简述太阳能并网光伏发电系统的组成安全保护?
太阳能光伏发电是21 世纪最为热门的能源技术领域之一,是解决人类能源危机的重要手段之一,引起人们的广泛关注。本文介绍了太阳能光伏并网 控制逆变器的工作过程,分析了太阳能控制器最大功率跟踪原理,太阳能光伏逆 变器的并网原理及主要控制方式。 太阳能光伏发电是21 世纪最为热门的能源技术领域之一,是解决人类能源危机的重要手段之一,引起人们的广泛关注。本文介绍了太阳能光伏并网 控制逆变器的工作过程,分析了太阳能控制器最大功率跟踪原理,太阳能光伏逆变器的并网原理及主要控制方式。 1 引言: 随着工业文明的不断发展,我们对于能源的需求越来越多。传统的化石能源 已经不可能满足要求,为了避免面对能源枯竭的困境,寻找优质的替代能源成为 人们关注的热点问题。可再生能源如水能、风能、太阳能、潮汐能以及生物质能 等能源形式不断映入人们的眼帘。水利发电作为最早应用的可再生能源发电形式 得到了广泛使用,但也有人就其的环境问题、安全问题提出过质疑,况且目前的 水能开发程度较高,继续开发存在一定的困难。风能的利用近些年来也是热点问 题,但风力发电存在稳定性不高、噪音大等缺点,大规模并网对电网会形成一定 冲击,如何有效控制风能的开发和利用仍是学术界关注的热点。在剩下的可再生 能源形式当中,太阳能发电技术是最有利用价值的能源形式之一。太阳能储量丰富,每秒钟太阳要向地球输送相当于210 亿桶石油的能量,相当于全球一天消耗的能量。我国的太阳能资源也十分丰富,除了贵州高原部分地区外,中国大部分 地域都是太阳能资源丰富地区,目前的太阳能利用率还不到1/1000。因此在我国 大力开发太阳能潜力巨大。 太阳能的利用分为“光热”和“光伏”两种,其中光热式热水器在我国应用广 泛。光伏是将光能转化为电能的发电形式,起源于100 多年前的“光生伏打现象”。 太阳能的利用目前更多的是指光伏发电技术。光伏发电技术根据负载的不同分为离网型和并网型两种,早期的光伏发电技术受制于太阳能电池组件成本因素,主要以小功率离网型为主,满足边远地区无电网居民用电问题。随着光伏组件成本的下降,光伏发电的成本不断下降,预计到2013 年安装成本可降至1.5 美元/Wp,电价成本为6 美分/(kWh),光伏并网已经成为可能。并网型光伏系统逐步成为主流。 本文主要介绍并网型光伏发电系统的系统组成和主要部件的工作原理。 2 并网型光伏系统结构 图1 所示为并网型光伏系统的结构。并网型光伏系统包括两大主要部分:其一,太阳能电池组件。将太阳传送到地球上的光能转化成直流电能;其二,太阳能控制逆变器及并网成套设备,负责将电池板输出直流电能转为电网可接受的交流能量。根据功率的不同太阳能逆变器的输出形式可为单相或者三相;可带隔离变压器,也可不配隔离变压器。
太阳能控制逆变器及并网成套设备,主要包括控制器、逆变器以及监控保护单元组成。控制器主要实现太阳能电池板的最大功率跟踪,逆变器主要负责将控制器输出的直流电能变换成稳压稳频的交流电能馈送电网,监控保护单元主要负责发电系统安全相关问题如孤岛效应的保护,并及时与上位机通讯传递能量传输信息。 3 太阳能控制器及其原理 3.1 太阳能电池组件模型 图2 所示硅型光伏电池板的理想电路模型。其中,Iph是光生电流,Iph值与光伏电池的面积、入射光的辐射度以及环境温度相关。ID为暗电流。没有太阳光照射的情况下,硅型太阳能电池板的基本外特性类似于普通的二极管。暗电流是指光伏电池在没有光照条件下,在外电压的作用下PN结流过的单向电流。v为开路电压,RS为串联电阻一般小于1 欧姆,RSH为旁路电阻为几十千欧。 光伏电池的理想模型可由下式表示:
其中,v 为电池板热电势。
图3 表述在特定光照条件下电池板的伏安特性。阴影部分是电池板在相应条件下所能够输出的最大功率。太阳能电池板在高输出电压区域,具有低内阻特性,可以视为一系列不同等级的电压源;在低输出电压区域内,该电源有高内阻特性,可以视为不同等级的电流源。电压源与电流源的交汇处便是电池板在相应条件下的最大输出功率。在电池板的温度保持不变的情况下,这个极大功率值会随着光照强度的变化而变化,最大功率跟踪要求能够自动跟踪电池板的工作在输出功率极大的条件。
3.2 太阳能控制器电路拓扑 图4 为太阳能控制器的电路拓扑结构,从原理上说是以及升压斩波器,通过调整开关器件S 的占空比,调节电池板的等效负载阻抗,实现对电池板的最大功率跟踪功能。
3.3 最大功率跟踪方法 最大功率跟踪技术有两种技术路线:其一是CVT 技术,控制电池组件端口电压近似模拟最大功率跟踪,这种方法原理简单但是跟踪精度不够;其二是MTTP 技术,实时检测光伏阵列输出功率,通过调整阻抗的方式满足最大功率跟踪。目前,太阳能逆变器厂家广泛采用的MPPT 技术。目前,常用的MTTP 方法有两种。 (A )干扰观测法(P&O): 干扰观测法每隔一定时间增加或减少电压,通过观测功率变化方向,来决定下一步的控制信号。如果输出功率增加,那么继续按照上一步电压变化方向改变电压,如果检测到输出功率减小,则改变电压变化的方向,这样光伏阵列的实际工作点就能逐渐接近当前最大功率点。如果采用DC/DC 变换器实现MPPT 控制,在具体实施时应通过对占空比施加扰动来调节光伏阵列输出电压或电流,从而达到跟踪最大功率点的目的。如果采用较大的步长对占空比进行“干扰”,这种跟踪算法可以获得较快的跟踪速度,但达到稳态后光伏阵列的实际工作点在最大功率点附近振荡幅度比较大,造成一定的功率损失,采用较小的步长则正好相反。 (B)电导增量法(INC): 光伏电池在最大功率点Pm处dP/dU=0,在Pm两端dP/dU均不为0。
而
则有
要使输出功率最大,必须满足(4 )式,使阵列的电导变化率等于负的电导值。首先假设光伏阵列工作在一个给定的工作点,然后采样光伏阵列的电压和电流,计算Δv =v (n) - v (n-1)和Δi =i (n) - i (n-1),其中(n)表示当前采样值,(n-1)为前一次的采样值;如果Δv=0,则利用Δi 的符号判断最大功率点的位置;如果Δv≠0,则依据Δi /Δv +I /V 的符号判断。 这种跟踪法最大的优点是当光伏电池的光照强度发生变化时,输出端电压能以平稳的方式追随其变化,电压波动较扰动观测法小。缺点是其算法较为复杂,对硬件的要求特别是对检测元件的精度要求比较高,因而整个系统的硬件成本会比较高。 4 太阳能逆变器及其工作原理 太阳能逆变器的电路拓扑如图5 所示,5-a)是单相并网逆变器电路拓扑,5-b)是三相并网逆变器电路拓扑。从电路拓扑结构上看属于电压型控制逆变电路。从控制方式上属于电流控制型电路。
4.1 电路的基本工作原理 以图6 的单相光伏逆变电路分析。
按照正弦波和载波比较方式对S -S 进行控制,交流侧AB处产生SPWM波1 4 ,u 中含有基波分量和高次谐波,在L 的滤波作用下高次谐波可以忽略,当
AB AB Su 的频率与电网一致时,i 也是和电网一致的正弦波。在电源电压一定的条件下,
AB s i 的幅值和相位仅有u 的基波的幅值和相位决定,这样电路可以实现整流、逆变
s AB以及无功补偿等作用。图7 所示是电路的运行向量图,其中7-a)是整流运行,7-b)是逆变运行,7-c)是无功补偿运行,7-d)是I 超前φ角运行。单相光伏逆变器工作
s 在7-b)状态。 4.2 电路的基本控制方法 光伏逆变器对于功率因数有较高要求,为了准确实现高功率因数逆变,需要对输出电流进行控制,通常的电流控制方式有两种:其一是间接电流控制,也称为相位幅值控制,按照图7 的向量关系控制输出电流,控制原理简单,但精度较差,一般不采用;其二是直接电流控制,给出电流指令,直接采集输出电流反馈,这种控制方法控制精度高,准确率好,系统鲁棒性好,得到广泛应用。 5 监控保护单元简介 监控保护单元的主要作用有: 保护发电设备的安全以及电网的安全; 型代表,如何准确测定孤岛效应也是监控保护单元的重要作用; 区,智能电量管理和系统状况检测上报也是光伏发电系统需要重点考虑的因素。 5.1 并网保护装置 并网保护装置主要实现以下保护功能:低电压保护、过电压保护、低频率保护、国频率保护、过电流保护以及孤岛保护策略等内容。通常大型光伏电站需要设置冗余保护装置,保证系统故障时及时处理。 5.2 孤岛检测技术 孤岛效应是指并网逆变器在电网断电时,并网装置仍然保持对失压电网中的某一部分线路继续供电的状态。当电网的某一区域处于光伏发电的孤岛状态时电网将不再控制这个电力孤岛的电压和频率。孤岛效应会对光伏发电系统与电网的重连接制造困难,同时可能引起电气元件以及人身安全危害,因此孤岛效应必须避免。目前常用的孤岛效应检测方法主要有两种,分别是被动检测方法和主动式检测方法。 (A)被动式孤岛检测: 孤岛的发生和电网脱离时的负载特性及与电网之间的有功和无功交换有很大的关系。电网脱离后有功的波动会引起光伏系统端口电压的变化,无功的波动会引起光伏系统输出频率的变化。电网脱离后,如果有功或者无功的波动比较明显,通过监测并网系统的端口电压或者输出频率就可以检测到孤岛的发生,这就是被动式孤岛检测方法的原理。然而在电网脱离后,如果有功和无功的波动都很小,此时被动式检测方法就存在检测盲区。 (B )主动式孤岛检测: 主动式孤岛检测方法中用的比较多的是主动频移法(AFD ),其基本原理是在并网系统输出中加入频率扰动,在并网的情况下,其频率扰动可以被大电网校正回来,然而在孤岛发生时,该频率扰动可以使系统变得不稳定,从而检测到孤岛的发生。这类方法也存在“检测盲区”,在负载品质因数比较高时,若电压幅值或频率变化范围小于某一值,系统无法检测到孤岛状态。另外,频率扰动会引起输出电流波形的畸变,同时分析发现,当需要进行电能质量治理时,频率的扰动会对谐波补偿效果造成较严重的影响。智能电量管理及系统状况监控系统大型光伏电站由于地处偏远地区,常常为无人值守电站。为了准确计量电站的电能输出及系统运行状况需要设立智能电量管理及系统状况监控系统。系统往往基于计算机数据处理平台以及互联网技术将分散的发电系统信息收集到集中控制中心进行数据分析处理工作,这部分的工作原理及系统结构在本文中不在详述。 6 结语 本文主要介绍了光伏并网系统的结构,分析了其主要组成部件的系统框图、功能。给出了最大功率跟踪的基本原理,分析了光伏逆变器的主要电路拓扑结构及控制方式。太阳能光伏发电技术作为有可能彻底改变人们生活的朝阳技术,拥有美好的未来,让我们共同期待光伏技术在明天为人类做出更大的贡献。
问题一:请问,从拓扑图上,如何区分配电网和输电网呢? 配电网与输电网的区分从理论上意义不大,只是电网生产管理的方便需要。
配电的含义是分配电力,主要是指向最终用户分配电力的电网末端,在我国一钉指35kV(或66kV)以下电网。
问题二:配电网的拓扑分析 配电网络的拓扑分析是根据配电电气元件的连接关系,把整个配电网络看成线与点结合的拓扑图,然后根据电源结点、开关结点等进行整个网络的拓扑连线分析,它是配电网络进行状态估计、潮流计算、故障定位、隔离及供电恢复、网络重构等其它分析的基础。配电网络的结构庞大且复杂,网络结构由于故障或负荷转移操作中开关的开合,经常发生变化。作为配电网络分析的基础,网络拓扑计算需要进一步提高,因此迫切需要一个好的网络拓扑算法。好的网络拓扑算法应该有效且直观,它不仅能满足配电网自动化中的不同高级功能的要求,还应能实现配电网络连通性的快速跟踪和识别,适应事件变化。同时还应节省存储空间和其他高级计算功能的时间。目前国内外在这方面现有的研究有关联表矩阵表示法、网基矩阵表示法、结点消去法、树搜索表示法、离散处理法等。(1)关联表矩阵表示法,联表矩阵,设备编号来分析设备的连接关系,得到网络的拓扑。其中建立了两个表矩阵,N行13列的结点描述矩阵和M行16列的支路描述矩阵。这两个矩阵即包含了每一个结点和每一条支路所相关联的结点或支路号,以及各自的属性。由于配电网络结构复杂,基于关联表的搜索分析方法会很复杂费时,难以实现网络拓扑的快速跟踪。(2)网基矩阵表示法:该方法是基于图论的表示方法。其基本思想是:配电网络是一个变结构的网络,网络由结点和弧构成。称变结构网络的各种允许结构形态为网形,称所有网形中出现的弧的并集对应的基础图为变结构网络的网基。网基用网基结构矩阵来描述,对于一个N结点的网络,网基结构矩阵为N行N列的方阵,该矩阵表示了结点间的连接关系。网形则采用弧结构矩阵来描述。将网基矩阵经基形变换得到描述网形的弧结构矩阵。该方法从配电网络的变结构特点出发,能有效的表示配电网络拓扑,但是它是基于矩阵的表示方法,而配电网络的矩阵稀疏程度很高,占用了较大的存储空间。(3)结点消去法:该方法即通过消去中间节点,降低邻接矩阵的阶数,减少计算量和计算冗余度,提高计算速度。这种算法的基本思想是忽略掉中间结点,只分析对拓扑结构具有重要影响作用的结点之间的连通状态。结点消去法适用于任何接线方式,尤其对复杂的接线分析非常有效。大大减少了计算冗余度和计算量,提高了计算速度。但会影响到状态估计、潮流计算、故障定位、隔离及供电恢复、网络重构等其它分析。(4)树搜索法:在树搜索中,将母线看作图的顶点,将支路看作是图的边。通常对配电网来说,开关变位造成网络结构发生重大变化的情况是很少发生的。在大多数情况下,开关变位的影响是局部的,基于此当开关状态发生变化时,只搜索断开开关所在的厂站电压等级的拓扑分析方法,可提高网络拓扑分析效率。(5)离散处理法:电力系统既含连续动态,也含离散动态。开关状态变化引起电力系统网络结构变化,是一种典型的离散事件动态过程。把整个电网拓扑分析问题分解为若干基本分析单元,采用基本分析单元的有色Petri网模型,当开关状态发生变化时,只需重新计算受变化的开关状态影响的母线,可提高拓扑分析的效率。通过对上述算法的比较、分析,可以看出各有特点,然而孤立地使用其中任意一种都无法达到直观、有效、快速等配电网拓扑的综合要求。因此要充分借鉴前人的研究成果,根据实际情况来实现配电网络的拓扑分析。
问题三:什么是电路拓扑结构?有哪几种? 开关电源常用的基本拓扑约有14种。
每种拓扑都有其自身的特点和适用场合。一些拓扑适用于离线式(电网供电的)AC/DC变换器。其中有些适合小功率输出(~200V)或者多组(4~5组以上)输出场合有的优势;
有些在相同输出功率下使用器件较少或是在器件数与可靠性之间有较好的折中。较小的输入/输出纹波和噪声也是选择拓扑经常考虑的因素。
问题四:拓扑结构的开关电源拓扑 随着PWM技术的不断发展和完善,开关电源以其高的性价比得到了广泛的应用。开关电源的电路拓扑结构很多,常用的电路拓扑有推挽、全桥、半桥、单端正激和单端反激等形式。其中, 在半桥电路中,变压器初级在整个周期中都流过电流,磁芯利用充分,且没有偏磁的问题,所使用的功率开关管耐压要求较低,开关管的饱和压降减少到了最小,对输入滤波电容使用电压要求也较低。由于以上诸多原因,半桥式变换器在高频开关电源设计中得到广泛的应用。开关电源常用的基本拓扑约有14种,每种拓扑都有其自身的特点和适用场合。一些拓扑适用于离线式(电网供电的)AC/DC变换器。其中有些适合小功率输出(~200V)或者多组(4~5组以上)输出场合有的优势;有些在相同输出功率下使用器件较少或是在器件数与可靠性之间有较好的折中。较小的输入/输出纹波和噪声也是选择拓扑经常考虑的因素。一些拓扑更适用于DC/DC变换器。选择时还要看是大功率还是小功率,高压输出还是低压输出,以及是否要求器件尽量少等。另外,有些拓扑自身有缺陷,需要附加复杂且难以定量分析的电路才能工作。因此,要恰当选择拓扑,熟悉各种不同拓扑的优缺点及适用范围是非常重要的。错误的选择会使电源设计一开始就注定失败。开关电源常用拓扑:buck开关型调整器拓扑 、boost开关调整器拓扑 、反极性开关调整器拓扑 、推挽拓扑 、正激变换器拓扑 、双端正激变换器拓扑 、交错正激变换器拓扑 、半桥变换器拓扑 、全桥变换器拓扑 、反激变换器 、电流模式拓扑和电流馈电拓扑 、SCR振谐拓扑 、CUK变换器拓扑开关电源各种拓扑集锦先给出六种基本DC/DC变换器拓扑,依次为buck、boost、buck-boost、cuk、zeta、sepic变换器。树形拓扑的缺点:各个节点对根的依赖性太大。
问题五:为什么要把整个电力系统分成若干拓扑岛 5分 这问题太广,得看是什么场景。
首先,一个地区电力系统本身就是互联的,很少存在分成很多个岛运行,这是很不安全的。
其次,对于特定场景,例如故障或解列时孤岛运行,就存在拓扑岛最优划分的问题,将系统划分为若干个拓扑岛独立运行,待故障排除后再切回联网运行;
例如大停电后的系统恢复,在进行全黑启动时,往往会将整个系统划分为若干拓扑岛,各个岛之间同步进行恢复。
例如基于潮流定解的电力系统可观测岛划分问题,第一步就是先根据潮流量测划分出潮流拓扑岛,然后再进一步根据注入量测合并潮流拓扑岛……
例如电力系统并行计算时,也会划分为若干个拓扑岛进行计算
……
问题六:电气,电力电子专业的 大神,有没有知道这样的电路拓扑图怎么画?用什么软件 可以用autoCAD,里面有电气专用的符号
问题七:什么是逆变器的拓扑结构 目前采用的逆变器拓扑结构包括:全桥逆变拓扑、半桥逆变拓扑、多电平逆变拓扑、推挽逆变拓扑、正激逆变拓扑、反激逆变拓扑等,其中高压大功率光伏并网逆变器可采用多电平逆变拓扑,中等功率光伏并网逆变器多采用全桥、半桥逆变拓扑,小功率光伏并网逆变器采用正激、反激逆变拓扑。
拓扑结构的选择和逆变器额定输出功率有关。对于 4kw 以下的光伏逆变器,通常选用直流母线不超过 500V,单相输出的拓扑结构。
Boost 电路通过对输入电压的调整实现最大功率点跟踪。H 桥逆变器把直流电逆变为正弦交流电注入电网。上半桥的 IGBT 作为极性控制器,工作在 50HZ,从而降低总损耗和逆变器的输出电磁干扰。下半桥的 IGBT 或者 MOSFET 进行PWM 高频切换,为了尽量减小 Boost 电感和输出滤波器的大小,切换频率要求尽量高一些,如 16KHz。
问题八:LED驱动电源拓扑图,帮我看看 图1是EMI电路,但这个电路还有一个功能,国外的很多开关中会并联一个氖泡,当开关关掉后,这个氖泡要亮的,而这个电路中的R17,R21,CX1会把微小的电流跳过电源供给氖泡,如果不使用这几个元件,使用带氖泡的开关关掉灯后,LED灯可能会闪。ZD1可以叫防雷管,实际上是一个电容,电压变高到一定电压时,会导通短路,电压降低,会自动恢复开路,主要是防雷击的作用。L1是共模电感,EMI元件。
图2是一个简单的PFC校正电路,可以提高电源的PF值,也是EMI电路,整流滤波电路的一部分!
从这个电路的设计看来,可能是出口的产品,国内的LED电源很少有这么好的待遇。
问题九:电力调度自动化系统 从上图可以看出该电力调度自动化系统是由上海聚仁电力研发的,主要实现对对整个电网进行实时监控并采集整个电力系统运行的实时信息,对电网的运行状态进行实时监控、安全性分析、状态估计、负荷预测及远程调控等,从而保证电力系统安全、可靠、经济运行,提高工作效率。
电力调度自动化系统的基本特征
■该技术应该能够及时并准确地采集、检测和处理电网中各元件、局部或整个系统运行的实时信息。
■能根据电网的实际运行状态和系统各元件的技术、经济等指标要求,为调度人员做出准确的调节和控制的决策提供依据。
■能实现整个电力系统的综合协调,使电力系统安全、可靠、经济地运行,并提供优质的供电。
■电力系统自动化技术能提高工作效率,降低电力系统事故发生概率,延长设备使用寿命,能够保障电力系统的安全、可靠、经济地运行,尤其是能避免整个电力系统的崩溃和大面积停电等连锁性事故发生。
电力调度自动化系统的发展趋势
随着计算机技术、通信技术、数据库技术等技术的快速发展,电力系统调动自动化技术应朝着模块化、面向对象、开放化、只能化合可视化等方面发展。
■模块化与分布式:软件设计的重要思想就是模块化和分布式。组件技术是一种标准实施的基础,能够实现真正的分布式体系结构,基于平台层解决数据交换的异构问题,是一种重要的电力系统调度自动化技术。
■面向对象技术:电力调度自动化系统目的就是为了能够及时准确地获得电力系统运行的实时信息。面向对象技术是一种能很好的解决这个问题的技术先进且能很好地遵循CIM的技术,但它的实现有一定的难度。
■电力系统调度综合自动化:全面建立调度数据库系统,提高电力系统调度自动化的综合管理水平,使电力系统运行达到最优化,避免电力系统崩溃或大面积停电事故,提高电力系统的安全性和可靠性;建立并完善电气事故处理体系,使事故停电时间降到最短,降低各种不必要的影响。
■无人化值守管理模式:建立无人值班综合监控系统,能够对电力系统的运行状态进行实时监控、安全性分析、状态估计、负荷预测及远程调控等,当系统出现故障时自动报警,以便调度人员及时处理事故,从而保证电力系统安全、可靠、经济运行,实现无人值守调度管理方式,减少值守人员,提高工作效率。
■智能化:智能化调度是未来电力系统发展的必然趋势。智能调度技术采用调度数据集成技术,能够及时、有效地获取电力系统运行的实时信息,实现电网正常运行的实时监测和优化、预警和预防智能化控制、故障的智能判辨、故障的智能分析、故障的智能恢复等,最大限度实现全面、精细、及时、最优的电力系统运行与管理,已达到电力系统的调度、运行和管理的智能化。
■可视化:随着计算机技术、网络技术、电力系统安全分析技术和图像处理技术等的快速发展,可视化也是未来电力系统调度自动化发展的必然趋势之一。可视化技术能够将传统的用数字、文字、表格等方式表达的离线信息,转换为通过先进的图形技术、显示技术表达的直观图形信息,以便于调度人员对电力系统运行的监控,对各种电网故障能更方便地作出准确地判断并采用合适的措施。
问题十:输电网和配电网在运行上的差别 前者主要承担为区域输送电力的任务,特点是远距离、大容量、供电范围广,这也就决定了它是高电压(通常都是超高压或特高压),其中一定比例可能是直流。它就好比是直接从心脏出来的大动脉。
而后者则承担为具体负荷(用户)供电的任务,距离近、容量小,电压低(一般为35kV及以下),用户具体明确。也有人体血液系统来比喻,就相当于是末端的毛细血管。
在运行上区别并不是很大,大的原则都追求安全、电压质量合格、连续可靠供电等。但由于负荷特点不同,还是有些不同。表现有:1、负荷曲线特点不同,配电变化多且剧烈,与之配合的无功补偿设备投切就更频繁,倒闸操作多。2、配电网用户明确,对重要用户可以重点保,对次要用户可一般对待甚至不保,而输电网由于所带的用户多,且可能(一般情况下是一定)会含有重要甚至极重要用户,则对供电可靠性要求更高,尤其是现在已经实行新的电力调查规程,损失负荷达到一定比例也算事故,相应对设备和运行的要求也就更高。3、输电网负荷变化规律性强,因此停电检修、年校预试的计划性更高,为了增加售电量,一般是配合电厂发电设备检修来进行安排,而在配电系统,则更多的是根据大用户的设备停运或检修来安排。
离网型光伏发电系统组成:
典型的光伏发电系统主要由光伏阵列、充放电控制器、储能装备或逆变器、负载等组成。其构成如图所示。
光照射到光伏阵列上,光能转变成电能,光伏阵列的输出电流由于受环境影响,因此是不稳定的,需要经过DC-DC转换器将其转变成稳定的电流后,才能加载到蓄电池上,对蓄电池充电,蓄电池再对负载供电。如果是并网售电,则不需要蓄电池,而是通过并网逆变器,将直流电流转换成交流电流,并到电网上进行出售。也就是说,离网型光伏发电系统必须使用到蓄电池储能,而并网型则不一定需要。
控制系统对光伏阵列的输出电压和电流进行实时采样,判断光伏发电系统是否工作在最大功率点上,然后根据跟踪算法,改变PWM信号的占空比,进而控制光伏阵列的输出电压使其工作点向最大功率点逼近。在蓄电池过充过放控制模块中,当蓄电池电压充电或放电到一定的设定值后,就会自动关闭或打开。
光伏阵列组件
光伏发电系统利用以光电效应原理制成的光伏阵列组件将太阳能直接转换为电能。光伏电池单体是用于光电转换的最小单元,一个单体产生的电压大约为0.45V,工作电流约为20~25mA/cm2,将光伏电池单体进行串、并联封装后,就成了光伏电池阵列组件。
当受到光线照射的太阳能电池接上负载时,光生电流流经负载,并在负载两端建立起端电压,这时太阳能电池的工作情况可以用下图所示的太阳能电池负载特性曲线来表示。它表明在确定的日照强度和温度下,光伏电池的输出电压和输出电流以及输出功率之间的关系,简称I-V特性和P-V特性。从图中可以看出,光伏发电系统的特性曲线具有强烈的非线性,既非恒压源也非恒流源。从其P-V特性曲线可以看出,在日照强度一定的前提下,其输出功率近似于一个开口向下的抛物线。该抛物线顶点对应的功率即为该日照强度下的P-V曲线的最大功率点,对应的电压称为最大功率点电压。为了提高光伏发电系统的转化效率,就必须使系统保持运行在P-V曲线最大功率点附近。
光伏电池阵列的几个重要技术参数:
1)短路电流(Isc):在给定日照强度和温度下的最大输出电流。
2)开路电压(Voc):在给定日照强度和温度下的最大输出电压。
3)最大功率点电流(Im):在给定日照强度和温度下相应于最大功率点的电流。
4)最大功率点电压(Um):在给定日照和温度下相应于最大功率点的电压。
5)最大功率点功率(Pm):在给定日照和温度下太阳能电池阵列可能输出的最大功率。
DC-DC转换器
光伏电池板发出的电能是随着天气、温度、负载等变化而不断变化的直流电能,其发出的电能的质量和性能很差,很难直接供给负载使用。需要使用电力电子器件构成的转换器,也就是DC-DC转换器,将该电能进行适当的控制和变换,变成适合负载使用的电能供给负载或者电网。电力电子转换器的基本作用是把一个固定的电能转换成另一种形式的电能进行输出,从而满足不同负载的要求。它是光伏发电系统的关键组成成分,一般具备有几种功能:最大功率点追踪、蓄电池充电、PID自动控制、直流电的升压或降压以及逆变。
DC-DC转换器输出电压和输入电压的关系通过控制开关的通断时间来实现的,这个控制信号可以由PWM信号来完成。主要工作原理是保持通断周期(T)不变,调节开关的导通持续时间来控制电压。D为PWM信号的占空比。
根据输入和输出的不同形式,可将电力电子转换器分为四类,即AC-DC转换器、DC-AC转换器、DC-DC转换器和AC-AC转换器。在离网型光伏发电系统中采用的是DC-DC转换器。
DC-DC转换器,其工作原理是通过调节控制开关,将一种持续的直流电压转换成另一种(固定或可调)的直流电压,其中二极管起续流的作用,LC电路用来滤波。DC-DC转换电路可以分为很多种,从工作方式的角度来看,可以分为:升压式、降压式、升降压式和库克式等。
降压式转换器(BuckConverter)是一种输出电压等于或小于输入电压的单管非隔离直流转换器;升降压式变换器(Buck-BoostConverter)转换电路的主要架构由PWM控制器与一个变压器或两个独立电感组合而成,可产生稳定的输出电压。当输入电压高于目标电压时,转换电路进行降压;当输入电压下降至低于目标电压时,系统可以调整工作周期,使转换电路进行升压动作;而升压式转换器(BoostConverter)是输出电压高于输入电压的单管不隔离直流转换器,所用的电力电子器件及元件和Buck转换器相同,两者的区别仅仅是电路拓扑结构不同。
蓄电池
在独立运行的光伏发电系统中,储能装置是必不可少的。现在可选的储能方法有很多,如电容器储能、飞轮储能、超导储能等,但是从方便、可靠、价格等综合因素来考虑,大多数大中型的光伏发电系统都使用了免维护式的铅酸蓄电池作为系统的储能装置。
但选用铅酸蓄电池也有不足之处,它比较昂贵,初期投资能够占到整个发电系统的1/4到1/2,而蓄电池又是整个系统中较薄弱的环节,因此如果管理不当,会使蓄电池提前失效,增加整个系统的运营成本。
光伏控制模块
光伏控制模块以单片机为控制中心,为蓄电池提供最佳的充电电流和电压,快速、平稳、高效地为蓄电池充电。并在它充电过程中减少蓄电池的损耗,尽量延长蓄电池的使用寿命,同时保护蓄电池免受过充电和过放电的危害。如果用户使用的是直流负载,通过太阳能控制器可以为负载提供稳定的直流电(由于受天气等外界因素的影响,太阳电池阵列发出的直流电的电压和电流不是很稳定),同时也通过控制传感器电路(光控、声控等)来实现全自动开关灯功能。
单片机的主要工作是将电流采集电路和电压采集电路采集到的电流、电压进行运算比较,然后通过MPPT算法来调节PWM的占空比D,使光伏阵列组件工作在最大功率点处。
离网型逆变器
住宅用的离网型光伏发电系统因为部分负载是交流负载,因此还需要离网型逆变器,把光伏组件发出的直流电变成交流电给交流负载使用。光伏离网型逆变器与光伏并网型逆变器在主电路结构上没有较大区别,主要区别在光伏并网型逆变器需要考虑并网后与电网的运行安全。也就是同频同相抗孤岛等控制特殊情况的能力。而光伏离网型逆变器就不需要考虑这些因数。
为了提高离网型光伏发电系统的整体性能,保证电站的长期稳定运行,逆变器的性能指标非常重要。
离网型光伏发电系统的应用:
离网型光伏发电系统广泛应用于偏僻山区、无电区、海岛、通讯基站和路灯等应用场所。
Boost变换器是输出电压高于输入电压的单管直流变换器,其电路拓扑结构如下图所示,由光伏阵列、电感L、开关管T、二极管D、电容C和负载R构成。
光伏发电一般按照与电力系统的关系分类,可以分为独立光伏发电和并网光伏发电。独立光伏发电不与电力系统连接在一起,独立于整个系统,发出的直流、交流电直接供给负载。而并网光伏发电则像发电站一样,可以向电网输送有功、无功的电能。
2. 独立光伏发电的基本原理
独立光伏发电系统由太阳能电池阵列、蓄电池、逆变器组件、控制器和负载(直流负载和交流负载)组成。因为太阳能电池产生的电能为直流,但是由于光照强度实时变化,太阳能电池输出的电压也不稳定,这时也需要蓄电池来起到一个滤波的作用,将太阳能电池产生的电压稳定在蓄电池的电压值上,在另外一种意义上,用蓄电池也有储能的作用,可以将过剩的电能储存起来供在光照强度较低的时候使用。如果是直流负载就可以直接接在蓄电池上工作,如果是交流负载,那么需要经过逆变器的DC-AC 变换,将直流电变成交流电,供给交流负载。
3.并网光伏发电的基本原理
独立光伏发电系统由太阳能电池阵列、蓄电池、逆变器组件、控制器和负载组成。因为需要将光伏发出来的电回馈给电网,这就需要将直流电转换为电网要求的220V、50HZ 的交流电,并且在相同相位的情况下并网,像电网供电。
无论是独立光伏发电系统还是并网光伏发电系统,逆变系统对于交流负载和并网发电都是必不可少的,接下来我们主要就光伏分布发电中的逆变系统的相关设计进行研究。
4. 光伏发电逆变系统设计
4.1 光伏发电逆变系统的组成
光伏发电系统主要由太阳能电池、主回路、控制电路和负载组成。主回路主要包括DC/DC 电路、DC/AC 电路、滤波器组件。下面主要对于主回路部分的设计做介绍,其中包括主回路的拓扑结构进行分析,介绍一下全桥逆变电路的工作原理以及逆变器模块的选型,以及相关保护的设计。
4.2 光伏发电逆变系统的拓扑结构
通常单相电压型逆变器主要分为推挽式、半桥和全桥逆变电路三种。这三种方式根据其不同的特点应用于不同的场合。
推挽式逆变电路的电路结构比较简单,如图3-1 所示。其上电路只需要两个晶闸管,基极驱动电路不需要隔离,驱动电路比较简单,但是晶闸管需要承受2 倍的线路峰值电压,所以适合于低输入电压的场合应用。
同时变压器存在偏磁现象,初级绕组有中心抽头,流过的电流有效值和铜耗较大,初级绕阻两部分应紧密藕合,绕制工艺复杂。因为推挽式逆变电路对于晶闸管的耐压要求比较高,不适合作为光伏发电的逆变系统主回路。
相比于推挽式逆变电路,单相半桥式逆变电路中所使用的晶闸管的耐压要求就相对较低,不会有线电压峰值2 倍这么多,绝对不会超过线电压峰值。其逆变出来的波形也相对推挽式比较接近于正弦波,所以滤波的要求也相对较低。由于晶闸管的饱和压降减小到了最小,所以不是最重要的影响因素之一。但是由于半桥式逆变电路的结构决定其集电极电流在晶闸管导通时会增加一倍,使得在晶闸管选型的过程中,要考虑大电流、承受高压的情况,就难免会因为其价格昂贵,所以不适合作为光伏发电的逆变系统主回路。
全桥式逆变电路就是介于推挽式和半桥式之间,兼顾其各自优点的一种逆变电路。其既有推挽式电路的电流性质,也有半桥式电路的电压性质,其结构详见图3-3 所示。全桥式电路可以使得晶闸管期间达到最大输出功率,而且其逆变出来的波形更加接近于正弦波。所以,这次这次光伏发电的逆变系统主回路选用了全桥式逆变电路。
其中VT1-VT4 为晶闸管,VD1-VD4 为四个反向并联的二极管。下面详细介绍一下全桥逆变电路的工作原理。
4.3 全桥逆变电路的工作原理
首先,VT1 和VT4 是一对同时开关的晶闸管,VT2 和VT3 是另外一对同时开关的晶闸管,VT1、VT4,VT2、VT3各受两路控制电压的控制。首先,VT2、VT3 的控制电压为负值,那么VT2、VT3 关断,处于截止状态。VT1、VT4 的的控制电压为正值,那么VT1、VT4 导通,电流流通路径如图3-4 所示。如果忽略晶闸管自身的压降,那么输出电压就等于Uout=EN2/N1.
然后,VT1、VT4 关断,四个功率开关都处于截止状态。
第三个时刻,VT1、VT4 的控制电压为负值,那么VT1、VT4 关断,处于截止状态。VT2、VT3 的的控制电压为正值,那么VT2、VT3 导通,电流流通路径如图3-5 所示。如果忽略晶闸管自身的压降,那么输出电压就等于Uout=-EN2/N1.
最后,VT2、VT3 关断,四个功率开关都处于截止状态。
这就是一个周期内,晶闸管的开关变化情况。按照这种工作方式,则可以获得交变的电压。
4.4 逆变器的设计
逆变器组件的设计根据某地的用户载荷分析,用户的用电载荷平均大概为3.2kW.根据某地全年品均月辐照强度5.4KWh/m?/ 天。总共需要的电池板方阵功率计算公式为:
Wl :负载的消耗功率F :蓄电池放电效率的修正系数(通常取1.05)Tm :峰值日照时数,其值与辐照强度的值基本相同,这里取3.6h:方阵表面由于尘污遮蔽或老化引起的修正系数,通常可取0.9~0.95:方阵组合损失和对最大功率点偏离以及控制器效率的修正系数,通常可取0.9~0.95L :蓄电池的维修保养率(通常取0.8)Ka :包括逆变器等交流回路的损失率(通常取0.7,如逆变器效率高可取0.8)本方案选用230W 的单晶硅电池板,则总共需要8 块,总功率为1.84Kw .
由于当地的用电电压为22OV,所以选择输出电压为22OV的离网逆变器,经过用户用电器统计可知,用户的最大功率约为716W, 考虑到用户负载中有感性负载,在启动过程时有较大的冲击电流,同时考虑系统的临时增加负载的情况,所以逆变器功率应相对选择较大的。在逆变系统中要求系统响应快,可靠性高,保护功能强等。本次设计的逆变电路中蓄电池通过DC/DC 变换最大提供给逆变器400V 的直流电压,所以单个晶闸管所承受的最大耐压也为400V,考虑到电压波动和留一定的余量的关系,最终将晶闸管的最大耐压设定在150% 的输入最大输入电压,那就是600V.
逆变器的额定输出功率为3kW,输出电流的峰值为18A,隔离变压器的变压比为1 :1.考虑到留有一定的余量,每个晶闸管的耐流值设定在30A.然后我们就可以进行选型了。
最后,选择了PM200CLA060 型号的三菱公司出品的IPM模块,其耐压600V,耐流200A,符合我这次设计的光伏发电逆变系统对于模块的要求。
4.5 逆变器支流侧电容的设计
对于分布式光伏发电系统,其直流侧需要增加电容保证直流侧电压稳定,不出现电压突变。那么需要设计出符合以下公式要求的电容。
其中P 为太阳能电池的输出功率,按照此项目每块太阳能电池的输出功率80W±3% 计算,那么40 块太阳能电池组成的阵列,其输出功率可达3.2KW.
f 为电网的频率,取50Hz.
K 为波纹系数,取0.1.
U 为直流母线电压,取400V.
所以,我们只要选用大于1273.89 的电容即可,我选用2200.由于考虑到直流侧电压为400V,那么选择500V/2200的电解电容。
4.6 交流输出滤波电路设计
由单相全桥逆变电路逆变出来的电压不是标准的正弦波,而是直流斩波电压。如下图所示。
为了使得输出的波形更加接近正弦波,以保证负载和电网获得高质量的电能,滤波电路是影响波形输出的一个重要环节。在滤波电路的设计中最重要的就是电感和电容的设计。
其中,由于逆变器的输出为220V/3kVA,那么所以Poutmax=3kVA.Uout=220V.
设定逆变器效率为96%.波纹电流系数为17%.
那么而电容的设计如下:
其中K 为谐振频率/ 基波频率,设定为12.
f 为基波频率,就是50Hz.那么所以根据设计数据,滤波电容选择40,滤波电感选择2。
并网逆变器主要用于并网的光伏系统,转换的电流通常会输入国家电网;
离网逆变器适用于独立的离网光伏系统,转换的电流除自用以外可以储存在蓄电池里;
微网逆变器会单独与电池板相连,更好地提高转换效率。
以上类型的逆变器产品,易恩孚都进行收录,提供全世界各大光伏逆变器公司产品的详细数据。
太阳能的利用目前还不是很普及,利用太阳能发电还存在成本高、转换效率低的问题,但是太阳能电池在为人造卫星提供能源方面得到了应用。
人类依赖这些能量维持生存,其中包括所有其他形式的可再生能源(地热能资源除外),虽然太阳能资源总量相当于人类所利用的能源的一万多倍,但太阳能的能量密度低,而且它因地而异,因时而变,这是开发利用太阳能面临的主要问题。太阳能的这些特点会使它
清立太阳能工程图
在整个综合能源体系中的作用受到一定的限制。
太阳能既是一次能源,又是可再生能源。它资源丰富,既可免费使用,又无需运输,对环境无任何污染。为人类创造了一种新的生活形态,使社会及人类进入一个节约能源减少污染的时代。
建设太空太阳能发电站的设想早在1968年就有人提出,但直到最近人类才开始真正将之付诸行动。日本可谓此项目的先驱者之一,该项目预计耗资210亿美金,发电量能达到十亿瓦特,能供29.4万个家庭使用。在太空建太阳能发电站,无论气候如何,均可利用太阳能发电,这与在地球上建立太阳能发电站的情况不同。
光热利用
它的基本原理是将太阳辐射能收集起来,通过与物质的相互作用转换成热能加以利用。目前使用最多的太阳能收集装置,主要有平板型集热器、真空管集热器、陶瓷太阳能集热器和聚焦集热器(槽式、碟式和塔式)等4种。通常根据所能达到的温度和用途的不同,而把太阳能光热利用分为低温利用(<200℃)、中温利用(200~800℃)和高温利用(>800℃)。目 前低温利用主要有太阳能热水器、太阳能干燥器、太阳能蒸馏器、太阳能采暖(太阳房)、太阳能温室、太阳能空调制冷系统等,中温利用主要有太阳灶、太阳能热发电聚光集热装置等,高温利用主要有高温太阳炉等。
发电利用
清立新能源未来太阳能的大规模利用是用来发电。利用太阳能发电的方式有多种。已实用的主要有以下两种。
1、光—热—电转换。即利用太阳辐射所产生的热能发电。一般是用太阳能集热器将所吸收的热能转换为工质的蒸汽,然后由蒸汽驱动气轮机带动发电机发电。前一过程为光—热转换,后一过程为热—电转换。
2、光—电转换。其基本原理是利用光生伏特效应将太阳辐射能直接转换为电能,它的基本装置是太阳能电池。
太阳能电池
【材料要求】耐紫外光线的辐射,透光率不下降。钢化玻璃作成的组件可以承受直径25毫米的冰球以23米/秒的速度撞击。
【装用的EVA胶膜固化后的性能要求】透光率大于90%;交联度大于65-85%;剥离强度(N/cm),玻璃/胶膜大于30;TPT/胶膜大于15;耐温性:高温85℃、低温-40℃;太阳电池的背面,耐老化、耐腐蚀、耐紫外线辐射、不透气等。
【用途】太阳能发电广泛用于太阳能路灯、太阳能杀虫灯、太阳能便携式系统,太阳能移动电源,太阳能应用产品,通讯电源,太阳能灯具,太阳能建筑等领域。
太阳能在2050年前可能将成为电力的主要来源,受助于发电设备成本大跌。IEA报告表示,2050年前太阳能光伏(PV)系统将最多为全球贡献16%的电力,来自太阳能发电厂的太阳能热力发电(STE)将提供11%的电力。
光化利用
这是一种利用太阳辐射能直接分解水制氢的光—化学转换方式。它包括光合作用、光电化学作用、光敏化学作用及光分解反应。
光化转换就是因吸收光辐射导致化学反应而转换为化学能的过程。其基本形式有植物的光合作用和利用物质化学变化贮存太阳能的光化反应。
植物靠叶绿素把光能转化成化学能,实现自身的生长与繁衍,若能揭示光化转换的奥秘,便可实现人造叶绿素发电。太阳能光化转换正在积极探索、研究中。
通过植物的光合作用来实现将太阳能转换成为生物质的过程。巨型海藻。
燃油利用
欧盟从2011年6月开始,利用太阳光线提供的高温能量,以水和二氧化碳作为原材料,致力于“太阳能”燃油的研制生产。截止目前,研发团队已在世界上首次成功实现实验室规模的可再生燃油全过程生产,其产品完全符合欧盟的飞机和汽车燃油标准,无需对飞机和汽车发动机进行任何调整改动。
研制设计的“太阳能”燃油原型机,主要由两大技术部分组成:第一部分利用集中式太阳光线聚集产生的高温能量,辅之ETH Zürich 自主知识产权的金属氧化物材料添加剂,在自行设计开发的太阳能高温反应器内将水和二氧化碳转化成合成气(Syngas),合成气的主要成分为氢气和一氧化碳;第二部分根据费-托原理(Fischer-Tropsch Principe),将余热的高温合成气转化成可商业化应用于市场的“太阳能”燃油成品。
衍生产品
就人类直接利用太阳能还处于初级阶段,主要有太阳能集热、太阳能热水系统、太阳能暖房、太阳能发电、太阳能无线监控等方式。
无线监控
随着现代化企业制度在我国的普及和深化发展,企业的信息化建设不断深入,利用数字视频技术对企业进行
安全防范工作已是大势所趋,结合太阳能技术的发展,推出真正的Winncam零布线无线监控解决方案。(太阳能无线监控安装效果图)
在现代化工业园中,实施视频监控系统,安全保卫部门可以实现在工业园区门口、主要道路、办公楼、周界围墙等地点进行实时全天候视频监控;相关部门可以了解现场情况,加强园区安全保卫管理,提高工作效率;相关管理部门可以实时了解各个监控点的情况;企业领导在办公室利用桌面微机,可以随时了解各主各个监控点实时状况,处理突发事件,亦可以记录多天前的情况,进行追踪分析,除本地建立网络监控系统外,还可对分支机构进行集中远程视频监控.随时考察员工的实际生产劳动纪律众诚天合公司案根据园区的实际需求,有些点取电困难,我们采用太阳能供电,参照有关国际标准和国家标准,并结合我公司对工业园区监控所积累的经验,编制出这套零布线太阳能无线监控技术方案。
整体解决思路
通过对现场的分析我们得出结论,整套系统我们采用Winncam无线网桥2.4 和5.8 的无线网桥混合组网,通过点对点和点对多点的组网方式,组建三级无线传输网络,使得音视频能流畅的在网络中穿行;设备的前端我们建议采用红外网络摄像机,后端接受可以用电脑,也可用DVR;但是DVR 需要用解码功能。最后我们在后端可以随时查看和管理整套系统。
无线连接
太阳能无线连接拓扑图:
太阳能无线监控
集热器
太阳能热水器装置通常包括太阳能集热器、储水箱、管道及抽水泵其他部件。另外在冬天需要热交换器和膨胀槽以及发电装置以备电厂不能供电之需。太阳能集热器(solar collector)在太阳能集热系统中,接受太阳辐射并向传热工质传递热量的装置。按传热工质可分为液体集热器和空气集热器。按采光方式可分为聚光型集热器和吸热型集热器两种。另外还有一种真空集热器:一个好的太阳能集热器应该能用20~30年。自从大约1980年以来所制作的集热器更应维持40~50年且很少进行维修。
热水系统
早期最广泛的太阳能应用即用于将水加热,现今全世界已有数百万太阳能热水装置。太阳能热水系统主要元件包括收集器、储存装置及循环管路三部分。此外,可能还有辅助的能源装置(如电热器等)以供应无日照时使用,另外尚可能有强制循环用的水,以控制水位或控制电动部份或温度的装置以及接到负载的管路等。依循环方式太阳能热水系统可分两种:
1.自然循环式:
此种型式的储存箱置于收集器上方。水在收集器中接受太阳辐射的加热,温度上升,造成收集器及储水箱中水温不同而产生密度差,因此引起浮力,此一热虹吸现像,促使水在储水箱及收集器中自然流动。由于密度差的关系,水流量于收集器的太阳能吸收量成正比。此种型式因不需循环水,维护甚为简单,故已被广泛采用。
2.强制循环式:
热水系统用水使水在收集器与储水箱之间循环。当收集器顶端水温高于储水箱底部水温若干度时,控制装置将启动水使水流动。水入口处设有止回阀以防止夜间水由收集器逆流,引起热损失。由此种型式的热水系统的流量可得知(因来自水的流量可知),容易预测性能,亦可推算于若干时间内的加热水量。如在同样设计条件下,其较自然循环方式具有可以获得较高水温的长处,但因其必须利用水,故有水电力、维护(如漏水等)以及控制装置时动时停,容易损坏水等问题存在。因此,除大型热水系统或需要较高水温的情形,才选择强制循环式,一般大多用自然循环式热水器。
发电系统
太阳能发电系统由太阳能电池组、太阳能控制器、蓄电池(组)组成。如输出电源为交流220V或110V,还需要配置逆变器。
太阳能发电系统分为离网发电系统与并网发电系统:
1、离网发电系统。主要由太阳能电池组件、控制器、蓄电池组成,若要为交流负载供电,还需要配置交流逆变器。
2、并网发电系统就是太阳能组件产生的直流电经过并网逆变器转换成符合市电电网要求的交流电这后直接接入公共电网。并网发电系统有集中式大型并网电站一般都是国家级电站,主要特点是将所发电能直接输送到电网,由电网统一调配向用户供电。但这种电站投资大、建设周期长、占地面积大,还没有太大发展。而分散式小型并网发电系统,特别是光伏建筑一体化发电系统,由于投资小、建设快、占地面积小、政策支持力度大等优点,是目 前并网发电的主流。
太阳能板
太阳能电池板是太阳能发电系统中的核心部分,太阳能电池板的作用是将太阳的光能转化为电能后,输出直流电存入蓄电池中。太阳能电池板是太阳能发电系统中最重要的部件之一,其转换率和使用寿命是决定太阳电池是否具有使用价值的重要因素。 组件设计:按国际电工委员会IEC:1215:1993标准要求进行设计,采用36片或72片多晶硅太阳能电池进行串联以形成12V和24V各种类型的组件。该组件可用于各种户用光伏系统、独立光伏电站和并网光伏电站等。
原材料特点:电池片:采用高效率(16.5%以上)的单晶硅太阳能片封装,保证太阳能电池板发电功率充足。 玻璃: 采用低铁钢化绒面玻璃(又称为白玻璃), 厚度3.2mm,在太阳电池光谱响应的波长范围内(320-1100nm)透光率达91%以上,对于大于1200 nm的红外光有较高的反射率。此玻璃同时能耐太阳紫外光线的辐射,透光率不下降。EVA:采用加有抗紫外剂、抗氧化剂和固化剂的厚度为0.78mm的优质EVA膜层作为太阳电池的密封剂和与玻璃、TPT之间的连接剂。具有较高的透光率和抗老化能力。TPT:太阳电池的背面覆盖物—氟塑料膜为白色,对阳光起反射作用,因此对组件的效率略有提高,并因其具有较高的红外发射率,还可降低组件的工作温度,也有利于提高组件的效率。当然,此氟塑料膜首先具有太阳电池封装材料所要求的耐老化、耐腐蚀、不透气等基本要求。边框:所采用的铝合金边框具有高强度,抗机械冲击能力强。也是太阳能发电系统中价值最高的部分。
太阳能控制器
太阳能控制器是由专用处理器CPU、电子元器件、显示器、开关功率管等组成。
主要特点:
1、使用了单片机和专用软件,实现了智能控制;
2、利用蓄电池放电率特性修正的准确放电控制。放电终了电压是由放电率曲线修正的控制点,消除了单纯的电压控制过放的不准确性,符合蓄电池固有的特性,即不同的放电率具有不同的终了电压。
3、具有过充、过放、电子短路、过载保护、独特的防反接保护等全自动控制;以上保护均不损坏任何部件,不烧保险;
4、采用了串联式PWM充电主电路,使充电回路的电压损失较使用二极管的充电电路降低近一半,充电效率较非PWM高3%-6%,增加了用电时间;过放恢复的提升充电,正常的直充,浮充自动控制方式使系统由更长的使用寿命;同时具有高精度温度补偿;
5、直观的LED发光管指示当前蓄电池状态,让用户了解使用状况;
6、所有控制全部采用工业级芯片(仅对带I工业级控制器),能在寒冷、高温、潮湿环境运行自如。同时使用了晶振定时控制,定时控制精确。
7、取消了电位器调整控制设定点,而利用了E方存储器记录各工作控制点,使设置数字化,消除了因电位器震动偏位、温漂等使控制点出现误差降低准确性、可靠性的因素;
8、使用了数字LED显示及设置,一键式操作即可完成所有设置,使用极其方便直观的作用是控制整个系统的工作状态,并对蓄电池起到过充电保护、过放电保护的作用。在温差较大的地方,合格的控制器还应具备温度补偿的功能。其他附加功能如光控开关、时控开关都应当是控制器的可选项;
能源电源
第一个空间太阳电池载于1958年发射的Vangtuard I,体装式结构,单晶Si衬底,效率约10%(28℃)。到了1970年代,人们改善了电池结构,采用BSF、光刻技术及更好减反射膜等技术,使电池的效率增加到14%。在70年代和80年代,地面太阳电池大约每5.5年全球产量翻番;而空间太阳电池在空间环境下的性能,如抗辐射性能等得到了较大改善。由于80年代太阳电池的理论得到迅速发展,极大地促进了地面和空间太阳电池性能的改善。到了90年代,薄膜电池和Ⅲ-Ⅴ电池的研究发展很快,而且聚光阵结构也变得更经济,空间太阳电池市场竞争十分激烈。在继续研究更高性能的太阳电池,主要有两种途径:研究聚光电池和多带隙电池。
电池效率
由于太阳电池在不同光强或光谱条件下效率一般不同,对于空间太阳电池一般采用AM0光谱(1.367KW/㎡),对于地面应用一般采用AM1.5光谱(即地面中午晴空太阳光,1.000 KWm-2)作为测试电池效率的标准光源。太阳电池在AM0光谱效率一般低于AM1.5光谱效率2~4个百分点,例如一个AM0效率为16%的Si太阳电池AM1.5效率约为19%)。
◎ 25℃,AM0条件下太阳电池效率
电池类型 面积(cm2) 效率(%) 电池结构
一般Si太阳电池 64cm2 14.6 单结太阳电池
先进Si太阳电池 4cm2 20.8 单结太阳电池
GaAs太阳电池 4cm2 21.8 单结太阳电池
InP太阳电池 4cm2 19.9 单结太阳电池
GaInP/GaAs 4cm2 26.9 单片叠层双结太阳电池
GaInP/GaAs/Ge 4cm2 25.5 单片叠层双结太阳电池
GaInP/GaAs/Ge 4cm2 27.0 单片叠层三结太阳电池
◎ 聚光电池
GaAs太阳电池 0.07 24.6 100X
GaInP/GaAs 0.25 26.4 50X,单片叠层双结太阳电池
GaAs/GaSb 0.05 30.5 100X,机械堆叠太阳电池
空间太阳电池在大气层外工作,在近地球轨道太阳平均辐照强度基本不变,通常称为AM0辐照,其光谱分布接近5800K黑体辐射光谱,强度1353mW/cm2。因此空间太阳电池多采用AM0光谱设计和测试。
空间太阳电池通常具有较高的效率,以便在空间发射的重量、体积受限制的条件下,能获得特定的功率输出。特别在一些特定的发射任务中,如微小卫星(重量在50~100公斤)上应用,要求单位面积或单位重量的比功率更高。
抗辐照性能
空间太阳电池在地球大气层外工作,必然会受到高能带电粒子的辐照,引起电池性能的衰减,主要原因是由于电子或质子辐射使少数载流子的扩散长度减小。其光电参数衰减的程度取决于太阳电池的材料和结构。还有反向偏压、低温和热效应等因素也是电池性能衰减的重要原因,尤其对叠层太阳电池,由于热胀系数显著不同,电池性能衰减可能更严重。
空间太阳电池的可靠性
光伏电源的可靠性对整个发射任务的成功起关键作用,与地面应用相比,太阳电池/阵的费用高低并不重要,因为空间电源系统的平衡费用更高,可靠性是最重要的。空间太阳电池阵必须经过一系列机械、热学、电学等苛刻的可靠性检验。
Si太阳电池
硅太阳电池是最常用的卫星电源,从1970年代起,由于空间技术的发展,各种飞行器对功率的需求越来越大,在加速发展其他类型电池的同时,世界上空间技术比较发达的美、日和欧空局等国家,都相继开展了高效硅太阳电池的研究。以日本SHARP公司、美国的SUNPOWER公司以及欧空局为代表,在空间太阳电池的研究发展方面领先。其中,以发展背表面场(BSF)、背表面反射器(BSR)、双层减反射膜技术为第一代高效硅太阳电池,这种类型的电池典型效率最高可以做到15%左右,目 前 在轨的许多卫星应用的是这种类型的电池。
到了70年代中期,COMSAT研究所提出了无反射绒面电池(使电池效率进一步提高)。但这种电池的应用受到限制:一是制备过程复杂,避免损坏PN结;二是这样的表面会吸收所有波长的光,包括那些光子能量不足以产生电子-空穴对的红外辐射,使太阳电池的温度升高,从而抵消了采用绒面而提高的效率效应;三是电极的制作必须沿着绒面延伸,增加了接触的难度,使成本升高。
80年代中期,为解决这些问题,高效电池的制作引入了电子器件制作的一些工艺手段,采用了倒金子塔绒面、激光刻槽埋栅、选择性发射结等制作工艺,这些工艺的采用不但使电池的效率进一步提高,而且还使得电池的应用成为可能。特别在解决了诸如采用带通滤波器消除温升效应以后,这类电池的应用成了空间电源的主角。
虽然很多工艺技术是由一些研究所提出,但却是在一些比较大的公司得到了发扬光大,比如倒金子塔绒面、选择性发射结等工艺是在澳大利亚新南威尔士大学光伏研究中心出现,但日本的SHARP公司和美国的SUNPOWER公司目 前的技术水平却为世界一流,有的技术甚至已经移植到了地面用太阳电池的大批量生产。
为了进一步降低电池背面复合影响,背面结构则采用背面钝化后开孔形成点接触,即局部背场。这些高效电池典型结构为PERC、PERL、PERT、PERF[1],其中前种结构的电池已经在空间获得实用。典型的高效硅太阳电池厚度为100μm,也被称为NRS/BSF(典型效率为17%)和NRS/LBSF(典型效率为18%),其特征是正面具有倒金子塔绒面的选择性发射结构,前后表面均采用钝化结构来降低表面复合,背面场采用全部或局部背场。实际应用中还发现,虽然采用局部背场工艺的电池要普遍比NRS/BSF的电池效率高一个百分点,但通常局部背场的抗辐照能力比较差。
到了上世纪90年代中期,空间电源工程人员发现,虽然这种类型电池的初期效率比较高,但电池的末期效率比初期效率下降25%左右,限制了电池的进一步应用,空间电源的成本仍然不能很好地降低。
为了改变这种情况,以SHARP为首的研究机构提出了双边结电池结构,这种电池的出现有效地提高了电池的末期效率,并在HES、HES-1卫星上获得了实际应用。
另外研究人员还发现,卫星对电池阵位置的要求比较苛刻,
太阳能路灯
如果太阳电池阵不对日定向或对日定向差等都会影响到卫星电源的功率,这在一定程度上也限制了卫星整体系统的配置。比如空间站这样复杂的飞行器,有的电池阵几乎不能完全保证其充足的太阳角,因而就需要高效电池来满足要求。虽然目 前已经部分应用了常规的高效电池,但电池的高的α吸收系数、有限的空间和重量的需要使其仍然不能满足空间系统大规模功率的需要。传统的电池结构仍然受到很大程度的限制。在这种情况下,俄罗斯在研究高效硅电池初期就侧重于提高电池的末期效率为主,在结合电池阵研究方面提出了双面电池的构想并获得了成功,真正做到了高效长寿命和低成本。
太阳能路灯
太阳能路灯是一种利用太阳能作为能源的路灯,因其具有不受供电影响,不用开沟埋线,不消耗常规电能,只要阳光充足就可以就地安装等特点,因此受到人们的广泛关注,又因其不污染环境,而被称为绿色环保产品。太阳能路灯即可用于城镇公园、道路、草坪的照明,又可用于人口分布密度较小,交通不便经济不发达、缺乏常规燃料,难以用常规能源发电,但太阳能资源丰富的地区,以解决这些地区人们的家用照明问题。
个人销售总结不足之处
个人销售总结不足之处,销售是一项很考验口才的职业,而工作总结是指对自己的工作情况进行的总结,有利于发现自己的不足以及更好的完善自己,下面分享个人销售总结不足之处相关内容。一起来看看吧。
个人销售总结不足之处1
从之前的实习四个月到毕业后工作,十个月时间,回顾这十个月来的工作情况,扪心自问,从懵懂无知到对公司、产品和行业的了解,还有对工作职责的认识,对客户的了解,在领导和同事的大力帮助和支持下,自己立足本职工作,恪尽职守,兢兢业业,任劳任怨。对客户的基本情况,如结构体系、决策权等等,有了大致的了解。
现将毕业以来从事销售工作中的目标和职责总结如下:
第一、作为一名销售人员,认清自己的职责,完成自己的本职工作 第二、全力以赴完成自己所负责客户的订单
第三、对客户的组织机构和决策体系掌握清楚,对客户的项目情况及内部情况及时整理上报领导
第四、严格遵守公司的各项规章制度,完成领导交办的所有工作
第五、积极广泛收集市场信息并总结,发掘新的销售机会
第六、对工作具有较高的敬业精神和高度的主人翁责任感,
牢记三项要务:客户、公司、自己。
明确了自己的职责,就能很好的衡量工作好坏。自己在从事业务以来,从工作中一点一滴做起,严格按照职责中的要求来执行。
首先,从商务礼仪方面入手,在拜访客户的过程中需注意和具备的基本素质,如电话礼仪,怎么去约见客户,怎么给客户送礼,在客户拒绝时怎么平和的去交流,还有在和客户见面的过程中注意的礼仪和说话方式方法,怎么快速了解客户的基本情况和我们所需要的项目信息等等。
其次,着手公司的产品,只有对产品了解了,才有坚实的后盾去和客户交流,有共同的话题,能很好的切入进去,产生共鸣。对于我司主要是风电变流器和光伏逆变器,对其结构和原理了解情况,当然还包括一些零部件情况,目前很多业主关心器件的选型这块。另外还有就是一些拓扑图,如我司在低压穿越、三相不平衡方面具有一定的优势,那么我们是怎么实现的呢?诸如类似较为深入的问题在后续都要加紧学习。
再次,分析客户信息并适时制定方案,针对该客户如何获得其支持。和领导及同事勤沟通、勤交流,请教遇到的困难,目前存在问题及应对方案,以求提高。
最后,在日常的事务工作中,自己在接到领导安排的任务后,积极着手,在确保工作质量的前提下按时完成任务。
总之,通过十个月来的实践让我认清楚了作为销售员获得客户的认可和拿下订单至关重要。
工作完成情况:
在执行的过程中,应该明确任务,主动积极,要求保质保量按时完成。积极拜访客户,了解情况客户内部情况,对决策链进行梳理,然后逐一搞定决策人和影响者,目前对于我而言主要的工作集中在决策链的梳理方面,在搞定决策人这块正在开始切入。
针对我工作以来做的工作进行梳理,主要有:
1、 对自己目前所负责和新开发的客户都进行了接触,对其大部分的决策链和组织结构有了清晰的了解,如华能新能源、北太所、深能源、世纪易阳等
2、 对所接触的客户的基本情况和项目情况有了大体的了解,另外对部分项目客户之前运用过哪些厂家的设备和偏好的厂家有一定的了解。知道客户在招标过程中偏向哪些方面,如:客户是否看重业绩、注册资本、现场运行情况等方面,还是更在意价格方面
3、 对风电和光伏行业有大体的认识,这样在和客户沟通的时候有更多的话题,同时在平时整理的一些行业资讯发给相关客户,增加了与客户的互动,增进了彼此的认识
4、 增强了对信息的捕捉能力。在拜访客户的过程中,对客户的表情、语言进行把握,了解客户的基本信息,如哪儿的人,妻子儿女情况,生活方面,是否在北京安家,是否抽烟喝酒,在公司是否有话语权等等
5、 完成了大部分公司产品的学习,包括风电变流器、光伏逆变器,对基础的原理、结构和零部件有了全面的了解,一些具体的软件控制后期跟进学习
不足和需要改进处:
销售是一种长期循序渐进的工作,青春有短暂的得与失,但我们在乎的是成长,常言道:知错能改,善莫大焉。
在工作中,每前进一步都会发现很多问题,会犯一些错误,会发现自己所欠缺的能力,在诸多方面还存在有不足。因此,要及时强化自己的工作思想,端正意识,提高销售工作的方法技能与交际水平。以下整理了工作期间自己的不足和需要改进的地方:
1、在不足方面,从自身原因总结。总体来说自己的自身素质亟待提高,如说法方式方法,目前还不够正式商务礼仪方面不够注重和细心,包括有一次和领导去某客户处。拜访完,拿喝了的水杯,一次性杯子外面套了一个胶壳,方便喝,结果我直接把杯子全仍垃圾桶了。
2、在公司产品方面,目前只是学习了较粗浅的知识,还不够深入。针对客户关心的问题,还不能完满的答复,譬如我司优势气温启机是如何实现的,为何别人不能功率模块自行设计,有哪些方面的优势,如何实现的等等
3、在拜访客户的中,与客户沟通欠缺说服力,如何让客户轻松的接纳自己,对自己不反感,并乐意见你
4、在细节方面,表情比较僵硬,肢体语言还不和谐。这种情况下,针对某些客户,会引起对方的反感,对自身工作造成困扰和压力
5、内心还不够强大。面对一些不容易接触的客户,给人的感觉就是心虚了似的,缺乏自信,这方面亟需改进和学习
总之,通过在实践中不断发现自己的问题,一直在不断的努力改进和进步中。同时也为自己积累下了日后销售工作的经验,防止以前的错误不在发生。梳理了思路,明确了方向。在未来的工作中,我将更专注于如何切入和搞定一个客户。,将自己的工作能力和公司的具体环境相互融合,利用自己精力充沛,辛勤肯干的优势,利用一切可利用的机会,学习产品知识,并提高销售意识。扎实进取,努力工作,为公司的发展尽自己绵薄之力。
个人销售总结不足之处2回首过去的16个月里,领导给了很多机会,再加上自己的努力,做了很多事情,感觉非常的充实。特别是在做以下事情的过程中,受益匪浅,回想起来让自己也感觉到些许的欣慰,觉得自己这一件并没有虚度。
第一、积极参加公司开展的各项活动。
今年公司为了能让各管理人员释放工作上所带的的压力而组织了多次出外旅游的节目,3月8日,是三八妇女节,公司组织了两厂之间的办公室文员去长隆欢乐世界一日游5月1日前一个晚上,公司组织了番禺的全部管理人员去K歌7月29日,和番禺办公室的同事们去清远黄腾峡漂流,28日入住清远新银盏温泉酒店泡温泉9月29日,国庆前的两天,和办公室的同事去长隆水上乐园一日游。加上每个月都有不同的活动,都积极参与,这是自己进公司三年来,最多活动的一年。这代表着公司在不断的进步,不断强大,关心员工的利益和身心健康所得来的成果。
第二、认认真真,做好本职工作。
1、责任心和奉献精神。
这是我们华迅公司中很重要的一点,可以说是精髓之一。每个人的经历和知识水平都不相同,这决定了每个人在做事情的能力上也会存在差别,但很多时候,工作能否做好,起决定作用的并不是能力。在实际工作中,有相当大的一部份工作不是靠能力来完成来做好的,而是靠对公司对部门对自己的一种强烈的责任心来完成来做好的。奉献源自责任,一个没有责任心的人,就不可能是一个有奉献精神的人。可以说,强烈的责任感和责任心是做好跟单工作的第一要求,也是业务跟单员应该具备的最基本素质。
2、勤快,团结互助。
跟单工作是一件很琐碎和繁琐的工作,特别是外贸跟单工作,辅件多,工序烦,稍微偷懒就可能给错误的出现留下隐患。一个订单往往是由很多部门来共同完成,一个人的力量在整个工作中显得非常渺小,只有大家团结互助精心合作才能保证订单的顺利完成。
3、认真细心,做事用心。
这样才能避免自己犯错误,才能发现客户可能存在的错误,把一些错误杜绝在源头上,减少人工和财物的浪费。我操作过的1个单子就曾经存在过这样的情况,由于出厂前板材没有经过硬度的测试,以置到货到了台湾后发现不合格了遭遇客户全部退货的情况,到12月底都还不能够从海关那里取出来,造成了公司人工和财物的损失。回过头来想想,如果这些错误能及时发现并处理的话,就不会造成什么样的严重后果。可想而知。我觉得作为我们业务跟单员只有从内心深处清醒的认识到:任何人都可能犯错误,但只要你认真工作,对每批产品都有明确的质量要求,出厂前都经过各个环节的测试,及时发现和减少错误的发生。犯错误和遭遇国内外退货是最大的窝工和浪费,少犯错误就是降低成本,生产上和业务上来说道理都是一样。
4、吃苦精神。
做跟单员一定要有吃苦精神,对于我们跟单员来说有时要让生产部的员工做出好质量的产品,有时还要下去生产车间里亲自监工,根据客户要求和自己的经验指导员工生产出完美的产品,并从中学习经验,了解生产过程,便于自己工作更好的开展。
第三、处理好跟客户和外部协作单位的关系。学会做人,处理好关系,做好事情。就像国家跟国家之间的关系一样:没有永久的朋友和敌人,只有永久的`利益。从本质上来讲,跟客户和外部协作单位的关系也是如此。正是由于合作能够跟双方带来各自需要的利益,才会产生双方的合作关系。作为商人,追求的最直接的东西就是利益,没有钱可以赚的话,你对他再好也没有用。如果有钱赚的话,其他方面要求可以适当降低。认清了这一点,在处理与相关主体的时候,就可以以拿捏好分寸,嬉笑怒骂,收放自如。
回首过去,自我认为还算取得了一些微不足道的成绩——当然,这些成绩的取得无不包含着领导的不懈关怀和同事的鼎力协助——但同时我也深刻地认识到自己在工作中也还有很多不足之处,需要在下一阶段的工作中进一步的学习和改进。
第一、进一步加强向领导、向同事、向客户学习的力度,不断完善自己。学无止境,特别是对于我们年轻人,要时刻保持着一颗虚心上前的心。
第二、加强订单资料的整理,理顺文件夹中的订单资料。这点在过去的一直都做得不好,主要是没有从心底上彻底认识到其重要性和没有养成良好的习惯。
第三、加强产品知识、生产工艺、加工过程知识上的学习。这是目前我们业务跟单员普遍欠缺的一块儿,也是非常重要的一块儿知识。作为一名跟单员,如果缺乏这方面的知识,那么其知识结构是不完整的,操作起订单来心里也不够踏实。公司如果能够组织和加强这方面知识的培训,那是再好不过。
第四、进一步规范自己的工作流程,加强工作的计划性。规范的工作流程可以大大减少出错的几率。在新的一年里要严格按照规范的流程操作订单,避免一些低级性的错误出现,减少混乱,养成良好的工作习惯。增强自己工作的计划性,这样可以避免遗忘该做的事情,减少丢三落四现象的出现,并改变自己急性子的性格。
第五、如果有机会,要多出去开发客户,在业务上增强自己的能力,进一步的发展和完善各方面的能力。
第六、争取更多的机会,发挥更大的作用,为公司各方面的发展做出自己应有的贡献。
总之,我要从自身的实际情况出发,发挥自身优势,有针对性的采取各种措施弥补自身存在的不足,不断完善自己各方面的能力,抓住我们部门阔步大发展的大好机遇,努力工作,积极进取,与部门同事团队作战,通力合作,尽我自己最大的努力做好本职工作,为我们公司业务目标的完成和飞速发展作出自己应有的贡献。