建材秒知道
登录
建材号 > 盐酸 > 正文

求数列an的通项公式

美满的哑铃
爱笑的绿茶
2023-01-01 06:07:52

求数列an的通项公式

最佳答案
复杂的乌冬面
靓丽的飞鸟
2025-07-09 21:14:03

数列an的通项公式:an+1=an+f(n)。如果数列{an}的第n项an与n之间的关系可以用一个公式来表示,这个公式叫做数列的通项公式。有的数列的通项可以用两个或两个以上的式子来表示。没有通项公式的数列也是存在的,如所有质数组成的数列。

按一定次序排列的一列数叫做数列,数列中的每一个数都叫做这个数的项,各项依次叫做第1项(或首项),第2项,...,第n项,...。数列也可以看作是一个定义域为自然数集N(或它的有限子集{1,2,3,...,n})的函数,当自变量从小到大依次取值时对应的一列函数值。

最新回答
贤惠的大碗
紧张的香水
2025-07-09 21:14:03

①等差数列和等比数列有通项公式。

②累加法:用于递推公式为an+1=an+f(n),且f(n)可以求和。

③累乘法:用于递推公式为an+1/an=f(n) 且f(n)可求积。

④构造法:将非等差数列、等比数列,转换成相关的等差等比数列。

⑤错位相减法:用于形如数列由等差×等比构成:如an=n·2^n。

按一定次序排列的一列数称为数列,而将数列{an} 的第n项用一个具体式子(含有参数n)表示出来,称作该数列的通项公式。这正如函数的解析式一样,通过代入具体的n值便可求知相应an 项的值。而数列通项公式的求法,通常是由其递推公式经过若干变换得到。

扩展资料

等差数列的其他推论:

① 和=(首项+末项)×项数÷2;

②项数=(末项-首项)÷公差+1;

③首项=2x和÷项数-末项或末项-公差×(项数-1);

④末项=2x和÷项数-首项;

⑤末项=首项+(项数-1)×公差;

⑥2(前2n项和-前n项和)=前n项和+前3n项和-前2n项和。

风中的台灯
平淡的小鸽子
2025-07-09 21:14:03
解:

求数列{an}的通项公式的方法,如下:

一,公式法

S1 (n=1), an= S -S (n≥2). n n-1 -

二,迭加法

若 an+1=an+f(n), 则: an=a1+ k=2 (ak-ak-1)=a1+ k=2 f(k-1)=a1+ k=1 f(k). ∑∑ ∑ n n n-1 -

三,叠乘法

若 an+1=f(n)an, 则: a2 a3 an an=a1 a a … a =a1f(1)f(2)…f(n-1)(n≥2). … n-11 2

四,化归法

通过恰当的恒等变形,

如配方,因式分解,取对数, 通过恰当的恒等变形 如配方,因式分解,取对数,取倒 数等, 转化为等比数列或等差数列. 数等

转化为等比数列或等差数列 (1)若 an+1=pan+q, 则: an+1-λ=p(an-λ). 若 pan 1 r 1 q (2)若

an+1= r+qa , 则: a = p a + p . 若 n+1 n n an+1 an q(n) (3)若an+1=pan+q(n),

则: n+1 = pn + n+1 . 若 p p (4)若 (4)若 an+1=panq, 则: lgan+1=qlgan+lgp.

五,归纳法

先计算数列的前若干项,

通过观察规律, 猜想通项公式, 先计算数列的前若干项 通过观察规律 猜想通项公式 进而用数学归纳法证之. 进而用数学归纳法证之 满足: 例

已知数列 {an} 满足 a1=1, an+1 =2an+3×2n-1, 求 {an} 的通项 × 公式. 公式 a =(3n-1)×2n-2 -

× n

心灵美的糖豆
坚强的抽屉
2025-07-09 21:14:03
设An为等差数列,d为公差

性质1)An=A1+(n-1)d=Am+(n-m)d

Sn=n(A1+An)/2=nA1+n(n-1)d/2

2)An=Sn-S(n-1),2An=A(n-1)+A(n+1)=A(n-k)+A(n+k)

3)若a+b=c+d,则Aa+Ab=Ac+Ad

设An为某数列,Sn为前n项和,则有以下几点性质:

4)形如Sn=an^2+bn+c(ab≠0),当且仅当c=0时,An为等差数列.即当An为等差数,Sn是不含常数项的关于n的二次函数.

5)形如aAn=bA(n-1)+c(a≠b)的数列,总可以化为等比数列,即令ax=bx+c,即x=c/(a-b),即An-c/(a-b)=a[A(n-1)-c/(a-b)]

所以Bn=An-b/(1-a)为等比数列

6)形如aAn+bA(n-1)+cA(n-2)=0(abc≠0)的数列,总可以化为等比数列,即令ax^2+bx+c=0的根为x1,x2,则

An-x1A(n-1)=x2[A(n-1)-x1A(n-2)]

An-x2A(n-1)=x1[A(n-1)-x2A(n-2)]

令B(n-1)=An-x1A(n-1).(1)

B(n-1)'=An-x2A(n-1).(2)

则Bn,Bn'为等比数列,从而可以求出Bn,Bn'.再解(1)(2)方程组可求出An.

7)若An>0,形如An^a=cA(n-1)^b的数列可化为5)的形式,即两边取对数即:algAn=blgA(n-1)+lgc,令Bn=lgAn,即aBn=bB(n-1)+c

等差数列:Sn=a1n+n(n-1)d/2

等比数列:1:q=1时Sn=na1

2:q#1时Sn=a1(1-q的n次方)/(1-q)

求和

等差“(首数+末数)*项数/2

等比数列求和公式=首项*(1-比值^项数)/(1-比值)

勤恳的苗条
激动的小猫咪
2025-07-09 21:14:03
一、题目已知或通过简单推理判断出是等比数列或等差数列,直接用其通项公式。

例:在数列{an}中,若a1=1,an+1=an+2(n1),求该数列的通项公式an。

解:由an+1=an+2(n1)及已知可推出数列{an}为a1=1,d=2的等差数列。所以an=2n-1。此类题主要是用等比、等差数列的定义判断,是较简单的基础小题。

二、已知数列的前n项和,用公式

S1 (n=1)

Sn-Sn-1 (n2)

例:已知数列{an}的前n项和Sn=n2-9n,第k项满足5

(A) 9 (B) 8 (C) 7 (D) 6

解:∵an=Sn-Sn-1=2n-10,∴5<2k-10<8 ∴k=8 选 (B)

此类题在解时要注意考虑n=1的情况。

三、已知an与Sn的关系时,通常用转化的方法,先求出Sn与n的关系,再由上面的(二)方法求通项公式。

例:已知数列{an}的前n项和Sn满足an=SnSn-1(n2),且a1=-,求数列{an}的通项公式。

解:∵an=SnSn-1(n2),而an=Sn-Sn-1,SnSn-1=Sn-Sn-1,两边同除以SnSn-1,得---=-1(n2),而-=-=-,∴{-}

是以-为首项,-1为公差的等差数列,∴-= -,Sn= -,

再用(二)的方法:当n2时,an=Sn-Sn-1=-,当n=1时不适合此式,所以,

- (n=1)

- (n2)

四、用累加、累积的方法求通项公式

对于题中给出an与an+1、an-1的递推式子,常用累加、累积的方法求通项公式。

例:设数列{an}是首项为1的正项数列,且满足(n+1)an+12-nan2+an+1an=0,求数列{an}的通项公式

解:∵(n+1)an+12-nan2+an+1an=0,可分解为[(n+1)an+1-nan](an+1+an)=0

又∵{an}是首项为1的正项数列,∴an+1+an

≠0,∴-=-,由此得出:-=-,-=-,-=-,…,-=-,这n-1个式子,将其相乘得:∴ -=-,

又∵a1=1,∴an=-(n2),∵n=1也成立,∴an=-(n∈N*)

五、用构造数列方法求通项公式

题目中若给出的是递推关系式,而用累加、累积、迭代等又不易求通项公式时,可以考虑通过变形,构造出含有

an(或Sn)的式子,使其成为等比或等差数列,从而求出an(或Sn)与n的关系,这是近一、二年来的高考热点,因此既是重点也是难点。

例:已知数列{an}中,a1=2,an+1=(--1)(an+2),n=1,2,3,……

(1)求{an}通项公式 (2)略

解:由an+1=(--1)(an+2)得到an+1--= (--1)(an--)

∴{an--}是首项为a1--,公比为--1的等比数列。

由a1=2得an--=(--1)n-1(2--) ,于是an=(--1)n-1(2--)+-

又例:在数列{an}中,a1=2,an+1=4an-3n+1(n∈N*),证明数列{an-n}是等比数列。

证明:本题即证an+1-(n+1)=q(an-n) (q为非0常数)

由an+1=4an-3n+1,可变形为an+1-(n+1)=4(an-n),又∵a1-1=1,

所以数列{an-n}是首项为1,公比为4的等比数列。

若将此问改为求an的通项公式,则仍可以通过求出{an-n}的通项公式,再转化到an的通项公式上来。

又例:设数列{an}的首项a1∈(0,1),an=-,n=2,3,4……(1)求{an}通项公式。(2)略

解:由an=-,n=2,3,4,……,整理为1-an=--(1-an-1),又1-a1≠0,所以{1-an}是首项为1-a1,公比为--的等比数列,得an=1-(1-a1)(--)n-1

平淡的枕头
从容的草莓
2025-07-09 21:14:03

解:

1=0²+1=(1-1)²+1

2=1²+1=(2-1)²+1

5=2²+1=(3-1)²+1

10=3²+1=(4-1)²+1

…………

规律:从第1项开始,每一项都等于项数减一的差的平方,再加1

an=(n-1)²+1=n²-2n+1+1=n²-2n+2

数列{an}的通项公式为an=n²-2n+2

耍酷的鞋子
怕孤独的水池
2025-07-09 21:14:03
等差数列an的通项公式是an=a1+(n-1)d,等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,通常用A、P表示。

数列是以正整数集(或它的有限子集)为定义域的函数,是一列有序的数。数列中的每一个数都叫做这个数列的项。排在第一位的数称为这个数列的第1项(通常也叫做首项)。

彩色的蜡烛
失眠的小笼包
2025-07-09 21:14:03
这种求an通项公式必须是有一定规律的数列.

我们能用通项公式表示的数列不外乎就是等差数列和等比数列

或者是这两种的变形

常见的变形

符号

比如

-1,3,-5,7......等等

这种表示肯定会有

(-1)ⁿ或者n+1次.

上面表示为(-1)ⁿ(2n-1)

还有分数

-1,1/3,-1/5,1/7.......等等

这种结合上面的符号

表示为

(-1)ⁿ[1/(2n-1)]

还有分数上下都有变形的

-1,2/3,-3/5,4/7.......等等

这就表示为(-1)ⁿ[n/(2n-1)].

还有等比与等差结合的(可以是加减乘除) -1+2,3+4,-5+8,7+16......等等

他的通项是

(-1)ⁿ(2n-1)+2ⁿ.

还有等比与等比结合的 (这种结合只能是加减法,因为是乘除的话,结果还是一种等比.)

比如

2-3,4+9,8-27,16+81.....等等

通项为

2ⁿ+(-1)ⁿ*3ⁿ

等差与等差结合(只能是乘除法,上面列举的分数就是除法.如果是加减法.结果还是等差.)

比如

-1*2,3*4,-5*6,7*8......等等

通项为

(-1)ⁿ(2n-1)*(2n).