谁能告诉我46度的甲苯和123.5度的乙二醇的密度,比热容,粘度,导热系数分别是多少吗?跪求大神!!!!!
你要多准确的?有些物性随温度的变化不是很大吧?上次我跟你说的《化工流体流动与传热》347页有液体比热容共线图,有甲苯0~60度和乙二醇-40~200度的比热容,344页液体粘度共线图也有你需要的数据
《环氧乙烷与乙二醇生产》 -周敬思等编 1979
有乙二醇导热系数121度0.00051,135度0.00048,密度120度1.039,125度1.035。自己插值算吧。
乙二醇
理化常数
CAS号 107-21-1
中文名称 乙二醇
英文名称 Ethylene glycol
别名 甘醇
分子式 C2H6O2;HOCH2CH20H
分子量 62.07
熔点 -13.2℃ 沸点:197.5℃
密度 相对密度(水=1)1.11;相对密度(空气=1)2.14
外观与性状 无色、无臭、有甜味、粘稠液体
蒸汽压 6.21kPa/20℃
闪点:110℃
溶解性 与水混溶,可混溶于乙醇、醚等
稳定性 稳定
主要用途 用于制造树脂、增塑剂,合成纤维、化妆品和炸药,并用作溶剂、配制发动机的抗冻剂
健康危害
侵入途径:吸入、食入、经皮吸收。
健康危害:国内未见相品急慢性中毒报道。国外的急性中毒多系因误报。吸入中毒表现为反复发作性昏厥,并可有眼球震颤,淋巴细胞增多。口服后急性中毒分三个阶段:第一阶段主要为中枢神经系统症状,轻者似乙醇中毒表现,重者迅速产生昏迷抽搐,最后死亡;第二阶段,心肺症状明显,严重病例可有肺水肿,支气管肺炎,心力衰竭;第三阶段主要表现为不同程度肾功能衰竭。人的本品一次口服致死量估计为1.4ml/kg(1.56g/kg)。
毒理学资料及环境行为
毒性:属低毒类。
急性毒性:LD508.0~15.3g/kg(小鼠经口);5.9~13.4g/kg(大鼠经口);1.4ml/kg(人经口,致死)
亚急性和慢性毒性:大鼠吸入12mg/m3(连续多次)八天后2/15只动物眼角膜混浊、失明;人吸入40%乙二醇混合物9/28人出现短暂昏厥;人吸入40%乙二醇混合物加热至105℃反复吸入14/38人眼球震颤,5/38人淋巴细胞增多。
危险特性:遇明火、高热或与氧化剂接触,有引起燃烧爆炸的危险。若遇高热,容器内压增大,有开裂和爆炸的危险。
燃烧(分解)产物:一氧化碳、二氧化碳。
我这里有体积浓度50%(重量浓度53%)乙二醇溶液的参数(理论值,和实测值存在误差,可以做为参考)
运动粘度 1.78mPa.s
导热系数0.399W/m.k
密度1.058kg/m3
比热 3.396kj/kg.k
不知道楼主在50℃是做什么使用,如果是载冷使用,既然是零上温度,直接用水就行了,水的导热效果要好于乙二醇溶液
一般乙二醇水溶液的污垢为三氧化二铁沉淀物,以及系统中的某些钙镁离子沉淀。
污垢导热系数:0.464~0.697w/m/K,热阻为其导热系数。
粘度16.0(厘泊-20℃)
冰点 -20
热熔 0.80
无色透明粘稠液体,味甜,具有吸湿性,易燃。相对密度1.1088(20/4℃)。沸点198℃。凝固点-11.5℃。密度(真空,20℃)1.11336g/ml。折射率nD(20℃)1.4318。闪点116℃。粘度(20℃)21mPa·s。比热容(20℃)2.35J/(g·℃)。摩尔生成热-452.3kJ/mol。熔解热187.025J/g。蒸发热799.14J/g。表面张力(20℃)48.4mN/m。蒸气压(20℃)7.999Pa,自燃点412.8℃。与水、低级脂肪族醇、甘油、醋酸、丙酮及类似酮类、醛类、吡啶及类似的煤焦油碱类混溶,微溶于乙醚(1:200),几乎不溶于苯及其同系物、氯代烃、石油醚和油类。
国标编号 33569
CAS号 110-80-5
中文名称 乙二醇乙醚
英文名称 ethylene glycol monomethylether;2-methoxyethanol
别名 2-乙氧基乙醇;乙基溶纤剂
分子式 C4H10O2;CH3CH2OCH2CH2OH 外观与性状 无色液体,几乎无气味
分子量 90.12 蒸汽压 0.51kPa/20℃ 闪点:43℃
熔点 -70℃ 沸点:135.1℃ 溶解性 与水混溶,可混溶于醇等多数有机溶剂
密度 相对密度(水=1)0.94;相对密度(空气=1)3.10 稳定性 稳定
危险标记 7(易燃液体),14(有毒品) 主要用途 用作溶剂,以及皮革着色剂、乳化剂、稳定剂、涂料稀释剂、脱漆剂等
2.对环境的影响:
一、健康危害
侵入途径:吸入、食入、经皮吸收。
健康危害:使用本品除引起粘膜刺激和头痛外,未见急性中毒病例。
二、毒理学资料及环境行为
急性毒性:LD503460mg/kg(大鼠经口);3300mg/kg(兔经皮);LC507360mg/m3,7小时(大鼠吸入)
刺激性:家兔经眼:500mg(24小时),轻度刺激。家兔经皮:483mg(24小时),轻度刺激。
亚急性和慢性毒性:大鼠暴露于1.49g/m3,7小时/天,每周5天,5周,对血液细胞成分有轻微影响。兔经口,每天0.1mL/kg,第7天出现暂时性蛋白尿、血尿;1mL/kg,第8天因肾损害而死亡。
致突变性:精子形态学:大鼠经口23400mg/kg,5周(间歇)。姊妹染色单交换:仓鼠卵巢3170mg/L。
生殖毒性:大鼠经口最低中毒剂量(TDL0):600mg/kg(孕10~12天),致胚胎毒性(如胚胎发育迟缓),致骨骼肌肉发育异常,心血管(循环)系统发育异常。小鼠经口最低中毒剂量(TDL0):25mg/kg(25天,雄性),影响睾丸、附睾和输精管。
危险特性:易燃,遇高热、明火或与氧化剂接触,有引起燃烧的危险。接触空气或在光照条件下可生成具有潜在爆炸危险性的过氧化物。
燃烧(分解)产物:一氧化碳、二氧化碳。
3.现场应急监测方法:
4.实验室监测方法:
气相色谱法《空气中有害物质的监测方法》(第二版)杭士平主编
空气中:样品用活性炭管收集,再用气液色谱法测定(NIOSH法)
5.环境标准:
前西德(1982)职业环境空气中最高容许浓度 185mg/m3
前苏联(1978)地面水中最高容许浓度 1.0mg/L
6.应急处理处置方法:
一、泄漏应急处理
迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自给正压式呼吸器,穿消防防护服。尽可能切断泄漏源,防止进入下水道、排洪沟等限制性空间。小量泄漏:用砂土或其它不燃材料吸附或吸收。也可以用大量水冲洗,洗水稀释后放入废水系统。大量泄漏:构筑围堤或挖坑收容;用泡沫覆盖,降低蒸气灾害。用防爆泵转移至槽车或专用收集器内,回收或运至废物处理场所处置。
二、防护措施
呼吸系统防护:空气中浓度超标时,佩戴过滤式防毒面具(半面罩)。
眼睛防护:一般不需要特殊防护,高浓度接触时可戴化学安全防护眼镜。
身体防护:穿防静电工作服。
手防护:戴防苯耐油手套。
其它:工作现场禁止吸烟、进食和饮水。工作毕,淋浴更衣。注意个人清洁卫生。
三、急救措施
皮肤接触:脱去被污染的衣着,用肥皂水和清水彻底冲洗皮肤。
眼睛接触:提起眼睑,用流动清水或生理盐水冲洗。就医。
吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。
食入:饮足量水,催吐。就医。
灭火方法:尽可能将容器从火场移至空旷处。喷水保持火场容器冷却,直至灭火结束。处在火场中的容器若已变色或从安全泄压装置中产生声音,必须马上撤离。灭火剂:抗溶性泡沫、二氧化碳、干粉、砂土。
通用名称:乙醚
分式C4H10O,结构简式CH3CH2—O—CH2CH3
分子结构: 甲基C原子以sp3杂化轨道成键、O原子以sp3杂化轨道成键、分子为极性分子。
英文名称:Ether
中文别名:麻醉乙醚
英文别名:Aether Anaestheticus、Anaesth、Anaesthetic Ether、Diethy Ether、Diethyl Ether
【乙醚的实验室制法】
1.将乙醇与浓硫酸化合物加热到140℃时可发生分子间脱水生成产物乙醚.浓硫酸在这里作脱水剂\催化剂.
2.方程式: 2 CH3-CH2-OH —--(浓H2SO4/140℃)---→ CH3-CH2-O-CH2-CH3
反应类型:取代反应
【药理】
1.优点①镇痛作用强,又可促使骨骼肌松弛;②3—4倍于常用量时,对循环功能的抑制才达到危险的地步,故较安全;③直接的麻醉死亡率低。
2.缺点①易燃烧爆炸,当空气中含量为 1.83—48.0%,氧气中 2.1—82.5%,即有此可能;乙醚的蒸气密度较空气大 2—6倍,常下降在手术室地面,容易着火;②气味不佳,刺激性强,能促使口鼻腔和气管支气管粘膜、粘液腺分泌增多,气道难以保证通畅,吸入全麻诱导中,屏气、呛咳、喉或支气管痉挛时常发生,术后肺部并发症多;③化学性质不稳定,暴露于空气中,遇光或受热即变质,生成过氧化物或乙醛,刺激性更强;纯度要求高,微量的杂质即增加全麻诱导和维持的困难,事后并发症更多;④全麻的作用起效慢,诱导期不仅太长,且可有兴奋阶段,临床上需另用全麻诱导药;⑤苏醒期间胃肠道紊乱常见,恶心呕吐发生率可高达 50%以上;⑥乙醚麻醉时,胆汁分泌减少,肝糖元耗竭,血糖升高,这些改变对正常人可无重要意义,但对糖尿病患者或肝脏病变者则未必然。
【适应症】
由于乙醚的优点少而缺点严重,又能引起燃烧爆炸,使用的范围逐年减少,世界上各大医院早已不用。
健康情况佳的病人理论上均适用。
【用法用量】
多种形式的吸入全麻装置如开放、半开放、半关闭或全关闭等,乙醚均适用。与碱石灰接触不变质。成人诱导期间吸气内乙醚蒸气浓度,可逐渐按需增至 10—15%,维持期间以 4一6%为最常用。小儿诱导用 4一6%不等,年龄愈小浓度应愈低,维持用 2—4%。吸入全麻过程中,应依据病人情况和手术要求,随时调整吸气内乙醚浓度,并设法避免体内有较多的乙醚蓄积于脂肪和肌肉。
【禁用慎用】
遇有急性或慢性呼吸系统疾病、水电解质失调、代谢性酸血症、糖尿病、颅内压已偏高、肝肾功能欠佳、黄疸明显等患者,均禁用。
糖尿病,肝功能严重损害,呼吸道感染或梗阻及消化道梗阻病人忌用。
【给药说明】
(1)乙醚为挥发性液体,装入内壁镀铜的金属罐或有色玻璃瓶中,密封;不得有漏气。
(2)一般每瓶(或罐)为 60或 120ml,不要超过 200ml。用剩的经 12—24小时即报废。
(3)贮存超过二年的,应重新检验,符合规定才能使用。
【不良反应】
喉痉挛、暂时性血清转氨酶升高、抽搐、急性胰腺炎。用乙醚麻醉会对免疫反应有损害。1例用乙醚全麻后出现接触性皮炎和全身性过敏反应。
1、别名·英文名
依打;Ethyl ether、Diethyl ether。
2、用途
做蜡、脂肪、油、香料、生物碱、橡胶等的溶剂,麻醉剂。
3.制法
用浓硫酸使酒精脱水。
4.理化性质
分子量:74.12
熔点: 一116.2℃
沸点: 34.6℃
液体密度(20℃):713.5kg/m3
气体-密度:2.56kg/m3
相对密度(45℃):2.6
临界温度: 193.55℃
临界压力: 3637.6kPa
临界密度: 265kg/m3
气化热(34.6℃): 351.16kJ/kg
比热容(35℃,101.325kPa): Cp=1862.13J/(kg·K)
Cv=1724.0lJ/(kg·K)
(液体0℃) 2214.82J/(kg·K)
比热比(35℃,101.325kPa): Cp/Cv=1.08
蒸气压(20℃): 58.93kPa
粘度(气体,0℃): 0.000684Pa·s
(液体,0℃): 0.002950Pa·s
表面张力(20℃): 17.0mN/m
导热系数(0℃): 1298.3X105W/(m·K)
折射率(液体,24.8℃): 1.3497
闪点: 一45℃
燃点 160℃
爆炸界限: 1.85%/36.5%
燃烧热(25℃): 2752.9kJ/mol
最大爆炸压力: 902.2lkPa
产生最大爆炸压力的浓度: 4.1%
最易引燃浓度: 3%
最小引燃能量: 0.19mJ
毒性级别: 2
易燃性级别: 4
反应活性级别: l
乙醚在常温常压下为具有特殊气味的无色透明液体。极易挥发,极易燃烧。其蒸气能与空气形成爆炸性混合物。它遇到火星、高温、氧化剂、过氯酸、氯气、氧气、臭氧等,就有发生燃烧爆炸的危险。其蒸气能从远处将明火引来起火。液体受热后体积将急剧膨胀(膨胀系数0.00164/℃)。在空气中与氧长期接触或放在玻璃瓶内受光照射都能生成不稳定的过氧化物。有时也因静电而起火。不溶于水,能溶于乙醇、苯、氯仿、石油醚、其它脂肪溶液及许多油类。
5.毒性,
对人的麻醉浓度为109.08~196.95g/m3(3.6—6.5%),当浓度为212.1~303g/m3(7~10%)时可致呼吸停止,当浓度超过10%时通常可以致命。
人一口服LD:25~30m1
最高容许浓度:400ppm(1-200mg/m3)
乙醚蒸气由呼吸道吸人后,经肺泡很快进入血液中,并随血液流经全身。然后80%以上又以原形从呼吸道排出。还有l~2%以原形从尿排出。体内积聚的在脑组织中的为最多,一部分在肝脏与微粒体酶接触后转化为乙醇、乙醛、乙酸和二氧化碳。二氧化碳经呼吸排出,其它的最终都经尿排出体外。
乙醚是低毒物质,主要是引起全身麻醉作用,此外,对皮肤及呼吸道粘膜有轻微的刺激作用。
长期接触低浓度乙醚蒸气的人员可出现头痛、头晕、易激动或淡漠、嗜睡、忧郁、体重减轻、食欲减退、恶心、呕吐、便秘等症状。
吸人较高浓度乙醚蒸气时可出现头晕、癔病样发作、精神错乱、嗜睡、面色苍白、恶心、呕吐、脉缓、体温下降、呼吸不规则等
短时间大量接触后发生的中毒症状,一经脱离现场,稍待休息,经对症处理后就可恢复。
6.安全防护
乙醚要用玻璃瓶或铁桶盛装。容器最好存放在户外或易燃液体专用库内,要远离火种热源,库温不宜起守28℃。要与氧化剂、氧、氯严格隔存放。大量存放乙醚的仓库必须设有自动喷水及射出二氧化碳的装置。避免阳光直射,防止静电,也要预防受到闪电引火。长期存放时会生成化学性质更为活泼、危险性更大的过氧化物。搬运时要轻装轻卸,严防包装破损。发现桶漏时不要焊,而用粘结剂补。换桶时,应在降温后或在早晚凉爽时进行。
灭火可用干粉、二氧化碳、抗溶性泡沫和砂土。用水灭火可能无效,但可用水喷射驱散蒸气,赶走液体。
乙醚泄漏时,首先要切断所有火源,载好防毒面具、手套等,然后用不燃性分散制成的乳液刷洗,经稀释的洗水可放入废水系统。如果没有分散剂,可强行通风,直至漏液全部蒸发排除为止
普通陶瓷的导热系数通常在0.03W/m.K~2.00W/m.K之间,因为陶瓷的材质不是固定的,所以具体需要根据不同的材质标准、不同的使用目的等来决定。
不同成分的陶瓷的导热系数不同,高导热性能的陶瓷可以和铝的导热性能相媲美;而导热系数小的陶瓷的导热系数和钢材相差不是很大。
扩展资料:
影响陶瓷导热系数的因素:
1、湿度:材料吸湿受潮后,导热系数就会增大。水的导热系数为0.5W/(m·K),比空气的导热系数0.029W/(m·K)大20倍。而冰的导热系数是2.33W/(m·K),其结果使材料的导热系数更大。
2、温度:材料的导热系数随温度的升高而增大,但温度在0~50℃时并不显著,只有对处于高温和负温下的材料,才要考虑温度的影响。
3、热流方向:当热流平行于纤维方向时,保温性能减弱而热流垂直纤维方向时,保温材料的阻热性能发挥最好。
(1)高温制冷剂(低压制冷剂)
t0>0℃
Pk≤2~3个绝对压力
(2)中温制冷剂(中压制冷剂)
0℃≥t0-60℃
Pk≤15~20个绝对压力
(3)低温制冷剂(高压制冷剂)
t0≤-60℃
Pk>20个绝对压力
抢首赞 评论 分享 举报
谭神神hrWT15LJ
2016-05-10
1.按成分有以下几种。
(1) 无机化合物。水、氨、二氧化碳等。
(2) 饱和碳氢化合物的衍生物,俗称氟利昂。主要是甲烷和乙烷的衍生物。如R12, R22, R134a等。
(3) 饱合碳氢化合物。如丙烷,异丁烷等
(4) 不饱和碳氢化合物。如乙烯,丙烯等。
(5) 共沸混合制冷剂。如R502等。
(6) 非共沸混合制冷剂。如R407c,R410等。
通常按照制冷剂的标准蒸发温度,又分为高、中、低温三类。标准蒸发温度是指标准大气压力下的蒸发温度,也就是沸点。
(1) 高温(低压):标准蒸发温度(tS)>0℃,冷凝压力(PC)≦0.2~0.3Mpa,常用的R123等。
(2) 中温(中压):0℃>tS>-60℃,0.3Mpa<PC<2.0 Mpa,常用的有氨,R12, R22, R134a,丙烷等。
(3) 低温(高压):tS≦-60℃,常用的有R13,乙烯, R744(CO2)等。
2.编号,命各标示方法
按照国际统一规定用字母“R”代表制冷剂,加上后面的数字和字母组成在GB7778-1987中做了明确规定。简述如下:
(1) 无机化合物。
规定为R700加上无机化合物的相对分子质量的整数部分组成
NH3(氨) H2O(水) CO2(二氧化碳)
分子量 17 18 44
编号 R717 R718 R744
(2)氟利昂和烷氢类:
烷氢类化合物的分子通式:CmH2m+2
氟利昂是饱合碳氢化合物(烷族)的卤族元素衍生物的总称,分子通式为R(m-1)(n+1)(X),若有Br(溴)原子,再加字母B和原子数,若(m-1)=0,则“0”略去不写。
下面列举几种编号
名称 分子式 m,n,x,z值 编号
一氯二氟甲烷 CHF2Cl m=1,n=1,x=2,z=0 R22
二氯撒氟乙烷 C2HF3 Cl2 m=2,n=1,x=3,z=0 R123
三氟一溴甲烷 CF3Br m=1,n=0,x=3,z=1 R13B1
丙烷 C3H8 m=3,n=8,x=0,z=0 R290
(3)混合制冷剂。
混合制冷剂以获取命名的顺序编号的
共沸混合制冷剂编号为R5,从R500开始R501,R502等。
非共沸混合制冷剂编号为R4,从R401,R404,R410等。
同素异构体加注小写数字母,如CHF2-CHF2 R134,CF3-CH2F R134a
3. 常用制冷剂性质
(1) 氨:标准蒸发温度为-33.4℃,凝固温度为-77.7℃,压力适中,单位容积制冷量大,流动阻力小,热导率大。价格低廉对大气臭氧层无破坏作用,故被广泛应用在蒸发温度-65℃以上的大中型制冷机中。
缺点是毒性较大,可燃,可爆,有强烈刺激性臭味,等熵指数较大,对锌铜有腐蚀作用。
(2) 氟利昂:重点分析热水器发文时常用的
1)R22:对大气臭氧层有轻微破坏作用,并产生温室效应,被列为第二批限用禁用的制冷剂。我国将在2040年1月1日起禁止生产和使用。
R22是应用最广泛的中温制冷剂,沸点-40.8℃,凝固点-160℃,无色,气味弱,不燃烧,不爆炸,属安全制冷剂。它与润滑油部分互溶,需采取回油措施。
2)R142b.沸点较高-9.25℃.凝固点-130.8℃最大特点是在很高的冷凝温度下,冷凝压力并不高。如80℃时只有1.35 Mpa,因此它适合在热泵装置和高环境温度下使用。
对大气臭氧层有微弱的破坏作用,也将在2040年禁用。
3)R134a。沸点-26.5℃,凝固点-101℃,无色,无味,不燃,不爆,
但与矿物性润滑油不相溶,必须采用聚脂类合成油(如聚烯烃乙二醇),与丁腈橡胶不相溶,故密封件须改为聚丁腈橡胶,吸水性较强,易与水反映生成酸,腐蚀管络及压缩机,对系统干燥度要求更高,系统中的干燥剂要换成XH-7或XH-9分子筛。压缩机电机线圈绝缘材料必须加强绝缘等级,是一种不太成熟的制冷剂。
4)发文时认为较有前途的R22潜代品为R407c和R410A。
R407c是R32R125 R134a 以23:25:52的质量百分比组成的三元非共沸制冷剂,蒸发压力和制冷压力与R22非常接近。但在制热工况下单位容积制冷量和COP都小于R22。在相同设计运行能力的热泵热水系统中,采用R407c热水加热系统耗功明显高于R22系统。使得在高水温时COP低于R22系统。
R410A是R32和R125按照50:50的质量百分比组成的近共沸混合制冷剂。其温度滑移不超过0.2℃,这给制冷剂充灌,设备更换提供了方便。但是R410A制热工况下的COP 比R22约小9%,其蒸发压力,冷凝压力以及容积制冷量都比R22大的多,同温度下它的压力值比R22约高60%,传热性能及流动性较好。不能直接用于R22系统。必须重新设计压缩机,换热器,管路和系统。
5)C02制冷剂
绿色环保天然工质C02以其无毒,对臭氧层无影响,不产生温室效应和良好的热力学性质等优点,再度受到人们的重视。此外,C02给临界环境系统所具有的较高的排气温度和气体冷却器较大的温度滑移。它在热泵热水器领域具有其他工质无法比拟的优势。
主要优势:
① 无毒,不可燃。具有很好的安全性。消耗臭氧潜能值ODP=0,全球变暖潜能值GWP=1,有着良好的的经济性,而不存在回收问题,具有环境友好性。
② 物理化学性能稳定。与润滑油共溶性良好。粘度很低,这样可以提高流速,压降不会太大,改善传热,进一步减小部件尺寸和系统重量。
③ 绝缘指数(K)值较高,虽有使压缩机排气温度偏高的问题,但符合制取较高温度热水的要求。同时,由于C02低于工作压力P0很高,压缩机压缩比相对其他系统低的多,压缩机效率高。
④ C02分子量比高分子化合物的小得多,因此相对于一定的蒸发温度,它的蒸发(汽化)潜热比较大,此外,高的工作压力,使压缩机吸气比容较小,单位容积制冷量较大,可以减少尺寸,使系统结构紧凑。
⑤ C02低的临界温度,使其在热泵系统循环中处于跨临界状态。在放热过程中较大的温度滑移,可以和变温热源较好的匹配。
C02应用研究的一个重要领域是热泵热水器(HPWH)。C02跨临界循环中气体冷却器所具有的较高的排气温度,较大的温度滑移和冷却介质的温升过程相匹配,使其在热泵循环方面具有独特的优势。
通过调整循环的排气压力,可使气体冷却器的排热过程较好适应外部热源的温度和温升需要。研究结果表明,当用环境空气作热源,0℃环境进水温度8℃,热水出水温度为60℃时,该系统COP值高达4.3.一个更大优点是毫无困难的产出90℃的热水COP值仍较高。而普通的热泵热水器限制产水温度在55℃以下。
因而C02热泵系统可较好的满足采暖,空调和生活热水的加热要求。C02作为制冷工质在热泵中的应用将有效的解决空调冷热源面临的资源与环境压力,应用前景良好。 R407C,R410A,R22的一般性质和理论循环的比较表 参数 R407C R410A R22 成分 HFC32/125/134a HFC32/125 HcFC22 质量混合比例 23/25/52 50/50 100 相对分子量 86.2 72.59 86.48 标准沸点℃ -43.77 -51.56 -40.76 凝固点℃ -115 -160 临界温度℃ 86.08 70.22 96 临界压力Mpa 4.653 4.852 4.974 临界密度Kg/m^3 506 547.5 525 饱和液体密度Kg/m^3 1137.6 1060.2 1191 饱和蒸汽密度Kg/m^3 51.374 65.97 44.44 粘度(饱和液体)mPa.s 0.164 0.178 0.178 粘度(饱和汽体)mPa.s 0.0128 0.0132 0.0128 比热容(饱和液体)
KJ/(Kg.K) 1.53 1.692 1.256 比热容(饱和汽体)
KJ/(Kg.K) 1.143 1.306 0.662 蒸发潜热KJ/Kg 185.11 186.85 233.5 导热系数(饱和液体)
W/(m.K) 0.0863 0.081 0.0869 导热系数(饱和汽体)
W/(m.K) 0.0131 0.0128 0.0113 ODP 0 0 0.0113 GWP 1500 1700 1700 理论循环数据 蒸发压力Kpa 499 804 498 冷凝压力Kpa 2112 3061 1943 温度滑移 4.3 0.07 0 排气温度 67.4 72.5 70.3 制冷COP 3.94 3.69 4.14 容积制冷量KJ/m^3 2947 4190 3010 制热COP 5.03 4.69 5.14 容积制热量KJ/m^3 3762 5326 3737 设计与生产工艺的对比 R22 R407C R410A 压缩机 专用压缩机
润滑油更换为POE,PVE 同407C 冷凝器 ·系统设计压力增大到3.3Mpa,
对铜管压力重新校核
·增大换热面积,加大风扇,降低冷凝温度
·增对温度滑移,采用介质与空气逆向流动 当冷凝压力增大60%,系统耐压增加到4.15Mpa,相应采用直径8mm,7mm铜管 蒸发器 ·铜管耐压重新校核
·通过改变换热器结构,流动提 高换热系数 铜管的耐压重新校核 节流装置 ·采用膨胀阀,
·节流毛细管加工精度提高,直径加大 ·节流装置的耐压重新校核
·采用膨胀阀,节流毛细管加工精度提高,直径加大 四通阀 专用 专用 铜管 系统耐压提高10%
提高壁厚 铜管耐压重新校核
厚度提高到0.7mm以上 干燥过滤器 HFC32的分子直径小,采用分子筛XH-10C,11C过滤器 同407C 高分子材料 CR 合
成橡胶 HNBR 合成橡胶 两器加工 残留水分,杂质减少
加工设备改用POE挥发油 残留水分,杂质减少
加工设备改用POE挥发油 焊接工艺 采用氯离子助焊剂 采用氯离子助焊剂
市面上的防冻液的比热容多为0.92左右,防冻液的密度是常见的乙二醇的密度1.1132g/cm。
拓展资料:
防冻冷却液是一种常见的以乙二醇为基础液的用在汽车及柴油车和机械设备上的防冻液用品。防冻液和冷却剂包含抑制剂用来提供从冰点-35℃到沸点+136℃最大限度的保护。它的专有分子可起到防护所有金属的作用,包括铝合金。发动机及机械设备冷却液应使用专用防冻液,特别是在高原寒冷(0℃以下)环境下使用发动机更需使用防冻液,这对发动机机设备的使用有很大好处。由于防冻液的性质与水有很大区别,如果使用不当,不仅冻坏机体甚至会引起火灾并危及人、机安全。
现国内外 95% 以上使用乙二醇的水基型防冻液,与自来水相比,乙二醇最显著的特点是防冻,而水不能防冻。其次,乙二醇沸点高,挥发性小,粘度适中并且随温度变化小,热稳定性好。因此,乙二醇型防冻液是一种理想的冷却液。很多司机朋友一般习惯于冬天使用防冻液,夏天改用自来水,以为这样比较经济划算,其实不然。防止结冰、防止缸体、散热器冻裂只是防冻液的最基本功能,防冻液还有其它重要功能,如防沸、防水垢、防腐蚀等。
夏天使用防冻液可有效地阻止水箱"开锅",全年使用防冻液可阻止水冷系统结水垢,抑制各种金属的腐蚀。通常司机朋友都忽视"水垢"的危害,其实水垢对车的危害相当大,水垢的导热系数很小,是铸铁的 1/25 ,黄铜的 1/50 。有了水垢之后冷却液的热传导性大大降低,发动机温度升高,腐蚀加重,这又促使水垢增加,形成恶性循环,水垢还可能堵塞冷却系统的管路,造成更大的事故、据国内有关资料报导,在正常使用的汽车发动机的维修工作中,有 6% 是发动机冷却系统出现故障,而故障的主要原因是水垢和金属部件被腐蚀,由此可见水垢和金属部件的腐蚀对发动机水冷系统的危害有多大,因此常年使用质量优良的防冻液不仅可以有效地保护汽车水冷系统,还能有效地省钱 。