硫酸根的13种共振式怎么画,我只能画出11种
是6个,硫SP3杂化,与两个氧形成普通的σ键,这两个氧各带一个单位负电荷,与另外两个氧形成配位键,但4个氧是等效的,电荷会转移,因此带电荷的氧的在每个时刻是不一样的.你可以将这4个氧标为氧1、氧2、氧3、氧4,带电荷的两个氧可能是氧1、氧2,氧1、氧3,氧1、氧4.(其中氧1、氧2和氧2、氧1属于同一种共振)因此根据排列组合的知识,3+2+1=6种.
图2.硫酸中有两条硫-氧配位键和两条硫-氧单键,在配位键中硫提供孤对电子,所以箭头从硫指出;
如果是高中阶段的课内学习,画成图一即可;如果是自主探究或强基,就当我没说(本人也是高中生[微笑])
硫酸的电子式如下图:
在化学反应中,一般是原子的外层电子发生变化。为了简便起见,化学中常在元素符号周围用黑点“.”和叉“×”来表示元素原子的最外层电子。这种表示的物质的式子叫做电子式。
但是,中学所学习的经典的8隅体的电子式属于过时的理论,只能用于表示很少一部分由主族元素形成的物质,不能表示由过渡元素形成的物质,亦不能正确表示多种常见物质的结构。
扩展资料:
电子式的书写技巧:
1、多在外、少在内:同种离子数量多的放在离子式的最外侧,相对少一些的放在内侧书写。
2、小在外、大在内:对于不同价态的离子,也按其绝对值,遵照“大值在中间、小值在周边”的原则书写。
3、阴阳相间:书写时,要做到阴阳离子相间书写。
4、对于一种离子数明显多于其他离子的时候,也可以加角标表示,但较为少见。
参考资料来源:百度百科-电子式
硫原子采取sp3杂化,是1个 3s轨道跟3个2p轨道杂化,不是2s跟2p杂化.
4个轨道里只有S元素2p轨道中的6个电子,所以4个轨道中,2个轨道只有一个电子,另外2个中有一对电子.
与4个氧原子中的2个氧原子形成2个σ键,为了接受电子,原子会把电子挤在同一轨道以便容纳
,这在配位化学中经常出现!另两个氧原子接受硫的孤对电子分别形成σ配位键;
同时,硫原子的空的3d轨道与2个不在OH中的氧原子的2p轨道匹配,相互重叠,反过来接受2个氧原子的孤对电子,从而形成了附加的(p-d)π反馈配位键.
这是大学教材中的内容,你可能是中学生,不必研究太深.
简单点理
2个轨道各有1个电子 有2个电子的 和O原子形成配位键 有1个电子的和 O形成共价键
什么年龄,什么阶段就做自己该做的事,太过深究老师也解答不了.而且其他部分的知识跟不上,反而不易理解.这样的内容本科生都没有做过多要求,只要大概知晓即可.除非你打算在化学方面有所发展,还是那句话,留到大学里去研究.
6.为了达到上述目的,本发明采用了下列技术方案:
7.本发明提供了一种用于分离硫酸根离子的液液萃取剂,所述液液萃取剂的分子式为:c
45h53
n9s2;结构式为:
[0008][0009]
本发明还提供上述用于分离硫酸根离子的液液萃取剂的制备方法,包括以下步骤:
[0010]
将2-(氨基丁基)-2-甲基-1,3-二氧戊环与苯甲酰基异硫氰酸酯反应生成中间体n-4-(2-甲基-1,3-二氧戊环-2-基)丁基-n
’‑
苯甲酰基硫脲(ea);
[0011]
通过碳酸钾对中间体n-4-(2-甲基-1,3-二氧戊环-2-基)丁基-n
’‑
苯甲酰基硫脲(ea)水解得到中间体2-(硫脲基丁基)-2-甲基-1,3-二氧戊环(eb);
[0012]
用中间体2-(硫脲基丁基)-2-甲基-1,3-二氧戊环(eb)与2,6-二溴乙酰基吡啶反应得到中间体2,6-双(2-(5-氧代己基氨基)噻唑-4-基)吡啶(ec);
[0013]
在三氟乙酸的催化下中间体2,6-双(2-(5-氧代己基氨基)噻唑-4-基)吡啶(ec)与吡咯缩合得到中间体2,6-双{2-[(5,5-二吡咯基)己基氨基]噻唑-4-基}吡啶(ed);
[0014]
在三氟化硼乙醚的催化下中间体2,6-双{2-[(5,5-二吡咯基)己基氨基]噻唑-4-基}吡啶(ed)与丙酮缩合反应得到所述的液液萃取剂meso-六甲基-meso-双(2-(丁基氨基)噻唑-4-基)吡啶基杯[4]吡咯(e)。
[0015]
进一步,所述生成中间体ea的具体过程为:将2-(氨基丁基)-2-甲基-1,3-二氧戊环溶于二氯甲烷中,然后加入1-2倍摩尔量的苯甲酰基异硫氰酸酯,室温搅拌反应5h,减压除去溶剂,残余物采用柱色谱分离得中间体ea;中间体ea的化学结构式为:
[0016]
进一步,所述获得中间体eb的具体过程为:将ea溶于甲醇中,然后加入1-3倍摩尔量的碳酸钾,室温搅拌10h,减压除去溶剂,残余物采用柱色谱分离得中间体eb;中间体eb的化学结构式为:
[0017]
进一步,所述获得中间体ec的具体过程为:将2,6-二溴乙酰基吡啶溶于乙醇中,然后加入2-4倍摩尔量的eb,混合物加热回流反应10h,加入三乙胺淬灭反应,减压除去溶剂,
残余物采用柱色谱分离得中间体ec;中间体ec的化学结构式为:
[0018]
进一步,所述获得中间体ed的具体过程为:将ec溶于吡咯中,然后加入2-4倍摩尔量的三氟乙酸,混合物加热到60℃恒温搅拌1h,冷却,加入三乙胺淬灭反应,减压除去溶剂,残余物采用柱色谱分离得ed;中间体ed的化学结构式为:
[0019][0020]
进一步,所述获得液液萃取剂e的具体过程为:将ed溶于丙酮中,搅拌下加入1-3倍摩尔量的47%的三氟化硼乙醚溶液,然后室温反应2h,加入三乙胺淬灭,减压除去溶剂,残余物采用柱色谱分离得到萃取剂e。
[0021]
本发明还提供一种上述用于分离硫酸根离子的液液萃取剂的应用,其特征在于:用于硫酸根的液液萃取。
[0022]
与现有技术相比本发明具有以下优点:
[0023]
本发明萃取剂在硫酸根萃取过程中无需加入昂贵的四烷基季铵盐作为协萃剂,生产成本大幅降低;对硫酸根的选择性好,萃取效率高(》99%),可以将水相中的硫酸根几乎定量地提取到二氯甲烷溶液中;萃取过程简单、快速,通过氢氧化钡碱溶液对有机相中硫酸根的反相萃取,可实现萃取剂的循环再生。而且萃取机理新颖,在酸性萃取体系中首先形成带正电荷的质子化产物,然后通过其上的静电作用、多重氢键作用以及空间匹配效应的协同作用萃取硫酸根离子,该萃取剂的特性使其在高放射性核废液的处理过程中具有很好的应用价值和广阔的发展前景。
附图说明
[0024]
图1为本发明萃取剂制备方法的流程图。
[0025]
图2为本发明萃取剂e的1h nmr核磁共振谱图。
[0026]
图3为本发明质子化的萃取剂(eh)
2+
与硫酸根的络合物的高分辨质谱图。
[0027]
图4为本发明硫酸根的选择性萃取实验的1h nmr核磁共振谱图。
[0028]
图5为本发明萃取硫酸根的可逆循环实验的1h nmr核磁共振谱图。
具体实施方式
[0029]
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合本发明的具体实施方式做详细说明。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施方式的限制。
[0030]
实施例1:
[0031]
一种用于分离硫酸根离子的液液萃取剂的制备:
[0032]
(1)中间体ea的制备:将2-(氨基丁基)-2-甲基-1,3-二氧戊环(2.39g,15mmol)溶于30ml二氯甲烷中,然后加入苯甲酰基异硫氰酸酯(2.45g,15mmol),室温反应5h,减压除去溶剂,残留物柱色谱分离,方法为:用100-200目硅胶填充内径为30mm的具砂板闪式层析柱,充填高度为10cm,在硅胶上方加入待分离的残留物,用体积比为乙酸乙酯:石油醚=1:1的混合溶剂作洗脱剂,分离得到3.86g产物,收率为80%。
[0033]
(2)中间体ea的制备:将2-(氨基丁基)-2-甲基-1,3-二氧戊环(2.39g,15mmol)溶于30ml二氯甲烷中,然后加入苯甲酰基异硫氰酸酯(3.68g,22.5mmol),室温反应5h,减压除去溶剂,残留物柱色谱分离,方法为:用100-200目硅胶填充内径为30mm的具砂板闪式层析柱,充填高度为10cm,在硅胶上方加入待分离的残留物,用体积比为乙酸乙酯:石油醚=1:1的混合溶剂作洗脱剂,分离得到4.12g产物,收率为85%。
[0034]
(3)中间体ea的制备:将2-(氨基丁基)-2-甲基-1,3-二氧戊环(2.39g,15mmol)溶于30ml二氯甲烷中,然后加入苯甲酰基异硫氰酸酯(4.90g,30mmol),室温反应5h,减压除去溶剂,残留物柱色谱分离,方法为:用100-200目硅胶填充内径为30mm的具砂板闪式层析柱,充填高度为10cm,在硅胶上方加入待分离的残留物,用体积比为乙酸乙酯:石油醚=1:1的混合溶剂作洗脱剂,分离得到4.56g产物,收率为94%。
[0035]
(4)中间体eb的制备:将ea(2.63g,8.15mmol)溶于100ml甲醇中,再加入碳酸钾(1.13g,8.15mmol),室温反应10h,减压除去溶剂,残留物柱色谱分离,方法为:用100-200目硅胶填充内径为30mm的具砂板闪式层析柱,充填高度为15cm,在硅胶上方加入待分离的残留物,用体积比为乙酸乙酯:石油醚=1:1的混合溶剂作洗脱剂,分离得到1.53g产物,收率为86%。
[0036]
(5)中间体eb的制备:将ea(2.63g,8.15mmol)溶于100ml甲醇中,再加入碳酸钾(2.26g,16.3mmol),室温反应10h,减压除去溶剂,残留物柱色谱分离,方法为:用100-200目硅胶填充内径为30mm的具砂板闪式层析柱,充填高度为15cm,在硅胶上方加入待分离的残留物,用体积比为乙酸乙酯:石油醚=1:1的混合溶剂作洗脱剂,分离得到1.62g产物,收率为91%。
[0037]
(6)中间体eb的制备:将ea(2.63g,8.15mmol)溶于100ml甲醇中,再加入碳酸钾(3.39g,24.45mmol),室温反应10h,减压除去溶剂,残留物柱色谱分离,方法为:用100-200目硅胶填充内径为30mm的具砂板闪式层析柱,充填高度为15cm,在硅胶上方加入待分离的残留物,用体积比为乙酸乙酯:石油醚=1:1的混合溶剂作洗脱剂,分离得到1.71g产物,收率为96%。
[0038]
(7)中间体ec的制备:将2,6-二溴乙酰基吡啶(1g,3.11mmol)溶于20ml乙醇中,然后加入eb(1.36g,6.22mmol),混合物加热回流反应10h,冷却,加入1ml三乙胺淬灭反应,减
压除去溶剂,残留物柱色谱分离,方法为:用100-200目中性氧化铝填充内径为30mm的具砂板闪式层析柱,充填高度为5cm,在硅胶上方加入待分离的残留物,用体积比为乙酸乙酯:石油醚=1:1的混合溶剂作洗脱剂,分离得到0.90g产物,收率为61%。
[0039]
(8)中间体ec的制备:将2,6-二溴乙酰基吡啶(1g,3.11mmol)溶于20ml乙醇中,然后加入eb(2.04g,9.33mmol),混合物加热回流反应10h,冷却,加入1ml三乙胺淬灭反应,减压除去溶剂,残留物柱色谱分离,方法为:用100-200目中性氧化铝填充内径为30mm的具砂板闪式层析柱,充填高度为5cm,在硅胶上方加入待分离的残留物,用体积比为乙酸乙酯:石油醚=1:1的混合溶剂作洗脱剂,分离得到1.06g产物,收率为72%。
[0040]
(9)中间体ec的制备:将2,6-二溴乙酰基吡啶(1g,3.11mmol)溶于20ml乙醇中,然后加入eb(2.72g,12.44mmol),混合物加热回流反应10h,冷却,加入1ml三乙胺淬灭反应,减压除去溶剂,残留物柱色谱分离,方法为:用100-200目中性氧化铝填充内径为30mm的具砂板闪式层析柱,充填高度为5cm,在硅胶上方加入待分离的残留物,用体积比为乙酸乙酯:石油醚=1:1的混合溶剂作洗脱剂,分离得到1.16g产物,收率为79%。
[0041]
(10)中间体ed的制备:将ec(0.56g,1.19mmol)溶于15ml吡咯中,然后加入三氟乙酸(0.27g,2.38mmol),混合物加热到60℃恒温搅拌1h,冷却,加入1ml三乙胺淬灭反应,减压除去溶剂,残留物柱色谱分离,方法为:用100-200目硅胶填充内径为30mm的具砂板闪式层析柱,充填高度为10cm,在硅胶上方加入待分离的残留物,用体积比为乙酸乙酯:石油醚=2:1的混合溶剂作洗脱剂,分离得到0.43g产物,收率为51%。
[0042]
(11)中间体ed的制备:将ec(0.56g,1.19mmol)溶于15ml吡咯中,然后加入三氟乙酸(0.41g,3.57mmol),混合物加热到60℃恒温搅拌1h,冷却,加入1ml三乙胺淬灭反应,减压除去溶剂,残留物柱色谱分离,方法为:用100-200目硅胶填充内径为30mm的具砂板闪式层析柱,充填高度为10cm,在硅胶上方加入待分离的残留物,用体积比为乙酸乙酯:石油醚=2:1的混合溶剂作洗脱剂,分离得到0.61g产物,收率为73%。
[0043]
(12)中间体ed的制备:将ec(0.56g,1.19mmol)溶于15ml吡咯中,然后加入三氟乙酸(0.54g,4.76mmol),混合物加热到60℃恒温搅拌1h,冷却,加入1ml三乙胺淬灭反应,减压除去溶剂,残留物柱色谱分离,方法为:用100-200目硅胶填充内径为30mm的具砂板闪式层析柱,充填高度为10cm,在硅胶上方加入待分离的残留物,用体积比为乙酸乙酯:石油醚=2:1的混合溶剂作洗脱剂,分离得到0.60g产物,收率为72%。
[0044]
(13)萃取剂e的制备:将ed(0.2g,0.28mmol)溶于50ml丙酮中,然后加入47%的三氟化硼乙醚溶液(90μl 0.28mmol),室温搅拌2h,加入0.5ml三乙胺淬灭,减压除去溶剂,残留物柱色谱分离,方法为:用100-200目硅胶填充内径为20mm的具砂板闪式层析柱,充填高度为10cm,在硅胶上方加入待分离的残留物,用体积比为乙酸乙酯:石油醚=1:1的混合溶剂作洗脱剂,分离得到57mg产物,收率为26%。
[0045]
(14)萃取剂e的制备:将ed(0.2g,0.28mmol)溶于50ml丙酮中,然后加入47%的三氟化硼乙醚溶液(180μl 0.56mmol),室温搅拌2h,加入0.5ml三乙胺淬灭,减压除去溶剂,残留物柱色谱分离,方法为:用100-200目硅胶填充内径为20mm的具砂板闪式层析柱,充填高度为10cm,在硅胶上方加入待分离的残留物,用体积比为乙酸乙酯:石油醚=1:1的混合溶剂作洗脱剂,分离得到61mg产物,收率为28%。
[0046]
(15)萃取剂e的制备:将ed(0.2g,0.28mmol)溶于50ml丙酮中,然后加入47%的三
氟化硼乙醚溶液(270μl 0.84mmol),室温搅拌2h,加入0.5ml三乙胺淬灭,减压除去溶剂,残留物柱色谱分离,方法为:用100-200目硅胶填充内径为20mm的具砂板闪式层析柱,充填高度为10cm,在硅胶上方加入待分离的残留物,用体积比为乙酸乙酯:石油醚=1:1的混合溶剂作洗脱剂,分离得到66mg产物,收率为30%。
[0047]
实施例2:使用萃取剂e进行硫酸根液液萃取
[0048]
(1)选择性萃取实验:在核磁管中装入0.5ml 4mm e的cd2cl2溶液,然后加入0.5ml 40mm hno3(空白实验)、4mm na2so4/40mm hno3或4mm na2so4/120mm hno3(选择性萃取实验)的去离子水溶液。通过手摇震荡、静置相分离,在1min内完成萃取,然后迅速扫描核磁谱图(图4)。实验证明,萃取后的核磁谱图中完全不含有萃取剂e以及萃取剂e与硝酸根离子配合物的信号峰,说明水相中的硫酸根离子(1倍摩尔当量)几乎完全被萃取到cd2cl2,通过核磁氢谱灵敏度推测,有机相中即使含有萃取剂e或者萃取剂e与硝酸根离子配合物,其含量也不会超过1%,也就意味着萃取剂e对硫酸根的萃取性能几乎达到了定量萃取的水平(》99%)。通过空白实验对比,发现no
3-的含量(硫酸根的10-30倍当量)对萃取剂e的萃取率没有影响,说明萃取剂对硫酸根具有高度的选择性。
[0049]
(2)可逆循环实验:将硫酸根萃取实验中的水相进行分离,向有机相中加入0.5ml 4mm ba(oh)2的去离子水溶液。通过手摇震荡、静置相分离,在1min内完成萃取,然后迅速扫描核磁谱图(图5)。
[0050]
用带有长针头的注射器将上层的白色硫酸钡悬浊水相吸走,再用去离子水将核磁管内的有机相充分洗涤,以除去可能残留的钡离子或硫酸钡固体。然后加入4mm na2so4/40mm hno3的去离子水溶液,通过手摇震荡、静置相分离,在1min内完成萃取,然后迅速扫描核磁谱图(图5)。实验证明,萃取剂e可以循环萃取硫酸根离子,再生后的萃取剂对硫酸根离子的萃取效果几乎不变。
[0051]
虽然在上文中已经参考了一些实施例对本发明进行描述,然而在不脱离本发明的范围的情况下,可以对其进行各种改进并且可以用等效无替换其中的技术点,尤其是,只要不存在技术冲突,本发明所纰漏的各种实施例中的各项特征均可通过任一方式结合起来使用,在本发明中未对这些组合的情况进行穷举的描述仅仅是处于省略篇幅和节约资源的考虑。因此,本发明并不局限于文中公开的特定实施例,而且包括落入权利要求。
硫酸根、硫代硫酸根的结构式如下图:
硫酸根,也可称为硫酸根离子,化学式为SO₄²⁻。SO₄²⁻离子中,S原子采用sp3杂化,离子呈正四面体结构,硫原子位于正四面体体心,4个氧原子位于正四面体四个顶点。S-O键键长为149pm,有很大程度的双键性质。
硫代硫酸根离子具有中等强度的还原性或较强的络合(配位)能力。硫代硫酸根离子是硫酸根中的一个非羟基氧原子被硫原子所替代的产物,因此S2O32-的构型与SO42-相似,为四面体型。硫代硫酸根酸离子在碱性条件下很稳定,有很强的络合能力。
扩展资料:
硫酸根生成过程
1、在水中溶解的硫酸根离子是由于硫酸或可溶性硫酸盐溶于水产生的。硫酸为强电解质,溶于水会迅速发生二级电离,产生两个氢离子和一个硫酸根离子(中学阶段按照教科书描述可以这么认为,但是事实上其第二次电离约为10%左右)。
2、亚硫酸根离子被氧化或三氧化硫溶于水也会产生硫酸根。
3、含硫氨基酸经过氧化分解也会生成硫酸根,且半胱氨酸代谢是人体内硫酸根的主要来源。
参考资料:百度百科-硫代硫酸
百度百科-硫酸根
硫酸化学符号是H₂SO₄。
硫酸是一种最活泼的二元无机强酸,能和绝大多数金属发生反应。高浓度的硫酸有强烈吸水性,可用作脱水剂,碳化木材、纸张、棉麻织物及生物皮肉等含碳水化合物的物质。与水混合时,亦会放出大量热能。其具有强烈的腐蚀性和氧化性,故需谨慎使用。
硫酸的产生:
在18世纪初,硫酸的生产都依赖以下的方法:金属硫化矿被燃烧成为低价硫酸盐,该物质可在一定温度下分解为相应的金属氢氧化物和气态的硫氧化物,再利用该氧化物生产硫酸。
可惜,此过程的庞大成本阻碍了浓硫酸的广泛运用。由约翰·道尔顿在1808年绘制的早期硫酸分子图显示了硫酸有一个位于中心的硫原子并与三个氧原子建立共价键。
后来到了1831年,英国制醋商人Peregrine Phillips想到了接触法,能以更低成本制造出三氧化硫以及硫酸,这种方法在现今已被广泛运用。
以上内容参考:百度百科-硫酸
如下图所示:
纯硫酸一般为无色油状液体,密度1.84 g/cm³,沸点337℃,能与水以任意比例互溶,同时放出大量的热,使水沸腾。加热到290℃时开始释放出三氧化硫,最终变成为98.54%的水溶液,在317℃时沸腾而成为共沸混合物。
硫酸的沸点及粘度较高,是因为其分子内部的氢键较强的缘故。由于硫酸的介电常数较高,因此它是电解质的良好溶剂,而作为非电解质的溶剂则不太理想。硫酸的熔点是10.371℃,加水或加三氧化硫均会使凝固点下降。
扩展资料
硫酸的主要用途有:
1、冶金及石油工业
用于冶金工业和金属加工在冶金工业部门,特别是有色金属的生产过程需要使用硫酸。例如用电解法精炼铜、锌、镉、镍时,电解液就需要使用硫酸,某些贵金属的精炼,也需要硫酸来溶解去夹杂的其他金属。
2、解决人民衣食住行
用于化学纤维的生产为人民所熟悉的粘胶丝,它需要使用硫酸、硫酸锌、硫酸钠的混合液作为粘胶抽丝的凝固浴。
3、巩固国防
某些国家硫酸工业的发展,曾经是和军用炸药的生产紧密连结在一起的。无论军用炸药(发射药、爆炸药)或工业炸药,大都是以硝基化物或硝酸酯为其主要成分。
4、原子能工业及火箭技术
原子反应堆用的核燃料的生产,反应堆用的钛、铝等合金材料的制备,以及用于制造火箭、超声速喷气飞机和人造卫星的材料的钛合金,都和硫酸有直接或间接的关系。
5、土壤改良
在农业生产中,越来越多地采用硫酸改良高pH值的石灰质土壤。过去20年来,尿素-硫酸肥料的产量大幅度提高并在美国西部诸州的土壤中广泛施用。
参考资料来源:百度百科-硫酸
(2)浓硫酸的密度比水大,如果稀释时添加顺序颠倒,那么水会浮在水面上,又由于浓硫酸溶于水放出大量的热,能使水沸腾,容易造成酸液飞溅.
故答案为:(1)浓硫酸;搅拌;(2)酸液飞溅.