙烯法乙醛纯度为99.7%,乙醇法纯度为98%.[1]
工业制乙醛方程式:2CH3CH2OH+O2→ 2CH3CHO+2H2O(加热,催化剂Cu/Ag)
乙炔水化法:C2H2+H2O→CH3CHO(催化剂,加热)
乙烯氧化法:2CH2=CH2+O2→2CH3CHO(催化剂,加热,加压)
化学分子式你需要自己二次编辑,百度知道回答不支持这类特殊排版.
2CH3CH2OH+O2—Cu、△→2CH3CHO+2H2O;2CH3CHO+O2—催化剂→2CH3COOH。乙醛是一种有机化合物,分子式为C2H4O,无色液体,又名醋醛,无色易流动液体,有刺激性气味,可与水和乙醇等一些有机物质互溶。
乙醇合成方法
乙烯直接氧化法
乙烯和氧气通过含有氯化钯、氯化铜、盐酸及水的催化剂,一步直接氧化合成粗乙醛,然后经蒸馏得成品。
乙醇氧化法
乙醇蒸气在300-480℃下,以银、铜或银-铜合金的网或粒作催化剂,由空气氧化脱氢制得乙醛。
乙炔直接水合法
乙炔和水在汞催化剂或非汞催化剂作用下,直接水合得到乙醛。因有汞害问题,已逐渐为他法取代。
乙醇脱氢法
在添加钴、铬、锌或其他化合物的铜催化剂作用下,乙醇脱氢生产乙醛。
在一些发达国家,它作为一种无毒、无公害型溶剂正逐渐取代含苯溶剂、甲基乙基酮等对人体和环境带来极大危害的溶剂.现今乙酸乙酯的生产路线分为酯化法、乙醛缩合法、乙烯加成法和乙醇脱氢法等.我公司采用的乙醇脱氢法是二十世纪九十年代后期发展起来的新技术,可以将乙醇经一步脱氢转化为乙酸乙酯,同时生成副产品氢气.采用这种方法生产的乙酸乙酯纯度高、含水和各种重金属等杂质低,质量超过国家质量标准.
(分子式CH3COOC2H5,相对分子质量为88.11)
产品名称:乙酸乙酯(ethyl acetate) 外观:透明液体,无悬浮杂质主要指标:色度(铂-钴色号)≤ 10号密度ρ20 0.897-0.902 g/cm3 乙酸乙酯 ≥ 99.0% 水份 ≤ 0.10%
产品用途:重要有机化工原料,广泛用于香料、油漆、油墨及食品工业中.
乙醇脱氢酶(Alcohol dehydrogenase,简称ADH)的系统名为:乙醇:辅酶I氧化还原酶(alcohol:NAD+ oxidoreductase),大量存在于人和动物肝脏、植物及微生物细胞之中,是一种含锌金属酶,具有广泛的底物特异性。乙醇脱氢酶够以烟酰胺腺嘌呤二核苷酸(NAD)为辅酶,催化伯醇和醛之间的可逆反应:CH3CH2OH+ NAD+→ CH3CHO +NADH+ H+。在人和哺乳动物体内,乙醇脱氢酶与乙醛脱氢酶(ALDH)构成了乙醇脱氢酶系,参与体内乙醇代谢,是人和动物体内重要的代谢酶。作为生物体内主要短链醇代谢的关键酶,它在很多生理过程中起着重要作用。它是一种广泛专一性的含锌金属酶。乙醇脱氢酶乙醇氧化体系是在肝脏中代谢酒精的一条主要途径。乙醇脱氢酶氧化体系包括醇脱氢酶(ADH)和醛脱氢酶(ALDH)。
乙醇脱氢酶的应用:
疾病诊断:人体内ADH主要在肝脏生成,所以肝脏疾患可能与血清ADH活性相关。用分光光度法测定血清中ADH的活性并结合临床探讨该项指标在肝脏疾病的诊断上有重要意义。通过实验测定血清ADH活性,从而反应出肝脏功能正常与否。通过对肝脏病人血清中ADH的测定表明,结果均显著高于健康人参考值。
测定酒精浓度:日常交际生活中,人们不可避免地要接触酒精。酒后驾车造成的交通事故已是屡见不鲜。另外,饮酒过量可引起酒精中毒。鉴于酒后事故及酒精中毒的严重后果,所以迅速测定血浆中乙醇浓度,对预防事故的发生及早期诊断和处理急性酒精中毒具有非常重要的临床价值。报道了一种新的酶终点法测定血浆中乙醇浓度的方法,无需去除蛋白,整个检测过程仅需90 s,可用于自动生化分析仪及手工操作,适于临床常规运用。实验中他们选用三(羟甲基)氨基甲烷—盐酸(Tris-HCL)作为缓冲体系,在碱性条件下,乙醇脱氢酶(ADH)催化乙醇转化成乙醛,同时生成还原型辅酶(NADH)。在340 nm波长处检测吸光度的变化,对照标准计算乙醇的浓度。
工业催化剂:在化学工业中,利用ADH的催化特性生产许多原材料及中间反应物。在二氧化碳转化合成甲醇的过程中,ADH就发挥了酶的催化作用。为实现CO2向甲醇的转化,研究者曾尝试了多种方法,其中酶催化法以其高效、专一及反应条件温和等优点,近年来备受关注,在CO2的固定和还原反应中已有应用。许松伟等采用甲酸脱氢酶、甲醛脱氢酶和ADH为催化剂,以NADH作为电子供体,通过三步串连反应将CO2转化为甲醇,探索出了CO2利用的新途径。
临床意义
酒精中毒:
曾有研究显示,乙醇脱氢酶可能导致患者对乙醇代谢依赖性的酗酒。研究人员初步检测到一个可能与酗酒有关的几个基因。如果这些基因变体编码的ADH2和ADH3进入慢代谢形式,可能会增加酗酒的风险。该研究发现,突变的ADH2和ADH3与亚洲人群酗酒有关。然而,事实是否真是如此,还需要继续深入研究。
药物依赖:
药物依赖是关于乙醇脱氢酶的另一个问题,研究人员认为这可能与酗酒有关。一个特别的研究表明,药物依赖与7个乙醇脱氢酶的相关基因有关。这些结果可能有助于有针对性的治疗这些特定的基因。然而,这还有待于更多的深入的研究。