pe薄膜是什么材料
聚乙烯膜是由聚乙烯树脂(低密度聚氯乙烯树脂或线型低密度聚乙烯)为原料,经吹塑成膜。
聚乙烯膜也具有良好的耐酸、耐碱、耐盐特性,而且喷上农药、化肥不易引起变质,质地轻,耐低温性能优于聚氯乙烯膜,静电作用小,不易吸附尘土,透光性好
液使用较长时间透光率衰减也不多,无毒,对作物安全,适于作各种棚膜、地膜,是我国当前主要的农膜品种。其缺点是耐候性差,保温性差。
PET----聚对苯二甲酸乙二醇酯, 一般供货中常称其为----聚酯切片。 PET是一种线型热塑性塑料。PET通常是一种结晶型塑料,但在瓶、薄膜产品中,为了其高度透明,可用特殊的工艺条件使之成为无定型塑料。 PET由于性能优良,成本低,用途非常广。根据其制品形式,可分为四类: 聚酯纤维、薄膜、工程注塑件、瓶类。PET瓶由于质轻不碎、能耗低等优势,替代了一些传统的包装材料,大量应用在食品、饮料、化妆品等领域,特别是饮料瓶,PET已占绝对优势。饮料瓶都是一次性使用,所以废弃量极大。 PET瓶的回收技术在国外已达到相当高的水平,美国、德国等国家 回收率现已达80%以上。不仅如此,为方便回收,这些国家还专门制订了一些地方性法规,对PET瓶的废弃、收集、使用、设计制造了强制性的规定。 PEI (聚醚酰亚胺)是琥珀色透明固体,不添加任何添加剂就有固有的阻燃性和低烟度,氧指数为47%,燃烧等级为UL94-V-0级,密度为1.28~1.42g/cm3。PEI具有很强的高温稳定性,既使是非增强型的PEI,仍具有很好的韧性和强度。因此利用PEI优越的热稳定性可用来制作高温耐热器件。具有优良的机械性能、电绝缘性能、耐辐照性能、耐高低温及耐磨性能,并可透过微波。PEI还有良好的阻燃性、抗化学反应以及电绝缘特性。玻璃化转化温度很高,达215℃。PEI还具有很低的收缩率及良好的等方向机械特性。加入玻璃纤维、碳纤维或其他填料可达到增强改性的目的;也可和其它工程塑料组成耐热高分子合金,可在-160~180℃的工作温度下长期使用。PEI是优良的涂层和成膜材料,能形成适用于电子工业的涂层和薄膜,并可用于制造孔径<0.1μm、具有高渗透性的微孔隔膜。还可用作耐高温胶粘剂和高强度纤维等。 应用领域 由于PEI具有优良的综合平衡性能,卓有成效地应用于电子、电机和航空等工来部门,并用作传统产品和文化生活用品的金属代用材料。用PEI取代金属制造光纤连接器,可使元件结构最佳化,简化其制造和装配步骤,保持更精确的尺寸。用于汽车领域,如用以制造高温连接件、高功率车灯和指示灯、控制汽车舱室外部温度的传感器(空调温度传感器)和控制空气和燃料混合物温度的传感器(有效燃烧温度传感器)。还可用作耐高温润滑油侵蚀的真空泵叶轮、在180℃操作的蒸镏器的磨口玻璃接头(承接口)、非照明的防雾灯的反射镜。Polyethylene naphthalene(PEN)薄膜,是一种用于扬声器的多用途材料,Mylar用户的一种升级替代产品。Teonex® PEN是杜邦-帝人公司给PEN的品牌(原商标名:Kaladex®),它具有多种优良的性能,质量轻,相对于密度而言刚性强,失真小,与磁液兼容。振膜方面的应用于球顶、平衡式、带式和静电式高音驱动器以及麦克风元件。 PEN薄膜的UL级别是180℃,在160℃时其大多数机械强度保持不变。有多种厚度规格,适合大多数的扬声器应用。为了尺寸上的稳定,已对薄膜进行过双轴预张拉。 Teonex® PEN的成形温度范围在2500F。薄膜可在模具内预热,成形温度会随设备与循环时间不同而变化。Teonex® PEN的变软的临界温度比Mylar高出30℃,如在成形后再进行热处理,其融点可以变得更高。PEN比用Mylar的动圈式、带式和电容话筒、扬声器与耳机的换能器有更好的尺寸与温度的稳定性。总之,PEN是一种耐温高,质量轻,音质好,与磁液兼容的聚酯薄膜,它的湿度和温度稳定性卓越。
早在1964年,日本帝人公司就开始了PEN的研究工作,到1971年,即以70-80吨/年规模试产PEN薄膜(商品名为Q薄膜),发现其性能与聚苯硫醚相当,是很理想的功能材料,可作高档磁记录薄膜。但由于PEN单体的制造成本高,使Q薄膜的发展受到限制,同时PEN的出现在当时还是引起了化工原料制造商的兴趣。1973年帝人公司建立年产1000吨PEN装置。1989年日本帝人公司使PEN膜商业化生产后,一直独占PEN膜供应市场,并在1993年建造了一条4000吨/年PEN薄膜生产线,将双向拉伸薄膜商标命名为TEONEX。2000年PEN膜市场需求已达到6300吨。PEN薄膜与PET薄膜同为聚酯类膜,可使用与PET薄膜同样的设备,通过熔融--挤出--双向拉伸制得PEN膜。与PET膜相比,PEN薄膜具有除优良的高强、高模及热阻性能外,又具备优良的气体阻隔性、耐水性、耐放射性特点,有效的拓展了PEN薄膜的应用范围。PEN薄膜的应用是PEN研究最多的一个方面,也是PEN最早投入使用的产品。目前PEN薄膜主要应用于磁带的基带、柔性印刷电路板、电容器膜、F级绝缘膜等方面。该公司90年代又建立4.8万吨PEN生产装置,生产的均聚PEN可直接用于生产包装瓶、薄膜、纤维及工程塑料。2001年帝人和三信化工共同开发了PEN学生饭盒。
中国在70年代曾对PEN进行过研究,也有批量生产,主要用于绝缘薄膜方面。进入80年代后中国对PEN的结构及性能进行了系统的研究,中国纺大在80年代研制成PEN聚合物及纤维,鞍山钢院、天津石化等均对PEN单体NDC进行过研究,并取得阶段性进展,中国桂林电器科研所曾试制PEN薄膜。仪征化纤股份公司已于1996年作为部级课题投入科研力量进行PEN的研究开发工作,从原料单体NDC开始,研究了聚合工艺以及催化剂效果,聚合了切片,完成了小试。但有关PEN单体和PEN工业化生产应用方面还未见过报道。
1)PE薄膜,聚乙烯,软包装中70%以上的材料是使用PE。
2)BOPP薄膜,就是双向拉伸聚丙烯,在软包装中用量很大
3)PET薄膜,就是聚酯薄膜,用于印刷和复合
4)CPP薄膜,流延聚丙烯薄膜,具有热封性
5)PA薄膜,就是尼龙薄膜,阻隔性高
6)PVDC薄膜,阻隔性高,一般用于火腿肠的肠衣膜
7)PEN薄膜,性能比PET还要优秀,但是鉴于价格问题,没有大规模应用。
8)EVOH共挤膜,通过EVOH跟PE和PP等共挤而形成的高阻隔薄膜
9)镀铝薄膜,在PET,BOPP,CPP薄膜上面进行镀铝而形成的高阻隔亮丽的薄膜。
常用的复合塑料软包装有:透明、彩色、黑白或彩色印刷的塑料复合薄膜包装、镀铝塑料复合薄膜包装、金属铝箔复合塑料薄膜包装、纸复合塑料薄膜的包装等。
1)PE薄膜,聚乙烯,软包装中70%以上的材料是使用PE。
2)BOPP薄膜,就是双向拉伸聚丙烯,在软包装中用量很大
3)PET薄膜,就是聚酯薄膜,用于印刷和复合
4)CPP薄膜,流延聚丙烯薄膜,具有热封性
5)PA薄膜,就是尼龙薄膜,阻隔性高
6)PVDC薄膜,阻隔性高,一般用于火腿肠的肠衣膜
7)PEN薄膜,性能比PET还要优秀,但是鉴于价格问题,没有大规模应用。
8)EVOH共挤膜,通过EVOH跟PE和PP等共挤而形成的高阻隔薄膜
9)镀铝薄膜,在PET,BOPP,CPP薄膜上面进行镀铝而形成的高阻隔亮丽的薄膜。
PEN是聚萘二甲酸乙二醇酯的简称,是由2,6-萘二甲酸二甲酯(NDC)或2,6-萘二甲酸(NDA)与乙二醇(EG)缩聚而成的一种新兴的优良聚酯。
PEN化学结构与PET相似,不同之处在于分子链中PEN由刚性更大的萘环代替了PET中的苯环。萘环结构使PEN比PET具有更高的物理机械性能、气体阻隔性能、化学稳定性及耐热、耐紫外线、耐辐射等性能。
由于其优秀的气体阻隔性能、化学稳定性,将PEN用来制造灭火器
1、从耐热性能上看:PEN的玻璃化转变温度达到113℃,而PET只有67℃;PEN的熔点、分解温度也高于PET;
2、回潮率方面:PEN为0.64%,PET为0.75%;
由于其热稳定性和低回潮率,PEN比PET更适合用于工业丝(注:工业丝是相对于民用丝而言的,用途为主要为工业领域用丝;一般而言,工业丝比民用丝的要求更高)。
PEN的结构与PET相似,不同之处在于分子链中,PEN是由刚性更大的萘环代替了苯环,它是由2,6-萘二甲酸二甲酯与乙二醇缩聚而得的聚合物。在PEN的分子结构中,由于萘环的结构更容易呈平面状,使PEN具有更好的气体阻隔性,比如PEN对水气的阻隔性是PET的3-4倍,作为包装材料可大大提高产品的保质期。分子中萘环的引入提高了大分子的芳香度,使得PEN比PET表现出更为优良的耐热性能。PEN的熔点为265℃,其玻璃化温度在120℃以上,比PET高出50℃左右;长期使用温度高达160℃,PEN在180℃的干燥空气中放置10h以后,其伸长率仍能保持50%。而PET在同样条件下,将变得无法使用。此外,PET/PEN的共聚物对提高PET的热性能也具有明显的作用。PEN的扬氏模量和拉伸弹性模量比PET高出50%,在170℃时,PEN的机械性能远远高于PET。由于萘的双环结构具有很强的紫外线吸收能力,它可以阻隔波长小于380nm的紫外线,其光稳定性约为PET的5倍,在真空和O2中的耐放射性的能力分别可达PET的10倍和5倍。在PEN分子链中的酯基虽然遇水分解,但其分解速度仅为PET的1/4,耐酸、碱的能力也优于PET。
由于PEN的气密性好,分子质量相对大,故在实际使用温度下,析出低聚物的倾向小,在加工温度高于PET的情况下分解放出的低醛也少于PET。虽然PEN和PET一样都是结晶性材料,但PEN在非结晶状态时,能够透明成型。 1.生产工艺过程中的影响因素
PET/PEN合金兼顾了PET的经济性和PEN的耐热性、阻气性,故PET与PEN合金化是使PEN走向市场(尤其是包装领域)的主要途径之一。通过熔融共混反应挤出,选择合理的酯交换率水平和反应挤出工艺条件,获得性能价格比合理、在通用国产二步法吹瓶设备上技术可行、质量稳定可靠的耐热、阻气、透明的包装瓶用料。
采用PEN树脂和瓶级PET树脂,在稳定剂、成核剂和助剂存在的情况下,利用双螺杆挤出机,将PEN和PET按比例注入,在适宜条件下反应共挤,结果发现,在PEN含量较小(<30%)时,随着PEN用量的增多,热变形温度HDT、玻璃化温度Tg增大,意味着合金材料耐热性能上升,在此范围内,初始阶段随着PEN加入量上升,热变形温度和玻璃化温度上升较快,当PEN含量达到20%左右后上升缓慢。
考虑到合金材料的综合性能和应用加工性、价格等因素,以选用PEN含量小于20%的配比为宜。在熔融挤出工艺中,合金材料在螺杆挤压机中的挤出时间(或者说是停留时间),对合金材料性能的影响很大,反应挤出的时间越长,合金所达到的酯交换率越高,说明PEN、PET相容化程度随反应时间延长而加大。但副作用是合金的色度加深、熔融指数MI增大,表明树脂热降解随着共挤时间增长而加剧,说明热降解的加剧抵消了部分酯交换率提高耐热性的效果。可见PET/PEN的酯交换率不可过高或过低,而应以5-10%的适中水平为宜。
2.PET/PEN合金瓶坯的生产
用双螺杆挤出机制得PET/PEN合金材料,以此为原料用国产注射成型机成型瓶坯,在国产二步法吹瓶机上拉伸吹塑制瓶。耐热瓶级PET/PEN瓶制品成型条件(限二步法),采用注射温度280-330℃;合模压力65Pa;保压时间4-8(s);冷却时间4-8(s);冷却介质自来水。成瓶预热温度100-125℃;吹气速度中等。放杆快慢中等;充气压力15Pa。在上述范围内调节工艺条件注拉吹成型瓶子,将它们与纯PET瓶、PET与PEN直接混合成型瓶及市场试销耐热包装瓶进行比较,发现普通瓶级PET树脂瓶不能耐热,即使耐热瓶级PET树脂在现行通用设备上也难以吹制成型真正的耐热瓶,只有在改进的设备上方有可能体现其优越性。此外,将PET与PEN直接混合作为吹瓶原料工艺上较困难,耐热性提高有限,制品质量差,只能在国外专用设备上使用。而将这两者制成合金材料作为吹瓶原料,制品耐热性高于各种规格PET瓶,与三得利乌农茶瓶相当,而且综合性能好,可以满足国内85℃以上耐热封装的要求,在现行国产二步法设备上可以顺利进行。
由此可见,将PET与PEN预反应,从而实现一定酯交换并形成PET/PEN合金是一种值得推广的好方法。这种预反应通过通用螺杆挤出机进行,衡量PET与PEN两者相容程度的酯交换率,主要由挤出温度和在螺筒内停留时间决定,故可以通过控制共挤温度和时间达到所需酯交换率。适中的酯交换率为5%-10%,过高或过低的酯交换率不利于后续吹瓶过程并有损于瓶制品性能。由此制得耐热瓶级PET/PEN合金材料可用于吹制果汁、茶等饮料热封装瓶。在国内广泛采用的国产二步法设备上可顺利实现,所制瓶子可承受85℃以上温度,其它综合性能符合实用要求。 1.PEN/PET共聚酯中SiO2的分散情况
国内相关研究人员用扫描电子显微镜对含0.1%(质量分数)和0.4%(质量分数)SiO2微粒的PEN-PET共聚酯(BHEN含量均为8%(摩尔分数)进行分析,以观察不同含量SiO2微粒在PEN―PET共聚酯中的分散情况。结果表明:SiO2粒子含量不同的样条断面,颗粒分散得比较均匀,颗粒直径部在0.4um以下,无过大微粒存在;当SiO2微粒含量增大时,并没有絮凝成颗粒过大的粒子。
2.PEN―PET共聚酯薄膜的干热收缩
干热收缩率是反映薄膜尺寸稳定性的重要指标。干热收缩率越小说明薄膜受热后的尺寸稳定性越好,越不易变形。随着共聚酯中2.6萘环单元的引入以及含量的增加,干热收缩率明显减小,这是由于2,6萘二甲酰单元的引入增加了共聚酯大分子链的刚性,从而使PEN―PET共聚酯表现出比PET更为优良的热稳定性能,且2,6一萘环单元含量越太.热稳定性能越好。
3.共聚酯薄膜的声速取向
取向对聚合物的所有力学性能都有影响,最突出之点是取向产生各向异性和取向方向的增强,这在薄膜制造中起重要作用。双轴取向高聚物薄膜沿着它的平面纵横二个方向拉伸,高分子链倾向于与薄膜平面平行的方向排列,但在此平面内分子链的取向是无规的。利用声波传播法测定的是晶区和非晶区的平均取向度,测得的取向度反映了整个分子链的取向状况。在相同的拉伸倍数下,随着共聚酯中26一萘环单元的引入,声速模量明显增大。这是由于2,6萘二甲酰结构单元的引入增加了共聚酯大分子链的刚性:随着共聚酯中2.6一萘环单元的引入,声速取向园子也明显增大。这可能是在薄膜制造过程中.由于萘环比苯环具有更大的共轭结构,分子链刚性高.倾向于生成伸直链结构,而PET尽管也发生分子取向,但呈折叠链结构所以声波在PENPET共聚酯薄膜拉伸取向方向传播时,其传播方向与共聚酯大分子链比与PET大分子链更平行,声速更大。因此,计算的声速取向因子增大。每一组成的共聚酯,随着拉伸倍数的增加,声速模量和声速取向因子增大这说明随着拉伸倍数的增加,更有利于分子链沿着与拉伸方向平行的方向排列。
4.共聚酯薄膜的力学性能
薄膜的力学性能直接关系到薄膜质量的优劣。它既决定于制造薄膜的聚合物的内在化学因素(组成、结构等),也与薄膜的成型和后处理有关。所以对力学性能进行研究很有必要。相同拉伸倍数的PEN―PET(DMN含量为20%(摩尔分数))比PET断裂强度略有增大,但断裂伸长显著变小。这是由于引入的萘环有更大的共扼结构,使分子链刚性高,因此改性后的共聚酯并没有因为分子链的对称性和规整性被破坏而使强下降。但伸长却减小。同一组成的PEN―PET共聚酯却随拉伸倍数的增大,强度逐渐增大,伸长逐渐减小。这是因为聚合物的强度的各向异性随取向程度的增高而增大的结果。相同拉伸倍数的酯交换得到的PEN―PET共聚酯和酯化得到的PEN―PET共聚酯薄膜的强度和伸长不同,可能是因为两种工艺路线所加催化剂等添加组分的种类和量不同,两种单体的纯度可能不同,从而导致共聚物实际组成比不同,薄膜成型时的超分子结构不同而引起。 1.容器包装瓶的应用
利用PEN对PET进行改良.在PET中加入l0%的PEN可使瓶身耐热温度提高到90℃;加入30%-40%的PEN有时也能制得更为耐热的瓶子,还能改进其对气体的阻隔性。PET/PEN瓶被市场看好,制成可再生利用和重复使用的啤酒瓶,可避免使用玻璃啤酒瓶的意外爆炸伤人事故,玻璃啤酒瓶的意外爆炸伤人事故严重地困扰着啤酒市场。由于啤酒比其他软饮料更容易受到环境的影响,对空气中的O2和CO2阻隔性不好就足以使啤酒味变差,而在巴氏灭菌的啤酒生产线上,要求啤酒瓶具有耐热、耐压的能力,并保证有不低于3-6个月的有效保质期,PET本身不具备良好的气体的阻隔性,也无足够的耐热性能,而采用PET与PEN共聚材料就可以有效地解决这一难题。PET/PEN瓶的耐热性可达到80℃以上,进一步处理可达90℃以上,日本AOKI公司生产的PET/PEN瓶,在共混聚合物方面,已走在世界前列,取得了很大成功。日本先锋公司也开发出一种厚度为0.35mm的500ml的PET/PEN热罐装瓶,可使灌进的饮料食品保质期延长l0个星期以上。
而在其中掺加质量分数为5%-l0%的PEN,则完全可以制出合格的塑料啤酒瓶。
啤酒瓶做为啤酒传统的包装物已经由来已久,在消费者眼里,玻璃瓶装啤酒是唯一的选择,但玻璃瓶的缺点是有目共睹的,它重量大、破损率高、耐热性和导热性差,最严重的是极易爆炸,伤害消费者,因此,改用塑料瓶装啤酒已势在必行。然而,啤酒极易氧化变质,且O2很容易透过瓶壁,PET瓶仅适用于短时间存贮,如果加一层防渗透涂层或阻隔层来防止渗入和CO2渗出,啤酒虽然延长了几周保存期,但成本提高且不利于瓶子回收,PET瓶表面容易刮伤,影响回收重复使用的美观性。另外,PET瓶的另一个问题是无法承受啤酒进行巴氏灭菌时的温度。以PET/PEN的共聚或其混合物为原料,既提高了瓶子的耐热性,又提高了瓶子的阻气性,可满足啤酒保质期3-6个月的要求,还可用碱洗消毒,重复使用,以降低成本。由于PET/PEN的共聚瓶透明,饮料瓶中PET和PEN游离析出少,不吸附原装饮料的气味和空瓶回收过程中带入的异味,耐水解并能承受高温下碱洗和消毒,其高阻气性能使瓶内物质保持新鲜口味和营养,不串味、不变味、不变质。所以,这种瓶特别适宜装矿泉水、纯净水、碳酸饮料、果汁等软饮料,回收重复使用效果好。
2.PET/PEN共聚酯薄膜的优异性能
将PET/PEN共聚酯通过双轴拉伸制成性能优异的薄膜,共聚酯的拉膜采用LSJ20塑料挤出装置进行挤出,螺杆直径20mm,螺杆长度直径比L/D为25,转速60r/min。采用双轴延伸机进行拉伸。先在LSJ20塑料挤出装置于275℃挤成厚片,再在双轴延伸机上于130℃以相同的倍数双向拉伸到3-4倍。
PET/PEN共聚酯薄膜的干热收缩率是反映薄膜尺寸稳定性的重要指标,干热收缩率越小,说明薄膜受热后的尺寸稳定性越好,越不易变形。随着共聚酯中2,6-萘环单元的引入以及含量的增加,干热收缩率明显减小,这是由于2,6-萘二甲酰单元的引入增加了共聚酯大分子链的刚性,从而使PET/PEN共聚酯表现出比PET更为优良的热稳定性能,且2,6-萘环单元含量越大,热稳定性能越好。
通过测定共聚酯薄膜的声速取向可以判定聚台物的力学性能,在相同的拉伸倍数下,随着共聚酯中2,6-萘环单元的引入,声速模量明显增大,这是由于2,6-萘二甲酰结构单元的引入增加了共聚酯大分子链的刚性。随着共聚酯中2,6-萘环单元的引入,声速取向因子明显增大。这是由于在薄膜制造过程中,萘环比苯环具有更大的共轭结构,分子链刚性高,倾向于生成伸直链结构,而PET尽管也发生分子取向,但呈折叠链结构,所以声波在PEN/PET共聚酯薄膜拉伸取向方向传播时,其传播方向与共聚酯大分子链比与PET大分子链更平行,声速更大。随着拉伸倍数的增加,声速模量和声速取向因子增大,这说明共聚酯薄膜的性能有利于分子链沿着与拉伸方向平行的方向排列。
共聚酯薄膜的力学性能直接关系到薄膜质量的优劣,它既决定于制造薄膜的聚合物的内在化学因素(组成、结构等),也与薄膜的成型和后处理有关。相同拉伸倍数的PET/PEN比PET断裂强度略有增大,但断裂伸长显著变小。这是由于引入的萘环有更大的共扼结构,使分子链刚性高,因此改性后的共聚酯并没有因为分子链的对称性和规整性被破坏而使强度下降。同一组成的PET/PEN共聚酯却随拉伸倍数的增大,强度逐渐增大,伸长逐渐减小。
这是因为聚合物的强度的各向异性随取向程度的增高而增大的结果。
3.生产PET/PEN共聚酯高强度工业纤维
采用PET/PEN共聚酯生产纤维,是充分利用PEN优良的物理化学性能,并结合PET价格低廉的特点,可用于生产工业丝、高温用的地毯、橡胶增强材料,包括轮胎帘子线、软管和带材、高温气体过滤器、纸纤维毯和单纤丝、丝网印刷和电气绝缘材料、产业用织物、绳索、缆绳及过滤器等,这种树脂显示出较为优良的抗水解性等,可用于纺织纤维和纤维光导系统等,由此制成的工业丝特别适用于轮胎帘子线、三角带、输送带等,其机械性能高,与橡胶的粘合性好,日本开发出了PET/PEN共聚皮芯型纤维的生产工艺,这种纤维的性能保持了PEN的优异性能,但成本低,与PET相比其机械性能保持率好,与橡胶的粘合性能好,并且这种纤维表现出较高的模量和尺寸稳定性、优良的抗紫外线性能,可用于汽车车座和车用皮带,由PET/PEN共聚酯制成的产业用丝,性能优异。
阻燃聚酯纤维是含磷共聚酯材料,有长纤维与短纤维两种形式,这种阻燃性聚酯纤维在燃烧时不产生气体,反复洗涤后性能不变,光照不退色,可用于居室窗帘,桌布、床罩等。由PET/PEN共聚酯材料制成阻燃纤维,可制成高档家用织物。
由于PEN比PET结晶速度慢,有利于分子的高度取向,通过超高速纺制造出高强度服用或工业用PEN长丝。由于价格上的原因,目前PEN在纤维领域的商业化应用受到限制,而采用PET/PEN共聚酯生产出的共聚酯工业丝在强度、模量及尺寸稳定性上明显优于PET工业丝,有望成为人造丝轮胎骨架材料的替代用品。在有特殊要求的领域,例如高温、潮湿、日晒、盐水浸渍等条件下使用的三角皮带的增强材料、航海运动的船帆等均可使用。 有专家建议,中国可首先考虑采用进口的PEN重要中间体2,6-萘二甲酸(NDA)或2,6-萘二甲酸二甲酯(DMN)合成PEN,关于合成PEN的基本原料2,6-萘二甲酸,可以从2,6-二甲基萘(2,6-DMN)氧化而来,目前在国外已有大规模工业生产,后者2,6-二甲基萘可以直接合成,也可以从煤焦油和石油焦油中分离而得到。中国煤焦油和石油焦油十分丰富,富含DMN的馏份就超过l0余万吨,开发利用中国的2,6-DMN,对发展中国的PET/PEN共聚酯材料具有极其重要的战略意义。