有关醇和硫酸的反应机理
第一种正确。这是醇的亲核取代反应。醇的氧原子有孤对电子显示一定的碱性,可以结合质子生成 钅羊 盐。
伯醇发生SN2亲核取代反应,硫酸的羟基氧进攻醇的阿尔法碳(由于极化带部分正电),然后脱水,脱氢,生成醇的硫酸氢酯;
叔仲醇发生SN1亲核取代反应为主, 钅羊 盐主动脱水形成叔仲碳正离子,然后硫酸羟基氧进攻碳正,脱氢,形成醇的硫酸氢酯。总之,始终是醇的质子化为反应起始,所以第一种正确。
第二种错了很多:首先成酯的氧原子来自于硫酸而非醇(醇的羟基在反应中形成钅羊 盐,离去倾向增加是反映的原动力);其次此反应是硫酸上的羟基氧对醇的阿尔法碳的亲核反应,而非硫酸的硫原子接到醇的氧原子上。
二者不会发生反应。
磺酸的通式为R-SO3H,式中R为烃基,如果是仲磺酸,可以根据仲醇来推导其化学式,仲醇是羟基(-OH)所在碳(即羟基碳)连有两个碳(或取代基)的醇,即R-CH(R‘)-OH。例如2-丁醇、异丙醇和环己醇中的羟基都是仲醇,那么仲磺酸的化学式就是R-CH(R')-SO3H。
硫酸的化学式是H2SO4,根据有机的书写,可以写成HSO3H。
一般所有的磺酸都是强酸,而且硫酸也具有强酸性,所以二者不会发生反应。
状态
C1-C4是低级一元醇,是无色流动液体,比水轻,C1-C3能与水以任意比例混合。C5-C11为油状液体,C12以上高级一元醇是无色的蜡状固体,可以部分溶于水。甲醇、乙醇、丙醇都带有酒味,丁醇开始到十一醇有不愉快的气味,二元醇和多元醇都具有甜味,故乙二醇有时称为甘醇(Glycol)。 甲醇有毒,饮用10毫升就能使眼睛失明,再多用就有使人死亡的危险,故需注意。
沸点
醇的沸点比含同数碳原子的烷烃、卤代烷高。CH3CH2OH 78.5℃, CH3CH2Cl 12℃.这是因为液态时水分子和醇分子一样,在它们的分子间有缔合现象存在。由于氢键缔合的结果,使它具有较高的沸点。
在同系列中醇的沸点也是随着碳原子数的增加而有规律地上升。如直链饱和一元醇中,每增加一个碳原子,它的沸点大约升高15-20℃。此外在同数碳原子的一元饱和醇中,沸点也是随支链的增加而降低。在相同碳数的一元饱和醇中,伯醇的沸点最高,仲醇次之,叔醇最低。
溶解度
低级的醇能溶于水,分子量增加溶解度就降低。含有三个以下碳原子的一元醇,可以和水混溶。正丁醇在水中的溶解度就很低,只有8%,正戊醇就更小了,只有2%。高级醇和烷烃一样,几乎不溶于水。低级醇之所以能溶于水主要是由于它的分子中有和水分子相似的部分-羟基。醇和水分子之间能形成氢键。所以促使醇分子易溶于水。当醇的碳链增长时,羟基在整个分子中的影响减弱,在水中的溶解度也就降低,以至于不溶于水。相反的,当醇中的羟基增多时,分子中和水相似的部分增加,同时能和水分子形成氢键的部位也增加了,因此二元醇的水溶性要比一元醇大。甘油富有吸湿性,故纯甘油不能直接用来滋润皮肤,一定要掺一些水,不然它要从皮肤中吸取水分,使人感到刺痛。醇也能溶于强酸(H2SO4,HCl),这是由于它能和酸中质子结合成钅羊盐的缘故。正因为醇能和质子形成盐(Oxoninm salt,含有正氧离子oxonium的盐),故醇在强酸水溶液中溶解度要比在纯粹水中大。如正丁醇,它在水中溶解度只有8%,但是它能和浓盐酸混溶。醇能溶于浓硫酸,这个性质在有机分析上很重要,它常被用来区别醇和烷烃,因为后者不溶于强酸。
结晶
低级醇能和一些无机盐类(MgCl2,CaCl2,CuSO4等)形成结晶状的分子化合物,称为结晶醇。如:MgCl2.6CH3OH,CaCl2.4C2H5OH等。结晶醇不溶于有机溶剂而溶于水。利用这一 性质可使醇与其他有机物分开或从反应物中除去醇类。如:乙醚中的少量乙醇,加入 CaCl2便可除去少量乙醇。
化学性质
不稳定结构
①同一碳上连有多个羟基的化合物不稳定,这类物质通常是生成醛(酮)的中间反应
HO-CH2-OH——→HCHO+H2O
②双键后直连羟基的化合物不稳定
H2C=C(OH)CH3←——→H3CCOCH3
在特殊情况下,这些化合物可能存在[1]。
醇与金属反应(该反应为置换反应)
仪器的组装
醇与金属的反应是随着分子量的加大而变慢。
2R-OH+2Na——→2R-ONa+H2↑
反应现象
①钠块沉入容器底部
②钠块产生气泡
③反应结束后,有无色晶体析出(此为R-OH)
醇与HX卤代
反应活性
HI>HBr>HCl
叔醇>仲醇>伯醇
(CH3)3C-OH+HCl——→(CH3)3-Cl+H2O(立刻混浊)
CH3CH2(OH)CH3+HCl——→CH3CH2(Cl)CH3+H2O(10min内开始混浊)
CH3CH2CH2OH+HCl-△→CH3CH2CH2Cl+H2O(常温不反应)
由于伯醇、仲醇、叔醇反应时现象不同,可以用此方法进行鉴别,专门用于鉴别的试剂叫卢卡斯(Lucas)试剂,是无水氯化锌的浓盐酸溶液(无水氯化锌起催化作用)
醇的酯化与醇解反应
①与羧酸酯化
CH3OH+CH3COOH-△浓硫酸→CH3COOCH3+H2O
②与硝酸和亚硝酸酯化
CH3CH2CH2OH+HO-NO——→CH3CH2CH2ONO+H2O
③与硫酸酯化
醇与硫酸在不太高的温度下作用得到硫酸氢酯
RCH2OH+HO-SO3H——→RCH2OSO3H+H2O
叔醇和硫酸反应往往脱水生成烯烃
醇和硫酸的反应虽然产物比较复杂,但是在工业生产上依然是个很有用的反应
C12H25OH+H2SO4--→C12H25OSO3H+H2OC12H25OSO3H+NaOH--→C12H25OSO3Na+H2O
C12H25OSO3Na-减压→(CH3)2SO4+H2O
(CH3)2SO4为硫酸二甲酯,是常用的甲基化试剂。
醇的消去反应
脱水难易程度:叔醇>仲醇>伯醇
①分子内脱水
分子内脱水依照查依采夫规则,从氢原子数较少的β-碳上脱去氢原子
CH3CH2CH(OH)CH3-△浓硫酸→CH3CH=CHCH3
CH3CH2OH-170℃浓硫酸→CH2=CH2↑+H2O②分子间脱水浓硫酸做脱水剂,催化剂
醇分子间脱水生成醚
CH3OH+CH3OH-△浓硫酸→H3C-O-CH3↑+H2O(140°C时)③有的醇消去时会发生分子重排
(CH3)3CCH(OH)CH3-浓磷酸→(CH3)2C=C(CH3)2(80%产物)+H2C=C(CH(CH3)2)CH3(20%产物)某些醇不能发生消去反应
醇的氧化反应
①伯醇的氧化
伯醇氧化先生成醛,后生成羧酸
2CH3CH2OH+O2-Cu△→2CH3CHO+2H2O
2CH3CHO+O2-Cu△→2CH3COOH
②仲醇的氧化
仲醇氧化生成酮
2CH3CH(OH)CH3+O2-Cu△→2H3CCOCH3+2H2O
③叔醇的氧化
叔醇一般不发生氧化反应,但叔醇和重铬酸钾的浓硫酸溶液混合时,会先脱水生成烯烃再被氧化,反应十分复杂[1]。
注:醇可被CuO\KMnO4(H+)\O2等氧化
多元醇的鉴别
多元醇能和Cu(OH)2发生显色反应,生成绛蓝色清亮透明溶液
醇的制取
工业制备低级醇,常用淀粉发酵法和乙烯水化法(详见乙醇、甲醇)
实验室常用卤代烃的碱性水解法
CH3CH2-Cl+NaOH-△→CH3CH2OH+NaCl
另外醛、酮、羧酸都可还原得到醇
CH3CHO+H2-Pt→CH3CH2OH
H3CCOCH3+H2-Pt→CH3CH(OH)CH3
CH3COOH-LiAlH4→CH3CH2OH
伯醇变为醛,酸,仲醇变为酮,叔醇不能被氧化。用酸性重铬酸钾溶液氧化后,溶液橙红色变为蓝绿色.最快是伯醇,其次是仲醇,不反应是叔醇。
伯醇加入重铬酸钾:溶液变绿,有强烈刺激性;
仲醇加入重铬酸钾:溶液变绿,有令人愉快的气味;
叔醇不反应。
各类醇与Lucas试剂的反应速率:苯甲型醇,烯丙型醇,叔醇>仲醇>伯醇结构不同的醇和卢卡斯试剂反应速度差异明显。
低级一元醇能溶于卢卡斯试剂中,而相应的氯代烷却不溶,从出现混浊所需的时间可以衡量醇的反应活性。例如,三级醇与卢卡斯试剂很快发生反应,生成的氯代烷立即分层,反应放热;
二级醇作用稍慢,静置片刻才变混浊,最后变成两层,放热不明显;一级醇在常温下放置1h仍无明显现象,需加热才能反应(或叔醇或苄醇与该试剂混合后,溶液立即浑浊或分层,5~10min内分层的为仲醇,不分层的为伯醇)。
扩展资料:
铬酸最常见的是在实验室用做清洗液,兼有酸性和氧化性,可以去除实验仪器内壁和外壁的污垢及难溶物质。通常该洗液由重铬酸钾加入浓硫酸中得到,但是六价铬对环境有害,强酸性环境有时也会使仪器受损,故铬酸洗液的应用已有减少。
铬酸可与配制氧化剂。很多有机化合物都可被铬酸氧化,并且已经研究出很多以六价铬为基础的氧化剂。琼斯试剂:铬酸、硫酸和丙酮的水溶液,可将一级和二级醇氧化成相应的羧酸和酮,当中不饱和键不受影响。氯铬酸吡啶盐:由三氧化铬和吡啶盐酸盐配制,可将一级醇氧化为醛。Collins试剂:三氧化铬和吡啶的加合物。
参考资料来源:百度百科-铬酸
1、习惯命名法:简单醇常采用习惯命名法,即在与羟基相连的烃基名称后加一个"醇"字。例如:甲醇、乙醇、丙醇等。
2、系统命名法:结构比较复杂的醇,采用系统命名法。
饱和醇的命名:选择含有羟基的最长碳链为主链,从离羟基最近的一端开始编号,按照主链所含 的碳原子数目称为"某醇"。
不饱和醇的命名:不饱和醇的命名是选择含羟基及不饱和键的最长碳链作为主链,从离羟基最近的 一端开始编号。
根据主链上碳原子的数目称为"某烯醇"或"某炔醇",羟基的位置 用阿拉伯数字表示,放在醇字前面.表示不饱和键位置的数字放在烯字或炔字的 前面,这样得到母体的名称,再在母体名称前面加取代基的名称和位置。
多元醇的命名选择含-OH尽可能多的碳链为主链,羟基的数目写在醇字的前面,羟基的位次。
扩展资料:
物理性质:
醇类化合物受羟基的影响,存在分子间的氢键,在水中还有醇分子和水分子间的氢键。所以,它们的物理性质与相应的烃差异较大。
主要表现在熔沸点比较高,在水中有一定的溶解度等。一般而言,低级的醇类水溶性较好,甲醇、乙醇和丙醇能与水以任意比例混溶。
4~11个碳原子的醇为油状液体,部分溶于水,以后随着碳原子数增加,烃基对分子的影响越来越大,使高级醇的物理性质更接近于相应的烃。另外,低级的醇具有特殊的气味和辛辣的味道,而高级的醇则无嗅、无味。
参考资料来源:百度百科——醇