建材秒知道
登录
建材号 > 乙醇 > 正文

ACS Catal.-华东师范大学姚叶锋和王雪璐团队:光催化剂研究进展

落后的火
传统的白羊
2023-01-01 06:13:12

ACS Catal.-华东师范大学姚叶锋和王雪璐团队:光催化剂研究进展

最佳答案
漂亮的水杯
合适的星月
2025-07-09 23:21:17

负载在g‑C3N4纳米片的PtCo合金和周围Co单原子的协同作用促进整体水分解

研究背景

太阳能驱动的全分解水可大规模生产氢气和氧气,是满足清洁能源需求和解决化石燃料危机的理想策略。然而,在不消除牺牲试剂或不需要施加外部偏压的情况下,水分解需要协同活性位点,以连接空间分离的析氢和析氧反应。具有最高原子利用效率的原子分散催化剂已成为催化领域的前沿。然而,单组分单原子催化剂在整个光催化水分解反应(OWS)中的应用却鲜有报道。

内容简介

基于此,近日华东师范大学姚叶锋和王雪璐团队设计了一种双组分协同光催化剂,其包含单原子Co(CoSAs)中心和PtCo合金纳米颗粒(Nps)的分散体负载在C3N4纳米片上。CoSAs中心是析氢反应(HER)的高活性位点,PtCo合金是析氧反应(OER)的高活性位点。当两个不同的反应中心结合时,它们之间会产生协同效应,这表明CoSAs中心和PtCo合金Nps之间可能存在质子或羟基溢出现象。CoSAs中心和PtCo合金的协同促进了OWS反应实现最大原子利用率和最佳双功能活性之间的协同。这种结合为开发OWS原子分散催化剂提供了一个很有前景的模型。相关论文以” Synergistic Promotionof Single-Atom Co Surrounding a PtCo Alloy Based On a g‑C3N4 Nanosheet for Overall Water Splitting”发表在ACS Catal.

本文亮点

1. 设计了一种新型的双组分协同光催化剂CoSAs/PtCo@CNN,由负载在纳米片g-C3N4上的CoSAs和PtCo合金纳米颗粒组成。该催化剂有效地促进了光催化整体水分解反应。

2. 纳米片C3N4具有大的比表面积和高的孔容,为CoSAs的形成提供了丰富的N配位。CoSAs和PtCo合金的协同活性在最大原子利用率和析氢析氧双功能反应性之间架起了一座桥梁。

3. CoSAs/PtCo@CNN在可见光照射下,三乙醇胺(TEOA)存在下,催化剂在整个水裂解反应中的产氢活性高达300.9μmol/h·g,产氢活性为5.58 mmol/h·g。

4. 这项研究不仅为构建协同合金位点开发高效的单原子光催化剂提供了一种有希望的策略,而且还提供了对结构的深入了解 通过光催化过程进行的整体水分解反应的活性关系。

图文解析

TEM,FT-IR

CN样品由膨胀和连续结构中的大波浪层组成。负载金属后,金属颗粒聚集在大块CN的表面或次表面。经过两步煅烧后,所得CNN样品转变为薄、松散、柔软的丝状纳米片结构。煅烧方法导致了CN层的卷曲,使金属颗粒更均匀、更稳定地负载在表面上。红外光谱结果表明CNN样品的C-NH-C键的振动明显强于CN样品中的振动,表明CNN具有高浓度的-NH-缺陷位点,可能会增强水分子的光催化活性。

NMR

在D2O 处理(表示为 CNN-D)之前和之后获得的 CNN 样品的1D 1H MAS 核磁结果表明当 CNN 样品中残留水通过 D2O 处理被氘化时,CNN-D 的 Hw 信号显著减弱。这表明CNN样品具有易于吸附和解吸水分子的双重优势。相反,在 D2O 处理后,普通 CN 样品的Hw 信号强度或其位置没有显著变化,表明由于氢交换没有明显的结构变化。氘交换后, CNN-D 样品的 CN3, Ha 峰的相关性显著降低, 表明边缘氨基(Ha) 和 d 氘化水之间存在强烈的质子交换。相比之下, CN-中的质子交换的证据Ha和氘化水之间的D样品几乎没有氘处理前后的变化。

XANES,HAADF-STEM

为了进一步了解铂和钴金属的配位化学,测试了CoSA/PtCo@CNN催化剂的X射线吸收近边缘结构(XANES)光谱。在CoSAs中形成Co(II)Nx配位中心外,合金中的Co4s和4p轨道还通过与Pt电子结合发生杂化。EXAFS分析表明PtxCo合金和N-Co(II)连接性结构形成。Pt L3边缘的EXAFS光谱中电子的径向分布发生了0.2Å的偏移,表明Pt Co键的形成。Co 原子分散在单金属位点,中心 Co 原子由四个 N 原子配位稳定。少量的 CoSA可以通过长距离的 Co-N-C 协调。像差校正的HAADF-STEM结果表明分离出单个纳米颗粒具有 0.224 nm 间距的晶面(Pt3Co 平面)并被许多孤立的金属原子包围。结合 XANES 分析,纳米粒子(NPs)和孤立的金属原子分别为PtxCo 合金和单个 Co 原子。CoSAs/PtCo@CNN 催化剂的组成为大多数 Pt 原子参与形成随机分布的PtCo 合金。额外的Co原子不均匀地分散在 PtCo 合金簇。很少量的Co单原子远离单纳米粒子。所有这些形式共同构成CoSAs/PtCo结构体。

EPR,UV-vis

CoSAs/PtCo@CNN 催化剂用于在紫外-可见光照射下在整个水分解反应中生成产物,而无需使用任何电子牺牲剂,通过原位 EPR 光谱观察到悬浮液中•OH(羟基自由基)的特征信号。这种强烈的•OH 信号表明该途径涉及水的单电子氧化以产生•OH。在 CoSAs@CNN 上仍然没有检测到 •OH 信号,CoSAs/PtCo@CNN表现出高活性产氢气(高达 300.9 μmol/h·g)和 65.6 μmol/h g的活性用于整个水分解反应中的 O2。在整个水分解反应中观察到 H2O2 产物。催化剂使用3次后,PtCo合金上的Co0保持稳定的结构。在单组分催化剂 CoSAs@CNN 或 PtCo@CNN 上没有检测到可测量的 H2 或 O2 物种,这表明单原子 Co 和纳米片CNN 上负载的 PtCo 合金复合材料之间存在协同。

DFT

理论计算给出了CoSAs/PtCo@CNN对 HER 的反应途径。第二步(OH* O*)为 OER 过程的决速步。对于合金表面的 Pt 位点、合金表面的 Co 位点和 CoSAs 位点,此步骤的 ΔGO* 值分别为 2.18、1.82和 2.52 eV。对于 PtCo 合金表面的 Co 位点,每个基元步骤都是吸热的,其决速步基本上可用于完成 OER 半电池反应。如上所述,这种协同作用是通过 CoSAs配位的 N 原子产生的,N原子充当 HER 半反应的高活性位点。同时,由纳米片 C3N4负载的 PtCo 合金纳米颗粒是OER 的高活性位点。

该研究主要计算及测试方法

做同步辐射 找易科研

做球差电镜 找易科研

做计算 找易科研

最新回答
土豪的鼠标
调皮的大叔
2025-07-09 23:21:17

表面活性剂洗涤剂又称水剂清洗剂,一般是由表面活性剂、洗涤助剂和添加剂组成的;

一、表面活性剂

1.主要表面活性剂品种

表面活性剂是水剂清洗剂中的主要成分,通常使用的主要有以下品种。

(阴离子表面活性剂 目前洗涤剂中仍大量使用阴离子表面活性剂,而非离子表面活性剂的用量正在日益增加,阳离子和两性离子表面活性剂则使用量较少。这主要是由表面活性剂的性能和经济成本决定的

最早使用的阴离子表面活性剂是肥皂,曲于它对硬水比较敏感,生成的钙、镁皂会沉积在织物和洗涤用具的器壁上影响清洗效果,因此已被其他表面活性剂所取代。目前肥皂主要在粉状洗涤剂做泡抹调节剂使用,由于它易于与碱土金属离子结合,所以在与其他表面活性剂结合使用时,可起到“牺牲剂”作用,以保证其他表面活性剂作用充分发挥。

直链烷基苯磺酸钠盐(LAS) 由于有良好的水溶性,较好的去污和泡沫性,比四聚丙烯烷基苯磺酸盐(ABS)的生物降解性好,而且价格较低,所以是目前洗涤剂配方中使用最多的阴离子表面活性剂。

其他一些常用的阴离子表面活性剂有仲烷基磺酸盐(SAS)、α—烯烃磺酸盐(AOS)、醇硫酸盐(FAS)、—磺基脂肪酸酯盐(MES)、脂肪酸聚氧乙烯醚硫酸盐(AES),虽然可以渭单独作为洗涤剂主成分,但通常是与直链烷基苯磺酸盐配合使用。

其中仲烷基磺酸盐(SAS)水溶性比LAS好,不会水解广陛能稳定,常用于配制液体浙溜α—烯烃磺酸盐(AOS)抗硬水性、泡沫性、去污性好,对皮肤刺激性低牛因此多用于皮肤清洁剂。其中尤以含碳原子数在14~18的α—烯烃磺酸盐性能最好。

脂肪醇硫酸盐(FAS)是重垢洗涤剂中常用的阴离子表面活性剂,有去污力强的优点厂它的缺点是对硬水比较敏感,因此使用的配方中必须加螯合剂。

d—磺基脂肪酸酯盐(MES)是以油脂等天然原料制成的,生物降解性好,对人体安全,是近年来开发的新品种,随着人们对保护环境的重视,它日益受到人们的重视二MES是一种对硬水敏感性低、钙皂分散力好,洗涤性能优良的新品种,缺点是会水解,使用时要加入适当稳定剂。

脂肪醇聚氧乙烯醚硫酸盐(AES),兼有阴离子非离子表面活性剂的特点,在硬水中仍有较好的去污力,形成的泡沫稳定,在液体状态下有较高稳定性,因此广泛用于配制各种液体洗涤剂。

(2)非离子表面活性剂 洗涤剂中使用最多的非离子表面活性剂是脂肪醇聚氧乙烯醚(AEO)。它在较低浓度下就有良好的去污能力和对污垢的分散力,而且抗硬水性能好,具有独特的抗污垢再沉积作用。

过去常使用的烷基酚聚氧乙烯醚(APEO)虽然与脂肪醇,聚氧乙烯醚有类似的性能,但由于其生物降解性能差,目前在洗涤剂中用量正在减少。

烷醇酰胺配制的洗涤剂有丰富而稳定的泡沫,而且与其他表面活性剂有良好协同作、用,有利改进洗涤剂在低浓度和低温下的去污力,因此常做洗涤剂的配伍成分。

氧化胺水溶性好,与LAS配伍好,对皮肤刺激性低,有良好的泡沫稳定作用。缺点是热稳定性差,价格高,目前多用于配制液体洗涤剂。

两性离子表面活性剂虽然有良好的去污能力,但由于价格较高,目前只在个人卫生用品和特殊用途洗涤剂中有少量使用。阳离子表面活性剂去污性较差但柔软、杀菌、抗静电性能优良,因此把阳离子表面活性剂和非离子表面活性剂配合可制成兼有洗涤功能与柔软、消毒双功能的洗涤剂。

2.使用表面活性剂应注意的问题

(1)表面活性剂通常是不同链长同系物的混合物 表面活性剂与其他化工产品不同之处在于很少有纯粹单一分子结构的表面活j陛剂产品,大多是不同链长同系物的混合物9制备表,面活性剂的主要原料来自石油或油脂,石油是多种烃的混合物,油脂也是多种月旨肪酸与甘油形成的酯,因此制成的表面活性剂产品也是一种混合物。如肥皂实际上是硬脂酸钠、棕榈酸钠、月桂酸钠、油酸钠多种脂肪酸盐的混合物,而脂肪醇聚氧乙烯醚不仅原料脂肪醇是不同碳链长度的混合物,而且加腐的环氧乙烯数量也不同,因此产品是多种不刚旨肪醇,不同环氧乙烯加成物的混合物i在混合物各种成分占的比例对表面活性剂的性质有很大影。

(2)洗涤剂中其他成分对表面活性剂的影响 洗涤剂的配方中存在的无机盐脂肪醇等极性有机物以及水溶性高分子化合物对表面活性剂性质都会有很大影,具体表现为它们使。表面活性剂溶液的表面张力、临界胶束浓度以及乳化、增溶、发泡稳泡等性能发生变化,是由于这些成分与表面活性剂分子问复杂酌相互作用的结果。

一般表面活性剂的工业产品几乎不可避免地含有少量未被分离的副产物和原料,而这些有机物杂质往往对表面活性剂溶液的性质产生极大影响,如阴离子表面活性剂脂肪醇硫酸酯钠盐中往往含有未反应完全的脂肪醇原料,它对表面活性剂上述性能有很大影响而且呈现出脂肪醇碳氢链越长影响越大的规律。而有些物质是作为添加剂加到洗涤剂配方中的厂如阴离子表面活性剂C16H330SO3Na在室温下几乎不溶于水,但如在配方中加入尿素和N—甲基乙酰胺(CH3CONHCH3)或二甲苯磺酸钠之后,它在水中溶解度明显增加。因此在洗涤剂中常加入各种洗涤助剂和添加剂以改善表面活性剂的性能。

(3)表面活性剂的复配协同作用 在洗涤剂配方中常不使用单的表面活性剂,而是使用几种表面活性剂的复配产物。通常复配的方法是几种不同类型非离子表面活性剂复配或非离子表面活性剂与阴离子表面活性剂复配,如中国上海合成洗涤二厂生产的诤洗剂105就是由24%的脂肪醇聚氧乙烯醚,24%椰子油烷基二乙醇酰胺和12%辛基酚聚氧乙烯醚三种非离子表面活性剂加水配成的。而国产的净洗剂826等产品则是非离子表面活性剂与阴离子表面活性剂复配的产品。重垢洗衣粉的许多配方中都采用阴离子表面活性剂直链烷基苯磺酸钠(LAS)与非离子表面活性剂脂肪醇聚氧乙烯醚(A正)复配作主洗涤剂的形式;当烷基苯横酸钠或烷基硫酸钠等阴离子表面活性剂与非离子表面活性剂复配使用时可以获得比单一表面活性剂更优良的洗涤性质和润湿性质,把这种作用称为表面活性剂的协同作用。产生这种作用的原因,可能是不同种类的表面活性剂分子在溶液中形成混合胶束。如非离子表面活性剂的分子“插入”离子型表面活性剂胶束之中,使原来离子型表面活性剂带有相同电荷“离子头”之间的电斥力减弱,再加上两种表面活性剂分子中疏水碳链间的相斥吸引作用使阴离子表面活性剂分子间吸引力增加,胶束较易形成,所以溶液的临界胶束浓度降低,表面张力下降表面活性提高。

二、洗涤助剂(助洗剂)

把本身没有明显洗涤能力但是添加在洗涤剂配方中却可以使表面活性剂的洗涤去污能力得到提高的物质叫洗涤助剂或助洗剂。在洗涤剂配方中加入的这种洗涤助剂有无机物,如三聚磷酸钠、硅酸钠、碳酸钠、硫酸钠等,有机物有氮川三乙酸盐、柠檬酸钠、聚丙烯酸等,因此可以把助洗剂分为无机物和有机物两类。它们与表面活性剂分子之间发生复杂的相互作用,结果使洗涤效果比单独使用表面活性剂时好,把这种作用也称为协同作用。但应注意如果洗涤助剂选择、处理不当,反而会对洗涤效果产生不良影响,把这时的作用称为对抗效应配制时应注意避免。

1.洗涤助剂的作用

(1)整合金属离子的作用 洗涤剂中含有各种金属离子,其中以镁、钙等硬水离子对表面活性剂的洗涤作用危害最大,它使肥皂成为钙皂而失去去污力,并形成难以去除的钙垢使烷基苯磺酸钠的溶解性降低,使多种表面活性剂在硬水中的去污力都明显下降。为了软化硬水,抑制钙、镁离子对表面活性剂洗涤作用的不良影响,为把污垢成分中含有的金属离子如铝、铁等离子结合成不易解离的水溶性络盐,在洗涤剂配方中要加入有螯合作用的助洗剂,如三聚磷酸钠、柠檬酸钠、酒石酸钾钠都是螯合剂。螯合剂的作用在于既可以减少水的硬度,又可以把原来带负电的物质如纤维和带负电的污垢粒子间起桥梁作用的金属阳离子螯合形成可溶性的稳定络盐以破坏被洗物质上污垢之间静电结合,从而使污垢易于解离;分散而被去除 (有关整合剂的概念将在化学清洗中介绍)。

(2)碱性介质作用 表面活性对洗涤剂中常加入一些显碱性的物质作洗涤助剂,保持洗涤液的pH值在碱性范围,可以提高表面活性剂对污垢特别是油性污垢的洗净能力i多种表面埔活性剂的去污能力都受pH值的影响,而在碱性介质中去污能力较强。另一方面天然油脂污垢噌中含有30%左右的游离脂肪酸,在洗涤剂中加入一定量碱,可以与脂肪酸反应生成肥皂,有利于把油脂乳化、分散达到去污目的,因此在工业清洗的金属材料脱脂清洗时常需加入显碱性的洗涤助剂发挥碱性介质的作用。以这种目的加入的洗涤助剂有碳酸钠、三聚磷酸钠和硅遏酸钠等。碳酸钠的碱性作用较强,缺点是有时它会与水中钙离子生成碳酸钙沉淀。而各种磷;B酸盐和硅酸盐它们耐硬水性能好在水中还能形成活性胶体因此使用效果较好。

(3)活性胶体的吸附分散作用 把物质分散在水中形成由几十到几百个分子聚集形成的分子聚集体(其颗粒大小在100—1nm之间)叫胶体。胶体粒子分散在水中得到的体系叫溶胶。由于胶体粒子非常小,总表面积非常大,而且表面常带有净电荷,因此胶体粒子表面有很强,I的吸附作用,可吸附污垢粒芋使它们稳定地分散在水中。由于从清洗物体表面上分散解离下来的污垢能被牢牢地吸附在这些胶体粒子表面,从而防止污垢再沉积到已被洗净的表面起到防止再污染的作用。无机盐中的硅酸盐和聚合磷酸盐在水中都可形成胶体,水溶性高分子化合物如羧甲基纤维素在水中也有形成胶体的倾向。因此加入这些洗涤助剂可以发挥活性胶体,吸附作用提高表面活性剂的去污能力。

(4)增强表面活性剂的表面活性作用 氯化钠和硫酸钠等中性电解质盐类本身并没有洗涤能力,但它们加入表面活性剂水溶液中会促进表面活性剂临界胶束浓度的降低,促进胶柬形成、表面活性的提高,有使表面活性剂水溶液的表面张力降低,使表面活性剂在污垢和清洗物体表面的吸附能力增强,从而使表面活性剂的洗涤能力提高。

(5)防止污垢再沉积的作用 曾述及硅酸钠、三聚磷酸钠和羧甲基纤维素在水中形成活.性胶体可以吸附污垢并防止污垢再沉积,另外由于这些活性胶体带有负电荷,当它们分别吸附在物体表面和污垢上时,加大了物体表面和污垢之间的静电斥力,这些作用都起到防止污垢再沉积到洗净物体表面的作用。

洗涤助剂有以上一种或几种作用,其中尤以三聚磷酸钠的作用最大,性能最好是最常用的一种洗涤助剂。凡是含有三聚磷酸钠等磷酸盐的洗涤剂都叫有磷洗涤剂。

由表7—15至表7—17可清楚看出这些促进作用。

表7—15 无机盐对烷基苯磺酸钠表面张力的影响

表7—16 添加硫酸钠对烷基苯磺酸钠临界胶束浓度的的影响

另外实验结果还表明,硫酸钠对烷基苯磺酸钠在棉布上的吸附量有很大影响,在相同浓度的烷基苯磺酸钠溶液中加入的硫酸钠越多,烷基苯磺酸钠在棉布上的吸附量越多。表7—17为无机盐对烷基苯磺酸钠洗涤力促进作用。

表7-17 无机盐对烷基苯磺酸钠洗涤力促进作用

2.三聚磷酸钠(Na5P3010SPPT)

(1)三聚磷酸钠的优点 把能与金属离子形成环状配合物的物质称为螯合剂。三聚磷酸钠是一种很好的无机螯合剂。常用的聚磷酸盐无机螯合剂有焦磷酸钠(Na4P207),三聚磷酸钠(Na5P3010)、四聚磷酸钠(Na6P4013)和六偏磷酸钠(NaPO3)6。但螯合性能最好的是三聚磷酸钠。在发生螯合反应时,一个三聚磷酸钠分子与一个钙离子形成三个配位键组成的两个六元环。形成的螯合物溶解于水并在水中很稳定,解离度很小,因此使水中硬度大为降低起到软化水的作用。由于烷基苯磺酸钠的去污力随水质硬度增加而迅速下降,加入三聚磷酸钠可防止这种不利影响。

三聚磷酸钠在水中形成带负电的胶体极易吸附在带电荷的金属氧化物等污垢和织物表面上增加了污垢与物体表面的排斥力,有利于污垢在水中的分散并防止污垢的再沉积。

另外三聚磷酸钠水解显碱性也发挥碱性介质的作用,由此可知三聚磷酸钠是一种性能优展的无机螯合剂并且能发挥洗涤助剂的多种作用,而且其原料易得价格便宜,因此是洗涤剂配方中常用的洗涤助剂,在衣用洗涤剂中三聚磷酸钠的含量一般在20%一50%左右。

(2)三聚磷酸钠的缺点 由于工业的发展,排入天然水域的含磷物质和有害物质越来越多随着化肥、人畜粪便、水土流失以及含磷洗衣粉等形式流人水中的磷有促使水中藻类生长的作用,藻类的大量生长消耗了水中的氧,使鱼类、浮游动物由于缺氧而死亡,它们的死亡尸体腐烂又会造成水质污染。因此国外有关环境保护部门提出禁用含磷洗衣粉的呼声。但是目前尚未找到+种能完全替代三聚磷酸钠·的理想洗涤助剂。

把不含三聚磷酸钠的洗衣粉叫无磷洗衣粉,对新型无磷洗衣粉中使用的洗涤助剂的要求是:能螯合水溶液中的钙、镁离子,能与表面活性剂发挥协同作用,对纤维和清洗物体不造成损伤,没有腐蚀性,而且具有生物降解性好,不使水质富营养化,对人、动物及水生植物均无毒等优点。价格也应与三聚磷酸钠相差不多。目前人们正在努力寻找三聚磷酸钠的理想代替品。目前使用的有以下几种。

3.其他洗涤助剂

(1)4A沸石 这是一种不溶于水的正立方晶型的铝硅酸盐白色晶体,组成为[Na4(Al4Si4032)·7.5H2O]。沸石有天然沸石和合成沸石两种。用作洗涤助剂的是合成沸石,它具有吸附量大、吸附速度快及细孔均匀规则等优点。由于它含有对阳离子有选择性吸附交换作用的,在4A拂石分子筛结晶铝硅酸盐孔穴中,可相对自由移动的钠离子,可与Ca2+、Mg2+及其他金属离子进行交换,所以能起到软化硬水的作用,并使水显碱性。沸石还有吸附污垢粒子,促进污垢聚集起到增强洗涤剂去污效果的作用。

4A沸石在洗涤剂中具有较好的助洗性能与配伍性,对人体无毒,使用安全不会危害环境,不溶于水因此易于漂洗去除,是磷酸盐的合适代用晶,也是国外无磷洗涤剂中较多使用的助洗剂。缺点是不溶于水,价格较高。

(2)氮川三醋酸盐 是一种对Ca2+、Mg2+离子有很强螯合能力的螯合剂,也是三聚磷酣酗钠的一种很好的代用品。由于结构中含有氮元素,也会对水质产生“富营养化”问题。研究表明,它与汞、镉等重金属生成的螯合物可通过胎盘障壁造成鼠粪生育缺陷从而怀疑它对入醚体有害,因此许多西方国家已限制它的使用,目前只有加拿大等国仍用它代替三聚磷酸钠。

(3)柠檬酸钠 是无磷洗涤剂中使用的洗涤助剂。它也有螯合作用,在低温和碱性条下,对Ca2+、Mg2+离子及其他金属离子有较好的整合能力,结构中不含氮磷等元素不存在使水质营养化的问题,而且生物降解性好。缺点是温度稍高于60℃,螯合能力变得很差、价拇熙偏高。

(4)聚羧酸盐 是一类对生物无害易于生物降解的高聚物整合剂。存在多种结构如聚丙酪烯酸,丙烯酸—烯丙醇共聚物,聚d—羟基丙烯酸及丙烯酸—马来酸共聚物等。在无磷洗涤剂中,聚羧酸盐常与4A沸石配合使用使洗涤助剂效果达到三聚磷酸钠水平。

在工业清洗中用作锅炉用水的锅垢抑制剂,有抑制碳酸钙结晶增长的效果。

与重金属离子起赘合作用的有机整合剂还有多种,如氨基羧酸类,羟氨基羧酸类和羟基、羧酸类。详细情况将在化学清洗剂中介绍。

(5)硅酸钠(Na2Si03) 它有极佳的碱性缓冲作用。由于硅酸钠在水中形成活性胶体有吸附作用,因此可使污垢悬浮于溶液中,它还能吸附于衣物及固体表面形成一层保护膜,防阻止物体被腐蚀或防止污垢在衣物上再沉积。

硅酸钠有良好的润湿和乳化性能,对玻璃和瓷釉表面的润湿作用尤佳,所以特别适宜做硬表面清洗剂的助洗剂,也是金属清洗剂中的腐蚀抑制剂。

(6)碳酸钠(Na2C03) 也是起碱性缓冲作用的助洗剂,但缺乏螯合力和分散力。由于酸碱性较强,用量过多会对皮肤眼睛产生刺激。

(7)硼砂(Na4B207·10H20) 有pH缓冲作用,软化硬水,与洗涤剂起协同作用等功能。

(8)硫酸钠(Na2SO4·10H2O) 俗称芒硝,有提高表面活性剂活性的作用。由于价格便宜,也是常用的洗衣粉中的填料、防结块剂。

(9)氯化钠(NaCl) 俗称食盐,有与硫酸钠相同的提高表面活性剂活性的作用。[page]

三、添加剂

把在表面活性剂中为改进其他性能而加入的少量物质称为添加剂(又称性能改进剂)。通隘常只在衣物洗涤剂中才加人这些物质,主要有以下几种。

1.再污染防止剂(抗再沉积剂

这些物质与污垢结合力强,能把污垢包围并分散在水中,防止污垢与纤维接触而造成再污染。这类物质主要是一些水溶性高分子如羧甲基纤维素(CMC)、聚乙二醇、聚乙烯吡咯烷酮、聚乙烯醇、N—烷基丙烯酰胺与乙烯醇的低相对分子质量共聚物等。

羧甲基纤维素在洗涤液中可吸附到污垢和织物纤维上。在水中它的分子聚集成体积较大、带有负电荷的胶体。吸附后利用它的空间位阻作用和静电排斥作用阻止污垢在织物表面再沉积,从而显著地提高洗涤剂的去污力。特别是在抗污垢再沉积能力差的烷基苯磺酸钠洗涤剂[中加入它后有明显效果。有的书把羧甲基纤维素归为洗涤助剂中。

羧甲基纤维素在棉纤维上有良好的抗污垢再沉积性,但对尼龙或聚酯纤维,由于它不易吸附到这些织物上,因而抗沉积效果差。而聚乙烯毗咯烷酮(PVP)、聚乙烯醇、N—烷基丙烯酰胺与聚乙烯醇低相对分子质量的共聚物以及.C14~C18训旨肪醇的5EO骤氧乙烯醚等表面活性剂是化纤织物的很好抗再沉积剂。

2.泡沫抑制剂或泡沫稳定剂

目前家庭洗衣已普遍使用洗衣机,人们习惯上认为冲洗到没有泡沫出现才算洗干净,所以洗衣机用的洗衣粉普遍采用低泡型的或者在洗衣粉中加入泡沫抑制剂以减少泡沫的产生。常用的泡沫抑制剂是硬脂酸肥皂,而在洗发香波则希望洗涤剂有持久的稳定泡沫;泡沫表面有吸附污垢的能力,人们往往认为泡沫丰富的洗涤剂去污能力好。把与表面活性剂配合能提高洗涤性能稳定泡沫的物质称为泡沫稳定剂。主要是烷醇酰胺和脂肪族氧化叔胺等物质。

烷醇酰胺除具有泡沫稳定作用外,还有良好的渗透性和去除重油垢的作用,添加量为表面活性剂的10%左右即可显著提高洗涤剂的去污性能i脂肪族氧化叔胺有极好的起泡性能也有使皮肤柔润的保护功能和抗静电性能。

3.漂白剂

使用二般的表面活性剂洗涤剂不能去除织物上的色素污垢。为去除色素污垢要在配方中加入漂白剂,其作用是利用化学作用破坏色素的发色体系使之失去颜色,或将染料分解成较小分子,易溶于水或易从织物上被清除。

通常使用的漂白剂有过氧化物漂白剂和次氯酸盐漂白剂。详细情况在化学清洗剂介绍。

4.荧光增白剂

荧光增白剂也是一种染料,洗涂过程中吸附并保留在织物上。荧光增白剂分子能吸收不可见的紫外光而发射出蓝色可见光与原来织物发射黄光混合发生互补作用,结果使反射光呈白色,亮度也增加,使白色物质有增白、增亮效果,使有色织物颜色也更鲜艳。

根据织物纤维性质,荧光增白剂分为棉织物,耐氯漂的,尼龙、羊毛织物和聚酯纤维织物用的四类。

根据荧光增白剂的化学结构分为:1,2—苯乙烯,联苯基1,2—苯乙烯,青豆素(氧杂萘邻酣)或喹诺酮(2—羟基喹啉),二苯基吡唑啉和具有共轭体系的苯并嗯唑或苯并咪唑的结合体五类。

感兴趣的读者可进一步阅读有关专业资料。

5.钙皂分散剂

肥皂与硬水中Ca2+、Mg2+离子作用生成不溶于水的钙皂。这种皂渣沉积在衣物或物体表面难以去除。为此在肥皂中加入一种特殊的表面活性剂,它有防止钙皂生成沉积的作用,这种表面活性剂称为钙皂分散剂。

目前使用的钙皂分散剂主要是阴离子、非离子和两性离子型的表面活性剂,它们有良好的钙皂分散力并能有效地提高肥皂的去污力。如α—磺基牛油脂肪酸甲酯盐i,椰子油脂肪酸的单乙醇酰胺、二乙醇酰胺及其他乙氧基化衍生物,N—氢化牛油酸酰基—N—甲基牛磺酸盐(胰加漂T),含酰胺基的磺基甜菜碱等。

6.柔软剂

柔软剂是为降低纤维间静摩擦系数,赋予织物柔软手感的物质,工业用柔软剂分为表面活性柔软剂,无机柔软剂和非表面活性剂有机柔软剂三大类。

表面活性剂柔软剂根据离子性分为阴离子,阳离子,两性离子和非离子四类。阴离子柔软剂如牛油醇硫酸盐、磺化琥珀酸酯。非离子型如硬脂酸聚氧乙烯酯(加成良个环氧乙烷)。而以阳离子表面活性剂柔软效果最好,阳离子柔软剂有胺盐型,如萨冲白明A,索罗明A都是常用的织物柔软剂。季铵盐型如双十八烷基二甲基氯化铵[又称双手氢化牛脂基>二甲其氧化铵]。烷基咪唑啉型,如2—硬脂基乙酰氨基乙基咪唑啉硫酸甲酯盐等。

无机柔软剂是超细颗粒的高岭土,蒙脱石等膨润土,它们与阴离子表面活性剂有很好相溶性,对织物有很好柔软效果。除表面活…陛剂外还有一些有机物有使织物平滑柔软的作用,如天然油脂和聚乙烯、聚丙烯、有机硅树月旨的乳液也可做柔软剂使用。

7.增溶剂

增溶剂又称助溶剂、水溶助长剂,它可以提高洗涤剂中各种组分在水中溶解度,特别瘩捌配制液体洗涤剂时需加入增溶剂。常用的增溶剂有工业酒精,尿素,吐温—60,甲苯磺酸钠甲苯磺酸钠,异丙苯磺酸钠,聚乙二醇,异丙醇,三乙醇胺等。它们有增加洗涤剂在水中淹捌解度,降低溶液相对密度,降低溶液粘度等作用。

8.酶制剂

洗涤剂中加入酶制剂对去污有促进作用,特另rj是对织物、家庭用具、地板、墙壁上的污垢去除更为有效。酶是生物催化剂。洗涤剂中使用的酶有蛋白酶、脂肪酶、淀粉酶和纤维酶等。它们都是水解酶能分别催化蛋白质、脂肪、淀粉和纤维素的水解。使污垢大分子分瞅成小分子而被去除。有关情况将在、酶制剂一章详细介绍。目前加酶洗衣粉已在洗涤剂市场且:

占有重要地位。

9.增稠剂

在膏状及液体洗涤剂中需加入增稠剂以使其保持适当的粘度。通常使用的增稠剂是水溶性高分子化合物和无机盐。

作为增稠剂的水溶性高分子化合物有羧甲基纤维素、羟乙基纤雏素、乙基羟乙基纤维素、甲基羟丙基纤维素、聚乙二醇等。

作为增稠剂的无机盐有氯化钠、氯化钾、氯化镁、硫酸钠等。加入量要适当,如在一定,浓度范围内液体洗涤剂的粘度随氯化钠的加人量增加而增高,如超过此范围,粘度反而降低还要考虑到氯化物对金属有较大腐蚀性以及对洗涤剂其他组分性质的影响问题。

另外,烷醇酰胺,氧化铵也是液体洗涤剂很好的增稠剂。

10.结块防止剂

如果洗涤剂结块或呈坚韧的糊状,不仅难以定量切分,而且水溶性变差,因此需要防止其结块。

苯基磺酸钠、甲苯磺酸钠等物质有防止洗衣粉结块的作用。硫酸钠是一种来源广、价格低的无机化工原料,它也有很好的防结块作用+通常洗衣粉中含有20%一50%的硫酸钠,既可以作为填料降低成本,同时又有防结块和降低表面活性剂在水中的临界胶束浓度、提高表面活性剂在织物纤维表面吸附量、有利去污的作用。

11.杀菌消毒剂

包括杀菌剂、抑菌剂及防腐剂等。杀菌剂指短时间内能杀灭微生物的物质。抑菌剂指在低浓度长时间作用下能阻止微生物增长的物质。防腐剂指加入洗涤剂中使其免受微生物污染而不致变质的物质。有关情况将在化学清洗剂中详细介绍。

12.其他添力硎

为了提高洗涤剂的嗅觉效果常在洗涤中加入香精,使产品具有使人愉快的气息,同时可以遮盖臭味使洗后衣物有清新感觉的作用。洗涤剂用的香精有茉莉、玫瑰、铃兰、紫丁香、果香等多种香型。一般用量很少,在洗涤剂中占o.1%~o.5%左右。

为了提高洗涤剂外观视觉效果、克服其无色或白色单调的外观,有时加入一些染料。这时使用的染料要求与洗涤剂组分相容性好,对光稳定,不会吸附在织物上影响洗涤效果。

壮观的鲜花
震动的草丛
2025-07-09 23:21:17
常温条件下,氧气充足的条件下。

随着化石燃料的消耗和工业的发展,能源和环境日趋严峻。铬及其化合物在冶金、电镀、印染等行业中应用广泛,由此产生了大量含cr(vi)的废水,cr(vi)具有毒性,长期接触可致癌。目前cr(vi)污水的处理主要有物理处理法、化学处理法和生物处理法。然而,这三种方法仍然会对环境造成污染或者二次污染。光催化技术具有绿色无二次污染和可有效转换太阳能等优点。氢气被认为是解决能源危机和环境污染的理想替代能源,光催化水产氢能够直接将太阳能转化为一种可用或可储存的能源。在光催化还原cr(vi)过程中,被激发跃迁到cb的光生e,将吸附在光催化剂表面的cr(vi)还为cr(i),而h+将水氧化为氧气。光催化水解产氢气需要在反应体系中添加牺牲剂,如甲醇,三乙醇胺,甲醛,甲酸等,用来消耗h+,阻止水与h+生成o2,也可以抑制水分解为h2和o2逆反应的进行。光催化分

解水产氢气是通过双电子转移机制完成的,存在较高的过电势,往往需要借助铂(pt)和金(au)等贵金属来降低析氢过电势,另外,贵金属作为助催化剂能俘获

舒服的奇异果
和谐的飞机
2025-07-09 23:21:17

第一作者:Jingrun Ran, Hongping Zhang, Sijia Fu

通讯作者: 乔世璋

通讯单位:澳大利亚阿德莱德大学

论文DOI:https://doi.org/10.1038/s41467-022-32256-6

全文速览

高性能、低成本的光催化剂是实现大规模太阳能制氢的关键。本文报告了一种液体剥离方法来制备 NiPS3 超薄纳米片。该纳米片可作为一种多功能平台,能够极大地改善各种光催化剂(包括 TiO2、CdS、In2ZnS4 和 C3N4)上的光催化产氢性能。与纯 CdS 相比,NiPS3/CdS 异质结具有最高的改进因子(~1,667%),实现了极高的可见光诱导制氢速率(13,600 μmol h-1g-1)。这种更好的性能归因于强关联的 NiPS3/CdS 界面确保了有效的电子-空穴解离/传输;以及 NiPS3超薄纳米片上丰富的原子级边缘 P/S 位点和活化的S 位点,促进了氢的析出。这些发现通过最先进的表征和理论计算来证明。该工作首次证明了金属磷硫属化物可作为一个通用平台的巨大潜力,能极大地提高不同光催化剂的性能。

背景介绍

不可再生化石燃料的大量消耗导致全球能源短缺、环境污染和气候变化。因此,寻找可再生、清洁和无碳的能源至关重要。太阳能光催化水分解产氢 (H2) 被认为是一种有前途、廉价且环境友好的技术,其可利用阳光生产绿色 H2 燃料。然而,迄今为止开发的光催化剂效率低、稳定性差、价格高,严重制约了光催化工艺的大规模应用。因此,寻找高活性、稳定和廉价的光催化剂对于实现工业规模的太阳能制氢具有重要意义。高性能光催化剂的合理设计和制备,不仅需要从原子级尺度理解结构/组成-活性关系,还需要精确而深刻地理解光催化剂中的光生电子-空穴的动力学和热力学。结合原子分辨率像差校正扫描透射电子显微镜 (AC-STEM) 和理论计算,研究人员可以提供关于光催化剂的结构/组成-活性关系的原子级阐释。特别是,通过上述方法可以准确地揭示光催化剂中存在的各种原子级反应位点,例如单原子、边缘位点和缺陷。另一方面,光生电子和空穴的分离/迁移在确定整体光催化性能方面起着关键作用。因此,必须采用各种先进的表征,例如超快瞬态吸收光谱 (TAS)、瞬态表面光电压 (SPV) 光谱、瞬态光致发光 (PL) 光谱和原位 X 射线光电子能谱 (XPS),对光生电子/空穴的动力学和热力学进行时间分辨研究,特别是在光催化剂表面。此外,将上述两种策略结合起来,同时评估光催化剂的原子级结构/组成-性能关系和时间分辨电荷载流子分离/转移机制,是具有重要意义的。

图文解析

图1. NiPS3 UNS的理论预测、表征和应用。a NiPS3 单层 (100) 边缘的 HER 活性 P、S2 和 S3 位点。b NiPS3单层 (010) 边缘的 HER 活性 S 位点。c 在 NiPS3单层的 (1-30) 边缘处的 HER 活性 P1、S2、S3 和 S8 位点。d 在 NiPS3单层的 (100) 边缘、(010) 边缘或 (1-30) 边缘的活性位点上,遵循 Volmer-Heyrovsky 路径的 HER 吉布斯自由能图。e 在NiPS3 单层的 (100) 或(1-30) 边缘的活性位点上,遵循 Volmer-Tafel 路径的 HER 吉布斯自由能图。NiPS3 UNS 的 f 基面和 g 边缘的原子分辨率HAADF-STEM 图像。h NiPS3 UNS 的(基于同步加速器的)Ni L2,3-edge XANES。i TiO2、NiPS3/TiO2、CdS、NiPS3/CdS、In2ZnS4、NiPS3/In2ZnS4、C3N4和 NiPS3/C3N4在约 17.0 vol% 三乙醇胺水溶液中的光催化产氢速率。

图 2. 20.0N 的形貌、微观结构和化学成分。a TEM 图像和 b HRTEM 图像。在 20.0 N 中,c NiPS3 UNSs 和 d CdS NPs的原子分辨率 HAADF-STEM 图像。e 20.0N的EDX 光谱。f 20.0N 的 Ni L2,3-edge EELS 光谱。g 20.0N 的 HAADF-STEM 图像,和 20.0N 中 h Cd、i S、j Ni 和 k P 元素的相应元素mapping图像。注意:将不同体积的 NiPS3 UNSs 乙醇溶液(5.0、10.0、20.0 和 30.0 ml)分别添加到研钵中,在室温下通过机械研磨与 50 mg CdS NPs 复合。所得的光催化剂分别标记为 5.0N、10.0N、20.0N 和 30.0N。纯 CdS NPs 表示为0.0N。

图 3. NiPS3/CdS 系统中的强电子相互作用。a NiPS3UNS、20.0N 和 30.0N 的高分辨率Ni 2p XPS 光谱。b0.0N、20.0N 和 30.0N的基于同步加速器的S L-edge XANES。c NiPS3 UNS 和 20.0N 的 Ni L2,3-edge EELS 光谱。d CdS(200)晶面和e NiPS3(002)晶面沿z轴方向的平均电位分布。f NiPS3/CdS系统的微分电荷密度图。金色和青色等值面分别表示净电子积累和耗尽区域。考虑到在 17 vol% 三乙醇胺水溶液中的溶剂化效应,计算了功函数和微分电荷密度图。

图 4. NiPS3/CdS体系的光催化产氢活性和载流子动力学。a 在~17.0 vol% 三乙醇胺水溶液中使用可见光照射(λ > 400 nm)的0.0N、5.0N、10.0N、20.0N、30.0N 和 NiPS3UNSs 的光催化产氢速率。0.0N 和 20.0N 的b稳态和 c 瞬态 PL 光谱。c 插图显示了 0.0N 和20.0N 的拟合电荷寿命。用 400 nm 激光脉冲激发后,乙醇溶液中 d 0.0N 和 e 20.0N 的二维伪彩色 TA 光谱。f 0.0N 和 g 20.0N 在不同泵-探针延迟时间下的 TA 光谱。h 0.0N 和 20.0N 的归一化衰减动力学和拟合线,基于约 516 和约 514 nm 处的GSB 峰。i 0.0N 和 20.0N 的归一化衰减动力学和拟合线,基于 ~480 和 ~474nm 处的ESA 峰。

图 5. NiPS3/CdS 系统中的电荷载流子动力学。0.0N 和 20.0N 的a瞬态和 b 稳态 SPV 光谱。c 在黑暗和光照下进行的 0.0N 的 CPD 测试。NiPS3UNSs 的高分辨率 d Ni 2p、e P 2p 和 f S 2p XPS 光谱,分别在光照打开和关闭的情况下测量。20.0N的高分辨率g Ni 2p、h Cd 3d 和 i S 2p XPS光谱,分别在光照打开和关闭的情况下测量。

图 6. NiPS3/CdS体系的表面催化反应和光吸收。a 0.1 M KOH 水溶液中,0.0N、20.0N、NiPS3UNSs 和 20 wt% Pt/C 的电化学 HER 活性。b NiPS3/CdS 的俯视原子结构,显示了 Ni、P 和 S 位点。c 在 NiPS3/CdS 体系中的NiPS3 基面的 Ni、P 和 S 位点上,遵循 Volmer-Heyrovsky 路径计算的 HER 自由能图。d 在NiPS3/CdS体系中的NiPS3 基面的Ni、P和S位点上,遵循 Volmer-Tafel途径计算的HER自由能图。e 0.0N、5.0N、10.0N、20.0N 和 30.0N 的 UV-Vis 漫反射光谱。f 分别在氙灯照射 (λ > 400 nm) 和630-nm LED 下,在约 17.0 vol% 三乙醇胺水溶液中测量 20.0N 的光催化产氢速率。考虑到 17 vol% 三乙醇胺水溶液中的溶剂化效应,进行了所有的Gibbs 自由能计算。

图 7. NiPS3/CdS体系中的光催化产氢机理示意图。在NiPS3/CdS体系中,可见光激发(λ > 400 nm)、光生电子和空穴的分离/迁移、以及表面催化反应的示意图。

总结与展望

基于上述结果,本文首次报道了一种简便的液体剥离技术,来合成具有超薄厚度(~3.16 nm)的2D NiPS3。合成后的 NiPS3 UNS 可作为通用平台,用于提高各种光催化剂(包括TiO2, CdS, In2ZnS4 和 C3N4)的光驱动产氢性能。与原始 CdS相比,所制备的 NiPS3/CdS 复合物显示出最高的光催化产氢 (H2) 活性(13,600 μmol h-1 g-1),最大增强因子约为 1667%。NiPS3/CdS 的性能大幅提升有两个原因:(1)NiPS3 UNS 和 CdS NPs 之间的电子耦合界面明显促进了电荷载流子的分离/传输。特别是,光生空穴向 CdS NPs 表面的传输显著增强,这是由牺牲电子供体三乙醇胺收集的。因此,CdS NPs 上剩余的光生电子可以有效地迁移到 NiPS3 UNSs 以产生 H2;(2) 在NiPS3 UNSs中,大量的原子级P/S边缘位点和活化的S位点极大地促进了H2的析出反应。这些发现得到了理论计算和高级表征的支持,例如原子分辨率 AC-STEM、瞬态 PL 光谱、瞬态SPV 光谱、超快 TAS 和原位 XPS。该研究不仅展示了 MPCx 家族作为一个通用平台的巨大潜力,可用于极大地提高各种半导体光催化剂的光催化产氢活性,更重要的是,通过了解光催化中的原子级结构/组成-活性相关性和电子-空穴动力学/热力学,实现了光催化剂的合理设计/制备。

俊秀的鸭子
敏感的机器猫
2025-07-09 23:21:17

早强混凝土是能提高混凝土早期强度的外加剂。3天强度没有意义,标养的情况下7天强度一般要达到70%以上(主要视拆模和提前计量提供依据),28天强度要达到100%。

早强剂并不是表面意义的“早点达到强度的外加剂”,它只一般是提高早期强度,一般是进行早期7天的强度比对。

掺加了早强剂的混凝土7天强度比没掺加的混凝土7天强度高些,而掺加早强剂的后果是以牺牲后期强度为代价的,一般掺加了早强剂的混凝土28天强度比没掺加的混凝土28天强度低些。

扩展资料:

常用的早强剂有以下三种:

1、氯化物系早强剂

如CaCl2,效果好,除提高混凝土早期强度外,还有促凝、防冻效果,价低,使用方便,一般掺量为1%~2%,缺点是会使钢筋锈蚀。在钢筋混凝中,CaCl2掺量不得超过水泥用量的1%,通常与阻锈剂NaNO2复合使用。

2、硫酸盐系早强剂

如硫酸钠,又名元明粉,为白色粉末,适宜掺量为0.5%~2%,多为复合使用,如NC,是硫酸钠、糖钙与青砂混合磨细而成的一种复合早强剂。

3、有机物系早强剂

有机物系列早强剂主要有三乙醇胺、三异丙醇胺、甲醇、乙醇等等,最常用的是三乙醇胺。三乙醇胺为无色或淡黄色透明油状液体,易溶于水,一般掺量为0.02%~0.05%,有缓凝作用,一般不单掺,常与其他早强剂复合使用。

参考资料:百度百科-混凝土早强剂