建材秒知道
登录
建材号 > 硫酸 > 正文

德国化学家威廉密蔗糖水解用的什么酸

端庄的大侠
合适的自行车
2023-01-01 06:16:01

德国化学家威廉密蔗糖水解用的什么酸

最佳答案
失眠的小鸽子
聪慧的曲奇
2025-07-10 01:32:44

稀硫酸。浓硫酸有脱水性和强氧化性,会使蔗糖脱水变成碳,德国化学家威廉密蔗糖水解用的稀硫酸。浓稀硝酸都有强氧化性,所以不能使用,蔗糖水解生成的葡萄糖和果糖具有还原性,浓盐酸没有脱水性,挥发性太强。

最新回答
无私的发夹
机智的煎蛋
2025-07-10 01:32:44

植物原料所含聚糖在催化剂与水的作用下水解成单糖的解聚过程。用于水解生产的主要植物纤维原料为森林采伐剩余物、木材加工废料和农业废料。20世纪60年代以前,水解科研及生产系以木质原料为主,当时常用“木材水解”一词。水解工业是以植物纤维为原料通过水解获得单糖等中间产物,再经生物化学或化学加工转换成一系列有机化工产品及蛋白饲料等产品的化工生产部门。

简史

1819年法国科学家布拉孔诺(H.Bracon-not)首先发现纤维素可经浓硫酸水解成葡萄糖,为植物原料水解利用奠定了基础。1854年法国公布了阿雷纳(Aréna)和佩卢兹(Peluse)用浓硫酸木材水解法制酒精的研究成果。于次年在巴黎建成了世界上第一座木材水解酒精厂。早期的浓硫酸水解法虽已显示了工艺设备简单易行及糖得率高(近理论值)等方面的优越性,但由于硫酸耗量高达原料重的0.8~1.1倍,且不能有效回收,使这一方法的推广和应用受到限制。1856年法国学者贝尚普(A.Béchamps)首次以发烟盐酸为催化剂进行了木材水解研究。其后经过许多研究者的持续工作,两种浓盐酸水解方法——普罗多尔(Prodor)法即气体盐酸水解法,及贝尔吉乌斯—莱茵奥(Bergius-Rheinau)法即液体盐酸水解法,在20世纪20年代初达到中间试验水平。1933~1942年期间德国及意大利分别建成浓盐酸法及浓硫酸法木材水解厂,并先后投产。稀硫酸水解的研究最早可追溯至1844年。在此之后,瑞典的西蒙森(E.Simonsen)、德国的克拉森(A.Classen)和朔莱尔(H.Scholler)等作了大量研究,为以后稀硫酸水解法的工业化生产打下基础。朔莱尔所提出的水解法的特点是在水解器中形成的糖可及时连续地渗滤排出。糖的分解大为下降,得率提高。这一渗滤式水解法经继续改进后,被称为朔莱尔(Scholler)法。第二次世界大战期间,德国、苏联、美国等国先后对稀硫酸渗滤水解法进行了深入的研究开发,并相继建厂生产,主产品为酒精,部分厂尚生产饲料酵母。第二次世界大战后,日本为了达到甜味资源自给及发展新木材化学工业的目的,全面开展了浓硫酸及浓盐酸水解技术方面的研究,并于50年代末60年代初采用浓硫酸法先后建厂试生产,在回收硫酸上采用了新的途径,主产品为结晶葡萄糖。此方面研究开发工作终因60年代木材价格上涨而中断。苏联拥有丰富的森林资源,始终重视发展其水解工业。从60年代开始,由于大力发展牲畜饲养事业,产品结构发生改变。饲料酵母上升为主产品,同时也巩固酒精生产,发展糠醛生产。此外,木糖醇及木质素深加工产品也得到了相应发展。水解原料构成也逐渐变化,农业废料比重日益上升。中国的水解研究,始于20世纪40年代。从60年代起,科研及生产发展较快。糠醛生产厂已遍布全国,并建立了木材水解酒精厂、木糖醇及木糖生产车间。从70年代中期起,国际上对植物纤维水解利用的研究更趋重视,主要集中于水解方法新领域的开拓研究,在纤维素酶水解法的研究方面取得了不少进展。

原料

木质原料有等外材、梢头木、木片、刨花、板皮、板条及木屑等。林产品工业领域中的废渣废液,如栲胶渣、纤维板生产废水,也不同程度地用于水解生产,硫酸盐法预水解液也有用于水解生产的。制浆生产中的亚硫酸盐法纸浆废液,作为含糖水解液早已在全球范围内大量用作发酵原料。农业废料有玉米芯、甘蔗渣、燕麦壳、棉籽壳、稻壳以及玉米秆、麦秆等。据估计80年代全世界每年用于水解生产的原料约700万吨,林业原料及农业原料各占一半。

在评价植物水解原料时,通常将其所含聚糖分为易水解聚糖及难水解聚糖两类。前者主要指半纤维素(包括果胶质、树胶类聚糖),易为酸及酶等催化水解;后者主要指纤维素及部分伴生其间的聚甘露糖和聚木糖,难被稀酸及酶催化水解。两类聚糖的含量多寡,对确立水解工艺参数有密切关系。植物因种属不同,以及生长地区、气候条件的差异等因素的影响,其化学成分,以至易水解及难水解聚糖比例等都有明显的变化。大量测定表明,林、农废料中三大组成含量的平均范围是:纤维素30~45%,半纤维素15~40%,木质素12~30%。某些富含聚糖的植物原料所含聚糖与普通谷物所含聚糖(淀粉)相近。

产品

水解生产的产品主要有酵母、糠醛、酒精(乙醇)、木糖醇、木糖、饲料糖浆、木质素植物刺激素、木质素植物生长刺激肥料、木质素活性炭等。由水解产品经再加工可形成大量二次产品及系列产品。例如糠醛除了本身可作为产品直接应用外,还是呋喃化工系列产品(包括呋喃类药物)的基本原料。按80年代末期统计数字,全球由植物纤维原料直接生产的饲料酵母每年在45万吨以上(未包括由制浆废液等工业废水生产的产品),糠醛及酒精的年产量分别为25万吨及12万吨左右。

水解厂副产品的种类与所选择的主产品种类及水解工艺有关。如采用稀酸渗滤水解法生产酒精时,可得副产品糠醛、酵母、石膏、液体二氧化碳、干冰等。生产结晶木糖醇或结晶木糖时,可同时得到饲料酵母或饲料糖浆。醋酸及醋酸盐是糠醛生产的副产品。

水解原理与方法植物纤维所含聚糖——纤维素及半纤维素加水分解的总过程可分别表示如下:

水解所得单糖中,属于己糖的除葡萄糖外,尚有甘露糖及半乳糖,戊糖为木糖及阿拉伯糖。在高温酸水解条件下,单糖将进一步发生分解。已得到生产应用和正处于研究开发中的水解方法主要有以下几个:

稀硫酸高温渗滤水解法

简称渗滤水解法。是国际上目前大规模工业生产酵母和酒精唯一应用的一种水解方法。水解时由水解器顶部向器内连续泵入高温稀酸溶液,使其透过(渗滤)水解物料层及时地将已水解出的单糖液(水解液)排出反应空间,以减少糖的分解,获得高的得糖率。半纤维素、纤维素的水解速度及其水解出的单糖的分解速度均相差甚远,植物纤维原料的形态在水解过程中变化很大,这些因素要求水解温度要由低(175℃)向高(190℃)逐渐升温,且要严格控制渗透速度。水解时,硫酸浓度为0.5~0.8%,水解液比(水解液采出量与干基原料重量比)为14左右。渗滤法水解生产工艺包括原料制备(粗大原料削片、粉碎)、水解、水解液中和、澄清等基本工序。水解流程如图1。

图1水解器是水解生产的关键设备,在苏联该项设备在向系列化、大型化方向发展。常见的计有容积为18、20、30、37、40、50、70、80及160立方米9种。70立方米容积水解器结构见图2。

图2国际上采用渗滤法水解生产的企业为了全面利用原料中的聚己糖及聚戊糖,依所选定产品方案的不同主要有4种类型的水解厂:①酵母水解厂;②酒精酵母水解厂(酒精为主产品);③糠醛酵母水解厂(糠醛为主产品);④木糖醇酵母水解厂(木糖醇为主产品)。酒精酵母水解厂基本生产流程见图3。

通过渗滤法水解,每吨绝干原料(按针叶树材计)可获得450~500千克左右的还原糖。今以酒精酵母水解厂及酵母水解厂为例,其产品(包括副产品)及数量见下表。

现阶段,采取稀硫酸高温渗滤法进行水解生产的国家主要是苏联。此外,保加利亚、中国及巴西亦属生产国。

图3浓盐酸水解法

植物纤维素在盐酸浓度高于39%的情况下即可在常温下水解。水解前先经过吸附、润胀、溶解等过程。但在浓酸介质中,纤维素水解成葡萄糖后又立即回聚成结构不同于纤维素低聚糖的新低聚糖。这种新低聚糖在稀酸中极易水解成葡萄糖。浓盐酸水解法有液相(大酸比)及气相两类。以生产结晶葡萄糖为主产品的大酸比浓盐酸水解法,其工艺主要包括原料制备、预水解、纤维木质素干燥、水解、盐酸回收及葡萄糖复盐结晶及复盐分解等基本工序。与稀硫酸水解法相比,浓盐酸水解有得糖率高、糖浓度高、糖质纯以及节约能源等许多优点。但是,液相浓盐酸水解法在其工业生产中有不少技术难关,有待继续解决。

酶水解法

以纤维素酶及相应的半纤维素酶为催化剂,对纤维素及半纤维素聚糖进行水解的方法。酶法水解在常温常压下进行,不需要耐压耐腐蚀设备。由于酶促反应的特异性,产物单一,可免除产物的二次降解,故糖质纯净。但也存在不少技术难关,如原料预处理及酶制剂生产费用昂贵,酶水解反应慢、周期长,酶的有效回收难等,有待进一步解决。

高温快速水解法

从70年代以来,各国普遍研究这一方法。此法一般以0.5~0.8%的稀硫酸为催化剂,在220~240℃高温下于管式水解器中连续进行,水解时间仅为数秒到数分钟。葡萄糖得率可达理论得率的50%以上。该法目前尚处于试验阶段。

趋势

现有稀硫酸高温渗滤水解法的继续完善与提高,仍将是各生产国今后的一项重点任务。以生物技术的新研究成果改进酵母生产技术将受到重视。酶水解技术在商业化的道路上可望取得更多突破,原料的经济预处理方法和酶制取成本的下降及回收利用技术的研究仍将会成为研究的中心目标。占首位的水解产品将继续是饲料酵母,其次为糠醛、酒精及水解糖质饲料等。由于饲养业迅速发展的需要,饲料酵母产量可能增长较快。为了水解生产的进一步发展与扩大,新水解原料资源的开发利用已引起普遍重视。预计城市纤维质垃圾、高位低分解度泥炭及富含聚糖的海洋植物等将会得到更多研究与应用。营造水解原料基地林亦可能受到重视。

陶醉的鸡
愉快的猎豹
2025-07-10 01:32:44
一次性打火机,每个人估计用了不下几十个吧,一块钱一个,几十年不涨价,小东西,但是它却拥有一个巨大的市场。就现在而言,全世界每年需要消耗的一次性打火机的数量超过150亿个,这个数量可以给全世界每个人发上两个打火机,还有剩余,而且注意,这是每年的需求。

文章图片2

但全球这么庞大的市场,制造商几乎可以说只有一个,那就是中国。2020年全世界超过95%的一次性打火机由中国制造,其中65亿只是用于出口的,那为什么日本人发明打火机,欧美推广打火机,最后市场却变成中国人的呢?

打火机的发明是一件大事情

人类完全征服火的标志一定不是人类会使用火,而是人类能够成功地制造出火焰来。1816年法国人发明了黄磷火柴,在之后的几十年里经过不断改进,才形成现代火柴。1823年德国科学家用稀硫酸与锌反应出的氢气,与棉相遇燃烧的原理,制成了世界上第一个打火机。后来又相继发明了汽油打火机,丁烷打火机和压电打火机。

但这些打火机使用起来都很不方便,点火失败机率很高,携带也不方便,另外很容易出现泄露事件引起火灾,关键是价格也绝不便宜,不仅仅是本身,连需要添加的耗材价格也都那么贵,直到日本人发明了一次性打火机。这种当时方便携带,而且可靠度高的打火机,一时之间开始风靡全世界。

欣慰的翅膀
优秀的爆米花
2025-07-10 01:32:44
打火机是一种小巧的取火器,现代打火机按使用的燃料可分为液体打火机和气体打火机;按发火方式可分为火石打火机和电子打火机。

最原始的打火机是从燧石点火枪衍生出来的。带强弹簧的扳机扣动时,击打在火石上产生火花,点燃于树叶。

1823年德国化学家备贝莱纳在实验室发现:氢气遇到铂棉会起火。这一发现引发了他试制打火机的念头。德贝莱纳用一只小玻璃筒盛上适量的稀硫酸,筒内装一内管,内管中装入锌片,玻璃筒装一顶盖,顶盖上有喷嘴、铂棉和开关,内管中锌片与硫酸接触生成氢气。一定量的氢气产生的压力将内管中的硫酸排入玻璃筒内,打开开关时,内管的氢气冲到铂棉上起火;内管与玻璃筒内的压力重新平衡,硫酸再次进入内管,与锌片反应又产生氢气。如此世界上第一只打火机便告诞生。但它有体积大不便携带,玻璃壳易碎,硫酸溢出有危险等缺点,没能普及作用。(图)(现代电子点火气体打火机结构示意图)

1920年法国出现了灯芯式打火机,灯芯是用硝石粉浸过的,容易被火花点燃,后来,改成将灯芯浸在苯中的苯打火机,这种打火机有时漏燃料,而且要经常更换灯芯。

第二次世界大战后,出现气体燃料打火机,逐渐取代了苯灯芯打火机。将从天然气中提取的丁烷气压缩到打火机中,使用时,丁烷气体从打火机的顶端喷嘴中喷出,由打火装置点燃,火焰的大小可通过调节喷气量来控制,丁烷气体用尽后,可从打火机底部的活门装填。

打火机的点火系统也经长期改进,日益完善,老式的打火系统是由火石和火石轮组成,火石是铁和铈做成的合金。1906年奥地利化学家发现这种合金材料具有产生火花的性质,将火厂装入打火机,靠机盖上的铁轮锉的磨击,使火石产生火花。

第二次世界大战期间,弹药专家使用压电效应引爆炸弹。在炸弹的前端装上像酒石酸钾钠和一些陶瓷类的晶体,受到强力冲击时,会在瞬间产生高压电荷,引爆炸药。战后,日本成功的将压电效就用在打火机上,在三四万分之一秒内产生6000—8000伏高压,使产生的火花点燃丁烷,省去了干电池或火石。

另一类打火机是以干电池为动力点火,一种是使用9—12伏层状锰电池,打开开关时,盒内的微型变压器将电压升到9000伏,产生火花,点燃燃料。还有一种打火机内装水银电池和集成电路,产生高压火花,这类打火机只要定期更换电池和补充燃料即可。