C2H4N2是什么
二聚氰胺
CAS: 461-58-5
分子式: C2H4N4
分子量: 84.08
熔点: 208-211℃
中文名称: 二聚氰胺;氰基胍;双氰胺;二氰二胺;二聚氨基氰;氰胍
英文名称: cyano-Guanidine;Dicyandiamide;Cyanoguanidine;cyano-guanidin;1-cyanoguanidine
性质描述: 白色棱形结晶性粉末,不可燃。熔点207-209℃,相对密度1.400(25/4℃)。在13℃水中溶解度为2.26%,易溶于热水,水溶液在80℃以上时慢慢分解产生氨。在13℃无水乙醇中溶解度为1.26%,溶于丙酮和液氨,难溶于醚和苯。干燥的双氰胺性质稳定。
生产方法: 把石灰氮(氰胺钙)与水进行水解,将所得的悬浮状水解液氰氨氢钙滤除去氢氧化钙,滤液通入二氧化碳脱钙,得到氰氨液。然后,使氰氨在弱碱性条件下聚合。生成双氰胺最大速度时的温度与pH有关:50℃时pH为9.7;80℃时pH为9.1;100℃时pH为8.8。控制在这些条件下聚合后,再经冷却结晶、分离、干燥,即得成品双氰胺。工业品双氰胺含量99%,每吨产品消耗石灰氮(含氮21%以上)4239kg。
用途: 双氰胺的主要用途有:
(1)作为胍盐、三聚氰二胺类的原料。用双氰胺与酸反应,可制造各种胍盐。双氰胺和苯基腈反应得到的苯代三聚氰二胺是涂料,层压板、成型粉的中间体。
(2)用作染料固色剂,双氰胺和甲醛反应制得的双氰胺树脂,可用作染料固色剂。
(3)双氰胺化肥,双氰胺复合肥料可控制硝化菌的活动,使氮肥在土壤中的转化速度得到调节,减少氮的损失,提高肥料的使用效率。
(4)作为精细化工中间体。在医药上用于制取硝酸胍、磺胺类药物等;也用来制取硫脲、硝酸纤维素稳定剂、橡胶 硫化促进剂、钢铁表面硬化剂、人造革 填料、粘合剂等。由双氰胺与甲酸反应可得医药中间体5-氮杂胞嘧啶。
双氰胺改性酚醛树脂英文名称:dicyandiamidemodifiedphenolicresinCAS号:分子式:简要概述内容::由苯酚、甲醛、双氰胺在碱性催化剂存在下进行缩聚反应得到的树脂。其特性为韧性好,黏结力强,贮存稳定性好,成型工艺性好。
英文:Dicyandiamide
化学名:二氰二胺、氰基胍
分子式:C2H4N4
分子量:84.08
CAS No.:461-58-5
执行标准:HG/T 3264-1999
用途:本品是合成医药、农药和染料的中间体。可以制取硝酸胍、橡胶硫化促进剂、钢铁表面硬化剂、印染固色剂、脱色絮凝剂、胶粘剂、复合肥料等。
外观:白色结晶
工业级双氰胺含量:≥99.5% ,水分:≤0.3%,灰分:≤0.05%,含钙量:≤200PPM,透明度:100%,熔点:209-212
包装:净重25kg、500kg或1000kg塑编袋内衬塑料袋
宁夏远大兴博化工有限公司欢迎来电咨询
中文名
二氰二氨[5]
外文名
Dicyandiamide[5]
别名
氰基胺 二氰二氨 氰基胍 二聚氰胺
化学式
C2H4N4[5]
分子量
84.08[5]
基本信息化学性质制备用途危险性检测方法奶类制品TA说
基本信息
管制信息:本品不受管制
中文名称:氰基胍[5]、双氰胺[5]
英文别名:Dicyandiamide,Cyanoguanidine
简称:DICY
HS Code: 2926200000
性状:白色结晶性粉末。水中溶解度在13℃时为2.26%,在热水中溶解度较大。当水溶液在80℃时逐渐分解产生氨气。无水乙醇(C2H5OH)、乙醚中溶解度在13℃时,分别为1.26%和0.01%。溶于液氨、热水、乙醇、丙酮水合物、二甲基甲酰胺,难溶于乙醚,不溶于苯和氯仿。相对密度(d254)1.40。熔点209.5℃。干燥时性质稳定。不燃烧。低毒,半数致死量(小鼠,经口)>4000mg/kg。空气中最高容许浓度5mg/m3。
储存:密封干燥保存。
结构式
化学性质
按规格使用和贮存,不会发生分解,避免与氧化物接触。在13℃无水乙醇中溶解度为1.26%,水中为2.26%。易溶于热水,水溶液在80℃以上时会慢慢分解产生氨。将双氰胺的结晶加热到熔点时,熔融后立即剧烈发热,,生成三聚氰胺、密胺等。
制备
氰氨化钙水解所得的氰氨氢钙悬浮液,经减压过滤除去氢氧化钙滤渣,再向滤液通入二氧化碳以将钙以碳酸钙的形式沉淀出来,得到氨基氰液。使其在碱性条件下聚合,再经过滤、冷却结晶、分离、干燥,得二聚氰胺。
生成双氰胺最大速度时的温度与pH有关:50℃时pH为9.7;80℃时pH为9.1;100℃时pH为8.8。控制在这些条件下聚合后,再经冷却结晶、分离、干燥,即得成品双氰胺。工业品双氰胺含量99%,每吨产品消耗石灰氮(含氮21%以上)4239kg。[1]
用途
检定钴、镍、铜和钯。有机合成。硝化纤维稳定剂。硬化剂。去垢剂。硫化促进剂。树脂合成。
用作环氧树脂胶黏剂潜伏型固化剂,配制单组分环氧胶黏剂,只有当二氰二胺的粒度≤5μm(2500目)时,才能在环氧树脂中形成悬浮体,不会产生沉淀。参考用量4~12份,100g环氧树脂组成物适用期6~12个月。二氰二胺用量17份时储存期不足2个月,用量8份时储存期可达半年之久。固化条件170℃/lh或180℃/20min,热变形温度125℃。也用作单组分水性环氧胶黏剂的固化剂。参考用量7份。二氰二胺(5~6份)与酰肼(3~4份)复配体系,可120℃/45min固化环氧树脂。
作为胍盐、三聚氰二胺类的原料
用双氰胺与酸反应,可制造各种胍盐。双氰胺和苯基腈反应得到的苯代三聚氰二胺是涂料,层压板、成型粉的中间体。
用作染料固色剂
双氰胺和甲醛反应制得的双氰胺树脂,可用作染料固色剂。
双氰胺化肥
双氰胺复合肥料可控制硝化菌的活动,使氮肥在土壤中的转化速度得到调节,减少氮的损失,提高肥料的使用效率。[2]
作为精细化工中间体
在医药上用于制取硝酸胍、磺胺类药物等;也用来制取硫脲、硝酸纤维素稳定剂、橡胶 硫化促进剂、钢铁表面硬化剂、人造革 填料、粘合剂等。由双氰胺与甲酸反应可得医药中间体5-氮杂胞嘧啶。作为氮源对碳材料进行氮掺杂[3]
危险性
健康危害:吸入、摄入或经皮肤吸收后对身体有害。但急性中毒的危险性极小。
燃爆危险:本品可燃,具刺激性。
皮肤接触:脱去污染的衣着,用流动清水冲洗。
眼睛接触:提起眼睑,用流动清水或生理盐水冲洗。就医。
吸入: 脱离现场至空气新鲜处。
食入: 饮足量温水,催吐。就医。
危险特性: 遇硝酸铵、氯酸钾及其盐类能发生强烈的反应, 引起爆炸。受高热分解,产生氰化物和氮氧化物剧毒烟气。
二氧化硅,是一种无机化合物,化学式为SiO2,硅原子和氧原子长程有序排列形成晶态二氧化硅,短程有序或长程无序排列形成非晶态二氧化硅。
二氧化硅晶体中,硅原子位于正四面体的中心,四个氧原子位于正四面体的四个顶角上,许多个这样的四面体又通过顶角的氧原子相连,每个氧原子为两个四面体共有,即每个氧原子与两个硅原子相结合。
二氧化硅的最简式是SiO2,但SiO2不代表一个简单分子(仅表示二氧化硅晶体中硅和氧的原子个数之比)。纯净的天然二氧化硅晶体,是一种坚硬、脆性、不溶的无色透明的固体,常用于制造光学仪器等[1]。
中文名
二氧化硅
外文名
Silicon dioxide
化学式
SiO2[11]
分子量
60.084
CAS登录号
14808-60-7
理化性质
物理性质
晶态二氧化硅
密度:2.2 g/cm3
熔点:1723℃
沸点:2230℃
折射率:1.6
受热时的变化:与强碱在加热时熔化,生成硅酸盐
溶解度:不溶于水,能与HF作用生成气态SiF4
化学性质
化学性质比较稳定。不跟水反应。具有较高的耐火、耐高温、热膨胀系数小、高度绝缘、耐腐蚀、压电效应、谐振效应以及其独特的光学特性。[11]是酸性氧化物,不跟一般酸反应。氢氟酸跟二氧化硅反应生成气态四氟化硅。跟热的浓强碱溶液或熔化的碱反应生成硅酸盐和水。跟多种金属氧化物在高温下反应生成硅酸盐。二氧化硅的性质不活泼,它不与除氟、氟化氢以外的卤素、卤化氢以及硫酸、硝酸、高氯酸作用(热浓磷酸除外)。[2]
常见的浓磷酸(或者说焦磷酸)在高温下即可腐蚀二氧化硅,生成杂多酸,高温下熔融硼酸盐或者硼酐亦可腐蚀二氧化硅,鉴于此性质,硼酸盐可以用于陶瓷烧制中的助熔剂,除此之外氟化氢也可以可使二氧化硅溶解的酸,生成易溶于水的氟硅酸。[2]
SiO2+4HF=SiF4↑+2H2O[2]
6HF+SiO2=H2SiF6+2H2O[2]
SiO2+2NaOH(浓)=Na2SiO3+H2O[2]
SiO2+Na2CO3=Na2SiO3+CO2↑[2](高温)
SiO2+CaO=CaSiO3[2]
SiO2+2C=2CO↑+Si[2]
制备方法
非晶态二氧化硅的制备方法
非晶态二氧化硅的制备包含五步,分别是制备二氧化硅质的凝胶、造粒工序、烧结工序、清洗工序、干燥工序[3]。
1:制备二氧化硅质的凝胶
使四氯化硅水解而生成二氧化硅质的凝胶、或使四甲氧基硅烷等有机硅化合物水解而生成二氧化硅质的凝胶、或者使用气相二氧化硅生成二氧化硅质的凝胶[3]。
2:造粒工序
通过干燥该二氧化硅质的凝胶而成为干燥粉,粉碎该干燥粉后,进行分级,由此得到所期望平均粒径的二氧化硅粉末[3]。
3:烧结工序
对造粒工序中所得到的二氧化硅粉末在800℃~1450℃的温度进行烧结,利用热等离子体的球化工序,在以预定的流量导入氩气并以预定的高频输出功率产生等离子体的等离子体炬内,以预定的供给速度投入烧结工序得到的二氧化硅粉末,在从2000℃至二氧化硅的沸点的温度加热并熔融[3]。
4:清洗工序
去除附着于上述球化工序后的球化二氧化硅粉末表面上的微粉[3]。
5:干燥工序
干燥上述清洗工序后的二氧化硅粉末[3]。
晶态二氧化硅的制备方法
将含有二氧化硅的原料(硅源)、水、结构导向剂、碱或酸按一定的比例混合均匀,投入耐压反应釜内密封,然后升温至100-220℃,恒温5小时至10天,反应结束后,将反应釜迅速冷却,反应产物用水或稀酸洗涤至pH为8-11,烘干得到原粉,原粉或加入粘结剂成型后的产物在马弗炉或管式炉中焙烧活化[4]。
物质简介
二氧化硅的化学式为SiO2。二氧化硅有晶态和无定形两种形态。自然界中存在的二氧化硅如石英、石英砂等统称硅石。纯石英为无色晶体,大而透明的棱柱状石英晶体叫做水晶,含微量杂质而呈紫色的叫紫水晶,浅黄、金黄和褐色的称烟水晶。玉髓、玛瑙和碧玉都是含有杂质的有色石英晶体。沙子是混有杂质的石英细粒。蛋白石、硅藻土则是无定形二氧化硅。二氧化硅用途很广泛,主要用于制玻璃、水玻璃、陶器、搪瓷、耐火材料、气凝胶毡、硅铁、型砂、单质硅、水泥等,在古代,二氧化硅也用来制作瓷器的釉面和胎体。一般的石头主要由二氧化硅、碳酸钙构成。[2]
晶态二氧化硅的熔点1723℃,沸点2230℃,不溶于水。除氟气和氢氟酸外,二氧化硅跟卤素、卤化氢和无机酸均不反应,但能溶于热的浓碱、熔融的强碱或碳酸钠中。此外,高温时二氧化硅能被焦炭、镁等还原。常温时强碱溶液与SiO2会缓慢反应生成硅酸盐,故贮存强碱溶液的玻璃瓶不能用磨口玻璃塞(玻璃中含SiO2),否则会生成有黏性的硅酸钠Na2SiO3,使瓶塞和瓶口黏结在一起。由于SiO2能与氢氟酸反应,因此不能用玻璃容器盛放氢氟酸。[2]
物质结构
硅和碳的性质相似,但它们氧化物的性质却有很大差异。CO2是分子晶体,而SiO2是原子晶体。SiO2是以硅氧四面体为基本结构形成的立体网状结构,在晶体结构中,硅原子的4个价电子与4个氧原子形成4个共价键,Si原子处在正四面体中心,O原子位于四面体顶点。
二氧化硅结构
每个硅原子与四个氧原子相连,每个氧原子与两个硅原子相连。晶体中最小环由12个原子(6个硅原子和6个氧原子)构成,每个硅被6个环所共用,晶体中硅氧原子个数比为1:2。
双氰胺有没有毒,双氰胺是危险品。
1、双氰胺是危险品。
2、双氰胺遇硝酸铵、氯酸钾及其盐类能发生强烈的反应, 引起爆炸。
3、受高热分解,产生氰化物和氮氧化物剧毒烟气。
双氰胺是危险物品。双氰胺遇氯化铵、氯酸钾以及酸盐能产生明显的反映,造成爆炸。
强氧化剂和强还原剂混合可能爆炸,如活泼碱金属和碱土金属遇水即可爆炸(反应中碱金属和碱土金属做还原剂,水做氧化剂)。另外 还有一些反应,如浓硫酸和高氯酸钾,浓硫酸和高锰酸钾(常温),还有一些剧烈释放气体的反应也可能爆炸,如浓过氧化氢和高锰酸盐。
根据百科:
三聚氰胺(氰胺,qíng àn)(英文:Melamine)(化学式:C3H6N6),俗称密胺、蛋白精,IUPAC命名为“1,3,5-三嗪-2,4,6-三胺”,是一种三嗪类含氮杂环有机化合物,被用作化工原料。它是白色单斜晶体,几乎无味,微溶于水(3.1g/L常温),可溶于甲醇、甲醛、乙酸、热乙二醇、甘油、吡啶等,不溶于丙酮、醚类、对身体有害,不可用于食品加工或食品新增物。
不属于危险品,危险品一般包括:易燃、易爆、剧毒物质。是化工原料。
希望对你有所帮助,满意请采纳,亲!如有疑问,欢迎追问!
水性聚氨酯乳液是不是化工危险品不是危险品
参考下这个:ask.koubei./question/1407073004530.
化工盐是不是危险品不是危险品。化工盐主要是硫酸盐、硝酸盐,这两种物质不易燃,不易爆,本身无毒,不是危险品的。
三聚氰氨俗名是不是尿素?不是的.
尿素的化学名称有:碳酰二胺、碳酰胺、脲
化学式:CO(NH2)2
相当于碳酸的二酰氨。在人的蛋白质分解最终产物中占有相当大的比例。
三聚氰氨不是尿素的一种化学名称,
但尿素可以作为三聚氰胺的生产原料.
工业上三聚氰胺由双氰(酰)胺与氨在高温下反应或由尿素直接在高温高压下制得,后者成本低,较多采用,三聚氰胺与甲醛缩合可制得三聚氰胺甲醛树脂,此外三聚氰胺也用作合成药物的中间体。
三聚氰胺泡沫是不是危险化学品?
不是
经在《危险化学品目录》中搜索, “三聚氰胺树酯”为高闪点液体。目录中无三聚氰胺泡沫
代装化工没有危险品字样是不是不算危险品?一般情况下,危险化学品是不会袋装出售的,化学品如果是袋装的固体,并且包装上没有危险化学品字样的,大多不是危险品。
当然,不排除无良商家在其中做手脚,把一部分的危险品进行了袋装,并且没有说明的情况。
硫化氨是不是危险品有一定危险......那东西双水解,生成H2S和NH3,H2S虽说可溶于水,但还是很容易挥发,NH3也会挥发,然后你就会闻到一股骚味(NH3)和臭鸡蛋味(H2S)的混合气味.....非常爽......闻多了小心H2S中毒.....
化工原料吡啶是不是危险品吡啶属于危险化学品。
国内的危险货物编号是:32104。
UN:1282.
属于三类危化品。具体是:三类易燃液体中的中闪点液体。
双氰胺是不是危险品461-58-5(CAS DataBase Reference)
NIST
化学物质资讯
Dicyandiamide(461-58-5)
双氰胺
用途与合成方法
化
学
性
质
白色棱形结晶性粉末。
稍溶于水和乙醇,难溶于醚和苯。
是三聚氰胺的原料,也是合成医药、农药和染料的中间体
用于有机合成和树脂合成,也用作硫化促进剂及硬化剂
是生产三聚氰胺的原料。也是医药和染料的中间体。在医药上用于制取硝
酸胍、磺胺类药物等。也可用来制取硫脲、胍、硝酸纤维素稳定剂、橡胶
硫化促进剂、钢铁表面硬化剂、印染固色剂、人造革填料及黏合剂等。
双氰胺的主要用途有:
1
作为胍盐、三聚氰二胺类的原料。用双氰胺
与酸反应,可制造各种胍盐。双氰胺和苯基腈反应得到的苯代三聚氰二胺
是涂料,层压板、成型粉的中间体。
2
用作染料固色剂,双氰胺和甲
醛反应制得的双氰胺树脂,可用作染料固色剂。
3
双氰胺化肥,双氰
胺复合肥料可控制硝化菌的活动,使氮肥在土壤中的转化速度得到调节,
减少氮的损失,提高肥料的使用效率。
4
作为精细化工中间体。在医
药上用于制取硝酸胍、磺胺类药物等;也用来制取硫脲、硝酸纤维素稳定
剂、橡胶硫化促进剂、钢铁表面硬化剂、人造革填料、粘合剂等。由双氰
胺与甲酸反应可得医药中间体
5-
氮杂胞嘧啶。
三聚氰氨三聚氰氨确实不溶解与水,但尿素在高温的环境下可以分解出三聚氰氨,液态奶都是在高温防毒环境中获得的!而且最近在蒙牛的液态奶中也检测出了三聚氰氨!三聚氰氨价格也不便宜,而且在常温下也不能溶解于水,直接+三聚氰氨的可能性太小!你自己想想吧
关键词:双氰胺 甲醛 絮凝剂
Abstract: Abstract:Dicyandiamine一formaldehyde condensation product is generally used in our country as fixing agent in textile dyeing process, coagulating agent in SBR rubber latex and decolouration flocculant in industrial dyeing wastewater. The main purpose of this article is to introduce in detail the reaction course, structure and specific characteristic of this product, its development history, present situation and some problems of market, research, evaluation,etc.,from both domestic and foreign countries. Then further researches should be done to reduce production cost, improve its speciality and combine other flocculants with this product. It also introduces the research and large scale production of this field in Tianjin Research and Design Institute of Chemical Industry.
Keywords:dicyandiamidefomnaledhydeflocculent
用絮凝剂去除工业废水中的有害成分,使之达到排放或回用的目的,是工业废水处理的重要方法之一。由于某些高浓度有色废水成分复杂,要获得较好的出水水质,用传统的无机混凝剂,往往需要较大的投药量,使处理水的费用增高.另外,无机絮剂易受盐类的干扰,腐蚀性大,因此,实际应用中受到一定的限制.自60年代以来,人工合成有机高分子絮凝剂就已经在给水和废水处理中得到广泛应用.使用人工合成有机高分子絮凝剂,沉降速度快,这样既缩短了作业时间,又提高了设备的利用率,从而增加了处理能力.由于人工合成阳离子型有机絮凝剂的优良性能,使其在废水、污水处理中的应用越来越广泛.日本自70年代后期以来,阳离子型有机絮凝剂的合成与在水处理中的应用一直呈明显增长势头.西方一些发达国家在废水处理中也大量使用阳离子型絮凝剂.一般阳离子有机絮凝剂的合成过程较复杂,产品价格太高,对其应用或多或少地受到了限制,尤其在经济不太发达的国家和地区问题更加突出。如今在国外,有机高分子絮凝剂的研究已较成熟,研究较普遍的有聚丙烯酞胺的改性物、环氧丙烷和胺的反应产物、聚亚胺类、聚季胺、聚环眯等。基中大部分已成为广泛应用的专利产品。而我国这一领域中以聚丙烯酞胺的改性物和与天然高分子的接枝共聚为主。双氰胺一甲醛系列阳离子聚合物是一种新型阳离子有机絮凝剂.该聚合物的合成是以双氰胺与甲醛的反应为主反应,通过加人不同的添加剂,改变聚合物的官能团、分子量及电荷密度,以适应不同性质废水的处理.在废水处理中,该系列聚合物可以单独使用,也可以和一定量的无机絮凝剂混合使用.实验表明,处理印染废水、造纸废水、石油浮渣废水和染织废水时,双氰胺一甲醛聚合物与硫酸铁、硫酸铝、硅藻土等混合使用,既可显著地降低色度,又可降低聚合物的用量,还可以大幅度降低悬浮物和COD值。鉴于上述的诸多优点,这类絮凝剂日益受到人们重视。
【双氰胺-甲醛聚合物的制备及比较】
一.“一步法工艺”:即将双氰胺、甲醛等原料按工艺配方,一次加入釜中缩聚而成。此工艺的特点是升温快,放热量大,容易爆沸。
1 .1合成原理
双氰胺与甲醛进行缩聚,可以分为两步进行。第一步是加成反应,生成轻甲基衍生物。一个双氰胺分子含有4个氢原子,因此每个分子最多可以与4个甲醛反应生成4轻甲基衍生物。一般双氰胺与甲醛物质的量比控制在1: 21: 3。实际生产中,由于甲醛用量不同,每个双氰胺分子所含的轻甲基数目可为24个。缩聚反应主要发生在2个分子的轻甲基之间或轻甲基与另1个双氰胺中的胺基上的活泼氢之间,前一个反应生成一CHZ O一、-C HZ一键,后一个反应生成一CH:一键,从而使两个双氰胺分子联结起来。在中性或弱酸碱性介质中,双氰胺和甲醛首先加成生成轻甲基双氰胺。然后进一步缩聚,生成以醚键或亚甲基键联接的二聚体。再进一步加热进行交联反应,形成网状结构的高聚物。
1 .2 合成方法
将一定计量的双氰胺、甲醛加入到装有电动搅拌机、冷凝管、温度计的三口烧瓶中,升温至40℃,停止加热。分批加入催化剂,待温度达75℃时,反应2 h,即得到产品。产品为无色透明,带有粘性并流动性良好的液体。
2 .1催化剂的投加方式对缩聚反应的影响
(1)将一定计量的双氰胺、甲醛(体积比为3:4)、催化剂按物质的量比为1: 2: 0 .5的比例加入三口烧瓶中,通电升温。当温度达40℃时,停止加热。此时缩合反应开始进行,释放出大量反应热,温度在15 min达到沸腾。将剩下的甲醛加入三口烧瓶中。反应1 h。该工艺制得的产品稳定性差,存放时间短,23 d会发生凝胶。而一次性投加催化剂,溶液温度难以控制,很容易爆沸,反应温度随时间的变化如图1中系列1所示。
(2)将一定计量的双氰胺、甲醛加入三口烧瓶中,通电升温。当温度达40℃时,停止加热。按双氰胺:甲醛:催化剂物质的量比为1:2:0.5加入。加入催化剂总量的3/4,此时缩合反应开始进行,释放出大量反应热,温度逐渐上升。当温度达到83℃时,无法继续上升。待温度降至80℃以下时,将剩下的催化剂加入。温度上升,达到85℃时,不能继续上升。将反应溶液温度保持在7580℃,反应1 h,得到产品。该产品稳定性好,存放时间长粘度适中,流动性好脱色效果良好。变化曲线如图1中的系列2所示。
2 .2双氰胺与甲醛物质的量比对产品性能的影响
双氰胺与甲醛物质的量比影响反应速度和聚合物性能。物质的量比低,生成的轻甲基少,轻甲基和未反应的活泼氢原子之间,缩合失去1分子的水,生成亚甲基键。物质的量比高,生成的轻甲基多,轻甲基与轻甲基之间的反应是先缩合失去1分子的水生成醚键,再进一步脱去1分子甲醛生成亚甲基键(两步反应)。所以物质的量比越高,产品越稳定。但游离醛也越高,物质的量比以1:2.51:3为宜。
双氰胺与催化剂物质的量比为1: 0.38时,双氰胺与甲醛物质的量比变化对产品性能影
响如表1。
2 .3双氰胺与催化剂物质的量比对产品性能影响
双氰胺与催化剂物质的量比对反应速度、缩聚物的相对分子质量及稳定性都有影响。当双氰胺与甲醛物质的量比为1: 2 .04,双氰胺与催化剂物质的量比变化对产品性能的影响见表2。选用的催化剂为盐类酸性化合物。
由表2可看到,随催化剂的增加,缩聚物的相对分子质量增加,粘度增加,稳定性下降。双氰胺与催化剂的物质的量比合适范围在0 .25- 0 .63 。
二. “硫酸铝催化二步法缩合”工艺:即硫酸铝催化合成双氰胺一甲醛絮凝剂该工艺过程较为稳定,易于控制。
1.1所用的原料名称及规格:双氰胺(AR)甲醛(AR)硫酸铝(AR)添加剂(工业品)硫酸((AR)硫酸银(AR)重铬酸钾(AR)硫酸亚铁铰(AR)自来水等。
1.2双氰胺一甲醛树脂的合成
在装有电动搅拌器、温度计、回流冷凝管的四口烧瓶中,依次加入双氰胺,硫酸铝,添加剂,甲醛,搅拌溶解后,控制反应温度为(70士1) 0C,保温反应3h,冷却到室温即制得有机絮凝剂一双氰胺一甲醛树脂产品。产品经真空干燥后,制作成KBr压片,用岛津FTIR-8700型红外光谱仪进行分析,结果如下:
2.1甲醛用量对反应的影响
甲醛在这整个合成过程中作为其反应原料,参与了聚合反应,甲醛的用量与产品的合成质量有着密切的关系,实验结果见表1 .
从表1可以看出,随着甲醛用量的增加,双氰胺一甲醛树脂产品的粘度增加。
2.2硫酸铝用量对反应的影响
双氰胺一甲醛树脂的传统制备方法有二:(1)双氰胺与甲醛在盐酸催化下缩合制得(2)双氰胺与甲醛在氯化铰催化下缩合制得。利用盐酸催化合成得到的双氰胺一甲醛树脂的固含量低,而利用盐酸催化合成得到的双氰胺一甲醛树脂的生产成本高。本文采用强酸弱碱盐硫酸铝作为催化剂进行双氰胺-甲醛树脂的制备。
硫酸铝用量对反应的影响见表2。实验发现随着硫酸铝用量的增大,双氰胺一甲醛树脂的粘度增大,处理后水溶液的水质升高,但当硫酸铝用量超过6g后,双氰胺一甲醛树脂的贮存稳定性差,导致处理后水溶液的C水质降低。因此硫酸铝的用量应控制在6g左右。
2.3温度对反应的影响
双氰胺与甲醛在强酸弱碱盐硫酸铝催化下的缩合反应必须在一定的温度下进行。双氰胺一甲醛树脂的质量与反应温度有着密切的关系。随着反应温度的升高,双氰胺一甲醛树脂的粘度增大,处理后水溶液的水质升高,但当反应温度超过70℃后,双氰胺一甲醛树脂的贮存稳定性差,导致处理后水溶液水质降低。因此反应温度应控制在70℃左右。
2.4反应时间对反应的影响
反应时间对双氰胺一甲醛树脂的合成有较大的影响,反应时间太短,缩合反应不完全,产品的粘度很低。双氰胺一甲醛树脂的絮凝效果的好坏与粘度有着密切的关系,粘度越大,其形成的矾花越大,絮凝效果也就越好,其絮体的沉降速度也就越快。
2.5合成反应机理
双氰胺、甲醛的缩聚反应与服醛树酷的缩聚反应相似、据服醛树脂的反应机理,我们认为双氰胺、甲醛的缩聚反应是分两步进行的,即先在一定条件下进行甲醛与双氰胺的加成反应,生成经甲基双氰胺然后在再一定条件下进行经甲基化合物的缩聚反应。
【产品应用】:双氰胺系列絮凝剂在废水处理中的应用
双氰胺一甲醛系列阳离子聚合物是一种新型阳离子有机絮凝剂.该聚合物的合成是以双氰胺与甲醛的反应为主反应,通过加人不同的添加剂,改变聚合物的官能团、分子量及电荷密度,以适应不同性质废水的处理.在废水处理中,该系列聚合物可以单独使用,也可以和一定量的无机絮凝剂混合使用.实验表明,处理印染废水、造纸废水、石油浮渣废水和染织废水时,双氰胺一甲醛聚合物与硫酸铁、硫酸铝、硅藻土等混合使用,既可显著地降低色度,又可降低聚合物的用量,还可以大幅度降低悬浮物和COD值.
1.1废水样来源及水质
实验中选用的废水有:印染厂的总排水口水样,以下简称印染废水造纸厂的总排水口水样,简称造纸废水污水处理厂的浮渣废水,简称浮渣废水染织厂曝气池人口水,简称染织废水.这些废水水质见表1.
在应用实验中共选用了合成的七种聚合物,以下简称聚合物一1,_2,-3,-4,-5,-6,一7.
2.1对印染废水的处理
印染废水水质见表1.水样pH值控制在7一8之间,单独使用聚合物一2时,最佳投量为200mg /L,聚合物一2与硅藻土混合使用可明显提高脱色絮凝效果,而且大大减少了有机絮凝剂的用量.结果见表2.
2.2对造纸废水的处理
造纸废水水质见表1.实验过程中控制水样pH值为7.5.所合成的七个聚合物对造纸废水的处理效果比较理想,但单独使用有机聚合物,投药量太大.单独使用无机絮凝剂处理效果不佳,因而考虑有机聚合物与无机絮凝剂混合使用.从表3看出,聚合物一7与硅藻土配合使用效果较好.而与硫酸铝、三氯化铁配合使用效果不佳.
2.3对浮渣废水的处理
通过初试,发现聚合物一4对浮渣废水的处理效果优于其它,而且用量筒试验法测出聚合物一4与20%硫酸铝溶液混合使用的处理效果也较好,结果见4.
2.4对染织废水的处理
通过单因素实验,发现聚合物一6,聚合物一7对染织废水有一定处理效果,单独使用聚合物时,浓度以0.25%为宜,与硅藻土复合时,浓度以0.1%最佳,而且硅藻土的浓度以7.5较合适.对染织废水的处理结果见表5.
可以看出,处理染色废水,聚合物一6的效果最佳,不论是单独使用有机絮凝剂,还是与硅藻土复配使用,处理后出水水质均可达国家工业废水一级排放标准(COD为180mg/L).
用双氰胺甲醛絮凝剂去除工业废水中的有害成分,使之达到排放或回用的目的,是工业废水处理的重要方法之一由于某些高浓度有色废水成分复杂,要获得较好的出水水质,用传统的无机混凝剂,往往需要较大的投药量,使处理水的费用增高.另外,无机絮剂易受盐类的干扰,腐蚀性大,使用双氰胺甲醛絮凝剂,沉降速度快,这样既缩短了作业时间,又提高了设备的利用率,从而增加了处理能力. 双氰胺一甲醛系列阳离子聚合物作为絮凝剂使用还有很多优越性,它们既可以作絮凝剂也可以作助凝剂使用,而且适用面较广,处理效果也较理想.所以,这类絮凝剂日益受到人们重视.
【发展趋势及小结】
由于人工合成有机絮凝剂的优良性能,使其在废水、污水处理中的应用越来越广泛.日本自70年代后期以来,阳离子型有机絮凝剂的合成与在水处理中的应用一直呈明显增长势头.西方一些发达国家在废水处理中也大量使用阳离子型絮凝剂.一般阳离子有机絮凝剂的合成过程较复杂,产品价格太高,对其应用或多或少地受到了限制,尤其在经济不太发达的国家和地区问题更加突出.实践发现,双氰胺与甲醛的初缩体,对有色废水有一定的脱色絮凝作用,但形成的絮体小,较难澄清,是缩聚物的分子量小和活性官能团不足所致.本文以双氰胺与甲醛的反应为主反应,通过改善合成条件,引人能增加分子量、改变官能团的添加剂,获得了应用效果良好、价格较低的阳离子有机絮凝剂.
我们以上述反应为基础,通过改善反应条件,引人不同性能的添加剂,合成出不同的絮凝剂.添加剂A易发生交联反应,可增长碳链,增大分子量二添加剂B含有易与重金属离子相结合的官能团添加剂c则含有易与蛋白质相结合的官能团.
1.1絮凝剂1#的合成
在250 mL四口烧瓶上,装置电动搅拌器、温度计、回流冷凝管,用电热套和冷水浴控制反应温度.依次加人80%硫酸65 mL,双氰胺10.5g, 36%甲醛37 mL,添加剂A4.0 g,搅拌溶解后,调温到50 C,恒温反应]h,再加人添加剂A 4.0 g,在此温度下再反应2h,冷却到室温即得产品.
产品为无色透明粘稠液体,pH =2, 20℃时比重为1.254 g / mL, 20℃时粘度为0.62 Pa.s.根据聚合物与相反电荷聚合物或表面活性剂生成沉淀的原理12],确定产品为阳离子型聚合物.产品经纯化后,制作成KBr压片,用岛津IR - 440红外光谱仪进行分析,结果如下:
3300 cm-1 (-NH2)1720 cm-1 (H2+N=)1620 cm-1 (-CO NH2)1685(c=0)。
1.2絮凝剂2#的合成
反应装置同上,依次加人双氰胺110g,添加剂B8.0 g, 36%甲醛61 mL, 25%盐酸1.5 mL,搅拌溶解后,回流反应6h,然后将温度调到80 C,加人添加剂B4.0 g,于80℃下恒温反应1h,冷却到40℃时加人3.6 mL.甲醇,继续冷却到室温即可.
所得产品为白色粘稠液体,pH = 8, 20℃时比重为1.195 g/mL, 20℃粘度为0.486 Pa. s.经检验,产品为阳离子聚合物。红外光谱分析结果为:
3300cm-1 (NH2),1720 cm-1 (H2+N=),1630 cm-1 (-CO),1685 cm-1 (C=0),2190 cm-1 (-CN).
1.3絮凝剂3#的合成
反应装置同上,依次加人23.2 g双氰胺,61 mL 36%甲醛溶液,6g添加剂C, 8.3 mL 36%盐酸,待双双氰胺和添加剂C全部溶解后,加热到80 C,恒温反应3h,冷却到室温,用20%氢氧化钠溶液调整产品pH为9.
所得产品为浅黄色粘稠液体,20℃比重为1.214 g八nL, 20℃时粘度为0.627 Pa. s.经验证,产品为阳离子聚合物.由红外光谱分析结果,说明聚合物分子链上含有下列基团:3350cm-1 (-NH2),1630cm-1 (-CONH2),1685 cm-1 (C=0),2160(-CN).
所合成的产品为线型聚合物.按照体型缩聚物的概念,只有参加反应的单体的平均官能度大于2,才能得到三向网状结构的体型聚合物。一羟甲基双氰胺分子中可以进行缩聚反应的官能团是经甲基和其它三个连在N上的H,分子中共有四个活性基团,然而,由于一羟甲基双氰胺进行缩聚,并不是真正的((4,4)体系,因为一羟甲基双氰胺分子中的轻基只能与另外的一羟甲基双氰胺分子中的羟甲基进行缩聚,而N上的三个H也只能与另一个一羟甲基氰胺分子中的羟甲基进行缩聚,所以,实际上每一个一羟甲基双氰胺分子中只有两个可以进行缩聚的活性基团,属((2,2)体系,即平均官能度为2,因此,一般获得线型聚合物.此合成聚合物都含有胺基基团,当将它们加到印染废水中时,不仅是靠中和废水中胶粒的负电荷、对胶粒吸附架桥而达到絮凝效果,而且聚合物分子上的胺基可与染料分子中的磺酸基团等阴离子基团之间相互作用生成牢固的离子链,形成不溶于水的高分子化合物.这类化合物被吸附在水中的胶体杂质的负电荷粒子上,联络成大絮体,从而达到絮凝效果.故所合成的絮凝剂脱色效果都很好.又由于原料易得,价格便宜,操作简单,反应温和,生产周期短,完全适合规模生产. 鉴于上述许多优点,值得向各个方面推广使用.
双氰胺溶于双氯仿,丙酮、乙醇和液氨,微溶于乙醚,难溶于苯。在13℃水中溶解度为2.26%,易溶于热水,水溶液在80℃以上时慢慢分解产生氨。在13℃无水乙醇中溶解度为1.26%, 双氰胺又称二氰二胺,很早就被用作潜伏性固化剂 应用于粉末涂料、胶粘剂等领域。
DMP-30一般是用来促进聚氨酯、酸酐、聚酰胺和脂肪胺,双氰胺一般选用二甲基咪唑作为促进剂,参考配方:128环氧树脂:100份,双氰胺:8份,二甲基咪唑:0.4
物理化学特性
三聚氰胺性状为纯白色单斜棱晶体,无味,密度1.573g/cm3 (16℃)。常压熔点354℃(分解);快速加热升华,升华温度300℃。溶于热水,微溶于冷水,极微溶于热乙醇,不溶于醚、苯和四氯化碳,可溶于甲醇、甲醛、乙酸、热乙二醇、甘油、吡啶等。低毒。在一般情况下较稳定,但在高温下可能会分解放出氰化物。
呈弱碱性(pKb=8),与盐酸、硫酸、硝酸、乙酸、草酸等都能形成三聚氰胺盐。在中性或微碱性情况下,与甲醛缩合而成各种羟甲基三聚氰胺,但在微酸性中(pH值5.5~6.5)与羟甲基的衍生物进行缩聚反应而生成树脂产物。遇强酸或强碱水溶液水解,胺基逐步被羟基取代,先生成三聚氰酸二酰胺,进一步水解生成三聚氰酸一酰胺,最后生成三聚氰酸。
主要用途三聚氰胺是一种用途广泛的基本有机化工中间产品,最主要的用途是作为生产三聚氰胺甲醛树脂(MF)的原料。三聚氰胺还可以作阻燃剂、减水剂、甲醛清洁剂等。该树脂硬度比脲醛树脂高,不易燃,耐水、耐热、耐老化、耐电弧、耐化学腐蚀、有良好的绝缘性能、光泽度和机械强度,广泛运用于木材、塑料、涂料、造纸、纺织、皮革、电气、医药等行业。其主要用途有以下几方面:
(1)装饰面板:可制成防火、抗震、耐热的层压板,色泽鲜艳、坚固耐热的装饰板,作飞机、船舶和家具的贴面板及防火、抗震、耐热的房屋装饰材料。
(2)涂料:用丁醇、甲醇醚化后,作为高级热固性涂料、固体粉末涂料的胶联剂、可制作金属涂料和车辆、电器用高档氨基树脂装饰漆。
(3)模塑粉:经混炼、造粒等工序可制成蜜胺塑料,无度、抗污,潮湿时仍能保持良好的电气性能,可制成洁白、耐摔打的日用器皿、卫生洁具和仿瓷餐具,电器设备等高级绝缘材料。
(4)纸张:用乙醚醚化后可用作纸张处理剂,生产抗皱、抗缩、不腐烂的钞票和军用地图等高级纸。
(5)三聚氰胺甲醛树酯与其他原料混配,还可以生产出织物整理剂、皮革鞣润剂、上光剂和抗水剂、橡胶粘合剂、助燃剂、高效水泥减水剂、钢材淡化剂等。
生物学毒性
目前三聚氰胺被认为毒性轻微,大鼠口服的半数致死量大于3克/公斤体重。据1945年的一个实验报道:将大剂量的三聚氰胺饲喂给大鼠、兔和狗后没有观察到明显的中毒现象。动物长期摄入三聚氰胺会造成生殖、泌尿系统的损害,膀胱、肾部结石,并可进一步诱发膀胱癌。1994年国际化学品安全规划署和欧洲联盟委员会合编的《国际化学品安全手册》第三卷和国际化学品安全卡片也只说明:长期或反复大量摄入三聚氰胺可能对肾与膀胱产生影响,导致产生结石。然而,2007 年美国宠物食品污染事件的初步调查结果认为:掺杂了≤6.6%三聚氰胺的小麦蛋白粉是宠物食品导致中毒的原因,为上述毒性轻微的结论画上了问号。但为安全计,一般采用三聚氰胺制造的食具都会标明“不可放进微波炉使用”。
假蛋白原理
由于食品和饲料工业蛋白质含量测试方法的缺陷,三聚氰胺也常被不法商人用作食品添加剂,以提升食品检测中的蛋白质含量指标,因此三聚氰胺也被人称为“蛋白精”。
蛋白质主要由氨基酸组成,其含氮量一般不超过30%,而三聚氰胺的分子式含氮量为66%左右。通用的蛋白质测试方法“凯氏定氮法”是通过测出含氮量来估算蛋白质含量,因此,添加三聚氰胺会使得食品的蛋白质测试含量偏高,从而使劣质食品通过食品检验机构的测试。有人估算在植物蛋白粉和饲料中使测试蛋白质含量增加一个百分点,用三聚氰胺的花费只有真实蛋白原料的1/5。三聚氰胺作为一种白色结晶粉末,没有什么气味和味道,掺杂后不易被发现。
奶粉事件:各个品牌奶粉中蛋白质含量为15-20%(晚上在超市看到包装上还有标示为10-20%的),蛋白质中含氮量平均为16%。以某合格牛奶蛋白质含量为2.8%计算,含氮量为0.44%,某合格奶粉蛋白质含量为18%计算,含氮量为2.88%。而三聚氰胺含氮量为66.6%,是牛奶的151倍,是奶粉的23倍。每100g牛奶中添加0.1克三聚氰胺,就能提高0.4%蛋白质。
微溶系指溶质1g(ml)能在溶剂100~不到1000ml中溶解,三聚氰胺在水中微溶,在牛奶这种水包油型的乳液中溶解度未找到实验数据,本人觉得比水的溶解度要好一些,待验证。
检测方案
在现有奶粉检测的国家标准中,主要进行蛋白质、脂肪、细菌等检测。三聚氰胺属于化工原料,是不允许添加到食品中的,所以现有标准不会包含相应内容。亦即三聚氰胺检测目前并无国家标准。因此,德国莱茵TÜV集团参照美国食品化学品法典(FCC)三聚氰胺HPLC-UV定量方法,同时还可采用HPLC/MS检测方法(实验室方法)对婴儿食品,宠物食品,饲料及其原料(包括淀粉,大米蛋白, 玉米蛋白, 谷朊粉、粮油等)开展三聚氰胺的检测业务,检测结果具备权威性。