同一批精馏乙醇最多循环用多少次?
必须专品专用,如果上精馏塔检测回收乙醇,
通过检测是否有残留,如果没有是否可以与其他品种套用,
最后一般乙醇回收可以定多少次循环使用,
是直接通过检测结果判定是否可用,
还是需要定一个使用次数。.
1.规定套用次数,
2.规定质量标准;且回收溶剂专用。
根据企业具体情况自行选择,当然,不管是选择哪种,验证是必须的。
不允许其他品种套用,品种专用,
如果一批一回收,就一批套一批,
但也有几批一回收的,
如果先蒸馏的话,沸腾的乙醇会将苯酚也带出去一部分,这样就损失一部分苯酚。所以先加入足量苛性钠溶液,可以将苯酚全部转化为盐苯酚钠。在乙醇的沸点78度下蒸馏时,苯酚钠不会损耗。然后通入过量的二氧化碳气体,原先的苯酚全部还原,并分层。静置后分层可全部回收原来的苯酚。 首先乙醇不会和苛性钠溶液反应,乙醇只会和活泼金属单质钠、钾等反应。加入苛性钠溶液后,苯酚的乙醇溶液中,乙醇不会发生任何变化,但苯酚全部变成苯酚钠。这样原来的溶液就变成了苯酚钠、苛性钠溶液(加入苛性钠溶液是过量的)中混有乙醇。乙醇的沸点是78度,水的沸点是100度。这样加热到78度,达到乙醇的沸点,乙醇被全部蒸馏掉,而剩下的苯酚钠、苛性钠溶液不变。最后通入过量的二氧化碳气体,由于碳酸酸性强于苯酚酸性,所以加入二氧化碳后,苛性钠先全部转化为NaHCO3(加入过量二氧化碳),然后苯酚钠全部转化为苯酚。苯酚不溶水,与生成的NaHCO3溶液分层,静置后分液可以得到苯酚。
第一部分:化学品名称
化学品中文名称:乙醇
化学品英文名称:ethyl alcohol
中文名称2:酒精
英文名称2:ethanol
技术说明书编码:393
CAS No.:64-17-5
分子式:C2H6O
分子量:46.07
第二部分:成分/组成信息
有害物成分 / 含量 / CAS No.有害物成分 含量 CAS No. 乙醇 64-17-5
第三部分:危险性概述
危险性类别:
侵入途径:
健康危害:本品为中枢神经系统抑制剂。首先引起兴奋,随后抑制。急性中毒:急性中毒多发生于口服。一般可分为兴奋、催眠、麻醉、窒息四阶段。患者进入第三或第四阶段,出现意识丧失、瞳孔扩大、呼吸不规律、休克、心力循环衰竭及呼吸停止。慢性影响:在生产中长期接触高浓度本品可引起鼻、眼、粘膜刺激症状,以及头痛、头晕、疲乏、易激动、震颤、恶心等。长期酗洒可引起多发性神经病、慢性胃炎、脂肪肝、肝硬化、心肌损害及器质性精神病等。皮肤长期接触可引起干燥、脱屑、皲裂和皮炎。
环境危害:
燃爆危险:本品易燃,具刺激性。
第四部分:急救措施
皮肤接触:脱去污染的衣着,用流动清水冲洗。
眼睛接触:提起眼睑,用流动清水或生理盐水冲洗。就医。
吸入:迅速脱离现场至空气新鲜处。就医。
食入:饮足量温水,催吐。就医。
第五部分:消防措施
危险特性:易燃,其蒸气与空气可形成爆炸性混合物,遇明火、高热能引起燃烧爆炸。与氧化剂接触发生化学反应或引起燃烧。在火场中,受热的容器有爆炸危险。其蒸气比空气重,能在较低处扩散到相当远的地方,遇火源会着火回燃。
有害燃烧产物:
灭火方法:尽可能将容器从火场移至空旷处。喷水保持火场容器冷却,直至灭火结束。灭火剂:抗溶性泡沫、干粉、二氧化碳、砂土。
第六部分:泄漏应急处理
应急处理:迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自给正压式呼吸器,穿防静电工作服。尽可能切断泄漏源。防止流入下水道、排洪沟等限制性空间。小量泄漏:用砂土或其它不燃材料吸附或吸收。也可以用大量水冲洗,洗水稀释后放入废水系统。大量泄漏:构筑围堤或挖坑收容。用泡沫覆盖,降低蒸气灾害。用防爆泵转移至槽车或专用收集器内,回收或运至废物处理场所处置。
第七部分:操作处置与储存
操作注意事项:密闭操作,全面通风。操作人员必须经过专门培训,严格遵守操作规程。建议操作人员佩戴过滤式防毒面具(半面罩),穿防静电工作服。远离火种、热源,工作场所严禁吸烟。使用防爆型的通风系统和设备。防止蒸气泄漏到工作场所空气中。避免与氧化剂、酸类、碱金属、胺类接触。灌装时应控制流速,且有接地装置,防止静电积聚。配备相应品种和数量的消防器材及泄漏应急处理设备。倒空的容器可能残留有害物。
储存注意事项:储存于阴凉、通风的库房。远离火种、热源。库温不宜超过30℃。保持容器密封。应与氧化剂、酸类、碱金属、胺类等分开存放,切忌混储。采用防爆型照明、通风设施。禁止使用易产生火花的机械设备和工具。储区应备有泄漏应急处理设备和合适的收容材料。
第八部分:接触控制/个体防护
职业接触限值未制定标准
中国MAC(mg/m3):1000
前苏联MAC(mg/m3):OSHA 1000ppm,1880mg/m3ACGIH 1000ppm,1880mg/m3
TLVTN:未制定标准
TLVWN:
监测方法:生产过程密闭,全面通风。提供安全淋浴和洗眼设备。
工程控制:一般不需要特殊防护,高浓度接触时可佩戴过滤式防毒面具(半面罩)。
呼吸系统防护:一般不需特殊防护。
眼睛防护:穿防静电工作服。
身体防护:
手防护:工作现场严禁吸烟。
其他防护:
第九部分:理化特性
主要成分:纯品
外观与性状:无色液体,有酒香。
pH:
熔点(℃):-114.1
沸点(℃):78.3
相对密度(水=1):0.79
相对蒸气密度(空气=1):1.59
饱和蒸气压(kPa):5.33(19℃)
燃烧热(kJ/mol):1365.5
临界温度(℃):
临界压力(MPa):6.38
辛醇/水分配系数的对数值:0.32
闪点(℃):12
引燃温度(℃):363
爆炸上限%(V/V):19.0
爆炸下限%(V/V):3.3
溶解性:与水混溶,可混溶于醚、氯仿、甘油等多数有机溶剂。
主要用途:用于制酒工业、有机合成、消毒以及用作溶剂。
其它理化性质:
第十部分:稳定性和反应活性
稳定性:
禁配物:
避免接触的条件:
聚合危害:
分解产物:
第十一部分:毒理学资料
急性毒性:LD50:7060 mg/kg(兔经口)7430 mg/kg(兔经皮)LC50:37620 mg/m3,10小时(大鼠吸入)
亚急性和慢性毒性:
刺激性:
致敏性:
致突变性:
致畸性:
致癌性:
第十二部分:生态学资料
生态毒理毒性:
生物降解性:
非生物降解性:
生物富集或生物积累性:
其它有害作用:该物质对环境可能有危害,对水体应给予特别注意。
第十三部分:废弃处置
废弃物性质:处置前应参阅国家和地方有关法规。建议用焚烧法处置。
废弃处置方法:
废弃注意事项:
第十四部分:运输信息
危险货物编号:32061
UN编号:1170
包装标志:易燃液体
包装类别:O52
包装方法:小开口钢桶小开口铝桶安瓿瓶外普通木箱螺纹口玻璃瓶、铁盖压口玻璃瓶、塑料瓶或金属桶(罐)外普通木箱。
运输注意事项:本品铁路运输时限使用钢制企业自备罐车装运,装运前需报有关部门批准。运输时运输车辆应配备相应品种和数量的消防器材及泄漏应急处理设备。夏季最好早晚运输。运输时所用的槽(罐)车应有接地链,槽内可设孔隔板以减少震荡产生静电。严禁与氧化剂、酸类、碱金属、胺类、食用化学品等混装混运。运输途中应防曝晒、雨淋,防高温。中途停留时应远离火种、热源、高温区。装运该物品的车辆排气管必须配备阻火装置,禁止使用易产生火花的机械设备和工具装卸。公路运输时要按规定路线行驶,勿在居民区和人口稠密区停留。铁路运输时要禁止溜放。严禁用木船、水泥船散装运输。
第十五部分:法规信息
法规信息化学危险物品安全管理条例 (1987年2月17日国务院发布),化学危险物品安全管理条例实施细则 (化劳发[1992] 677号),工作场所安全使用化学品规定 ([1996]劳部发423号)等法规,针对化学危险品的安全使用、生产、储存、运输、装卸等方面均作了相应规定常用危险化学品的分类及标志 (GB 13690-92)将该物质划为第3.2 类中闪点易燃液体。其它法规:无水乙醇生产安全技术规定 (HGA011-83)。
参考资料:http://www.msds51.cn/a/MSDSyangben/2011/0629/141.html
乙醇有腐蚀性吗?
乙醇会腐蚀金属吗?
无水乙醇会腐蚀皮肤吗?
无水乙醇腐蚀皮肤怎么办?
酒精(乙醇)有没有腐蚀性
从狭义上来看,酒精并没有腐蚀性。
但从广义上看,鉴于酒精对部分有机物具有溶解性,且高浓度酒精产生的蒸汽对于人的粘膜系统具有刺激性,能造成伤害,所以可以说酒精具有腐蚀性。
综上所述:酒精,尤其是高浓度酒精,具有广义的腐蚀性。
乙醇在常温常压下是一种易燃、易挥发的无色透明液体,低毒性,纯液体不可直接饮用具有特殊香味,并略带刺激微甘,并伴有刺激的辛辣滋味。
其蒸气能与空气形成爆炸性混合物,能与水以任意比互溶。能与氯仿、乙醚、甲醇、丙酮和其他多数有机溶剂混溶,相对密度(d15.56)0.816。
扩展资料:
乙醇是一种很好的溶剂,能溶解许多物质,所以常用乙醇来溶解植物色素或其中的药用成分也常用乙醇作为反应的溶剂,使参加反应的有机物和无机物均能溶解,增大接触面积,提高反应速率。
羟基的极性也使得很多离子化合物可溶于乙醇中,如氢氧化钠、氢氧化钾、氯化镁、氯化钙、氯化铵、溴化铵和溴化钠等但氯化钠和氯化钾微溶于乙醇。
乙醇的生产离不开精馏、萃取等化工流程。氧化钙脱水法、共沸精馏、吸附精馏、渗透汽化、吸附法、萃取精馏法和真空脱水法等多用在乙醇的回收和提纯的方面。
参考资料来源:搜狗百科——乙醇
乙醇有腐蚀性吗?
乙醇的腐蚀性很强,对油脂、油漆、橡胶件都会有腐蚀,
对金属也有腐蚀性:
(1)乙醇可以与金属钠反应,产生氢气,但不如水与金属钠反应剧烈。
(2)活泼金属(钾、钙、钠、镁、铝)可以将乙醇羟基里的氢取代出来。
乙醇会腐蚀金属吗?
会腐蚀。因为它有弱酸性。
但是你的担心是多余的,因为很短时间内都蒸发了,不用担心的。
无水乙醇会腐蚀皮肤吗?
无水乙醇不会腐蚀皮肤,但皮肤长期接触可引起干燥、脱屑、皲裂和皮炎。
乙醇易燃,具刺激性。其蒸气与空气可形成爆炸性混合物,遇明火、高热能引起燃烧爆炸。与氧化剂接触发生化学反应或引起燃烧。在火场中,受热的容器有爆炸危险。其蒸气比空气重,能在较低处扩散到相当远的地方,遇火源会着火回燃。
急性中毒:急性中毒多发生于口服。一般可分为兴奋、催眠、麻醉、窒息四阶段。患者进入第三或第四阶段,出现意识丧失、瞳孔扩大、呼吸不规律、休克、心力循环衰竭及呼吸停止。
慢性影响:在生产中长期接触高浓度本品可引起鼻、眼、粘膜刺激症状,以及头痛、头晕、疲乏、易激动、震颤、恶心等。
长期酗酒可引起多发性神经病、慢性胃炎、脂肪肝、肝硬化、心肌损害、器质性精神病等。
扩展资料:
主要种类:
1、按生产使用的原料可分为淀粉质原料发酵酒精、糖蜜原料发酵酒精、亚硫酸盐纸浆废液发酵生产酒精。
淀粉质原料发酵酒精(一般有薯类、谷类和野生植物等含淀粉质的原料,在微生物作用下将淀粉水解为葡萄糖,再进一步由酵母发酵生成酒精)
糖蜜原料发酵酒精(直接利用糖蜜中的糖分,经过稀释杀菌并添加部分营养盐,借酵母的作用发酵生成酒精)
和亚硫酸盐纸浆废液发酵生产酒精(利用造纸废液中含有的六碳糖,在酵母作用下发酵成酒精,主要产品为工业用酒精。也有用木屑稀酸水解制作的酒精)。
2、按生产的方法来分,可分为发酵法、合成法两大类。
3、按产品质量或性质来分,又分为高纯度酒精、无水酒精、普通酒精和变性酒精。
4、按产品系列(BG384-81)分为优级、一级、二级、三级和四级。其中一、二级相当于高纯度酒精及普通精馏酒精。三级相当于医药酒精,四级相当于工业酒精。新增二级标准是为了满足不同用户和生产的需要,减少生产与使用上的浪费,促进提高产品质量而制订的。
参考资料来源:百度百科——无水乙醇
无水乙醇腐蚀皮肤怎么办?
乙醇又叫酒精,乙醇本无毒,但工业酒精纯度不够,含有有害杂质,因此对人有害,至于对皮肤的伤害,由于酒精有比较强的挥发性,纯酒精洒在皮肤上如果过多,是会对皮肤造成一定伤害的。
乙醇是一种最常见的溶剂,百分之40~60可用于医用消毒。与水互溶,高浓度的乙醇有一定的吸水性,,人体含有大量的水分,接触高浓度乙醇可以造成皮肤脱水,对皮肤造成伤害。建议你用水多洗洗。
医药等领域,而且可以部分或全部替代汽油,具有安全、清
洁、可再生等优点。传统的酒精生产主要以糖蜜、薯类、谷物
为原料发酵而成。近年来,随着人口增长和经济的发展以及
可利用耕地面积的减少使得酒精生产成本日趋增高,利用
丰富、廉价的玉米秸秆为原料生产酒精已成为必然趋势。我
国是一个农业大国,各种纤维素原料资源非常丰富,仅玉米
秸秆年产量大约2亿吨。目前,玉米秸秆除了少部分被利用
外,大部分以堆积、焚烧等形式直接倾入环境,极大地污染
了环境,也是一种资源浪费。如果将玉米秸秆经过预处理后
水解,其所含的纤维素和半纤维素可分解成糖,经发酵可转
化为酒精,转热效率可达30%以上。这样不但缓解人类所面
临的食物短缺,环境污染、资源危机等一系列问题,而且还
能实现人类的可持续发展,因而近年来玉米秸秆成为生物
能源领域的研究热点。
1玉米秸秆简介
玉米秸秆主要由植物细胞壁组成,基本成分为纤维素、
半纤维素和木质素等。木质素将纤维素和半纤维素层层包
围。纤维素是一种直链多糖,多个分子平行排列成丝状不溶
性微小纤维,半纤维素主要由木糖、少量阿拉伯糖、半乳糖、
甘露糖组成,木质素是以苯丙烷及衍生物为基本单位组成
的高分子芳香族化合物。其中,木质素是一种燃料,半纤维
素可水解为五碳糖,而纤维素水解为六碳糖比较困难。
2玉米秸秆预处理
由于玉米秸秆结构复杂,不仅纤维素、半纤维素被木质
素包裹,而且半纤维素部分共价和木质素结合,同时纤维素
具有高度有序晶体结构。因此必须经过预处理,使得纤维
素、半纤维素、木质素分离开,切断它们的氢键,破坏晶体结
构,降低聚合度。常见预处理方法有物理法、化学法、物理化
学法和微生物法等。
2.1挤压膨化法
该方法属于物理处理法,是将原料粉碎后调节至一定
水分,加入挤压机内,物料在螺杆的旋转推动下向前运动,
同时被剪切、挤压。并且在摩擦热的作用下温度可接近
140℃然后从挤压机中喷出,物料的压力突然降低、体积迅
速膨胀,纤维素晶体结构被破坏,从而为纤维素的酶解处理
创造条件。这种预处理方法生产过程连续,不需要消耗蒸
汽,而且具有灭菌效果。
2.2湿氧化法
湿氧化法属于化学处理法,是指在加温加压条件下,水
和氧气共同参加的反应。湿氧化法对玉米秸秆处理效果很
好,纤维素遇碱,只引起纤维素膨胀,形成了碱化纤维素,但
能保持原来骨架,加入Na2CO3后起缓和作用,能防止纤维
素被破坏,使木质素和半纤维素溶解于碱液中而与纤维素
分离。这样得到的纤维素纯度较高,且副产物很少。匈牙利
Eniko等人采用湿氧化法在195℃,15min,1 200千帕O2,
Na2CO32g/L条件下,对60g/L玉米秸秆进行预处理。其中
60%半纤维素、30%木质素被溶解,90%纤维素呈固态分离出
来,纤维素酶解转化率(ECC)达85%左右。
2.3酸处理法
酸处理法也是一种化学处理法,这种方法可追溯到
1980年,而在德国可能更早。该法是采用硫酸、硝酸、盐酸、
磷酸等对纤维素原料进行预处理,其中以硫酸研究和应用
的最多。处理后,半纤维素首先水解得到无碳糖,纤维素的
结晶结构被破坏,原料疏松,可发酵性强。但水解前必须将
pH值调整到中性,还应该注意反应器的耐酸性。
2.4蒸汽爆破法
蒸汽爆破法属于物理处理化学法,是用蒸汽将原料加
热至180~200℃,维持5~30min,也可加热到245℃,维持
0.5~2.0min。高温高压造成木质素的软化,然后迅速使原料
减压,造成纤维素晶体和纤维束的爆裂,使木质素和纤维素
分离。该法成本较高,在我国可采用北京林业大学赖文衡教
授研究的间歇蒸汽汽爆器对玉米秸秆进行爆破处理,经这
种爆破器爆破的玉米秸秆,纤维素水解转化率(ECC)可达
70%以上。
2.5生物方法
生物处理方法具有节约化工原料、能源和减轻环境污
染等方面的优点。有许多微生物能产生木质素分解酶,如白
腐菌,其分解木质素的能力较强,但活性较低,而且微生物
处理周期长、菌体会破坏部分纤维素和半纤维素,降低纤维
素的水解率,因此难以得到利用。瑞典等北欧国家则利用无
纤维素酶的担子菌突变株对纤维素材料进行脱木质素处
理,取得了一定的效果。
玉米秸秆发酵生产燃料酒精研究现状及前景
武秀琴1,2马灿玲3
(1天津科技大学,中国天津3002222河南工程学院环境工程系3郑州师范高等专科学校生物系)
摘要玉米秸秆是一种丰富的再生资源,主要由纤维素、半纤维素、木质素组成。经过预处理、水解、发酵可生产酒精。预处理方法主要
有物理法、化学法、物理化学法及生物处理法水解主要有酸水解法和酶水解法发酵主要有直接发酵法、间接发酵法、同步糖化发酵法等。
介绍了玉米秸秆生产乙醇的关键技术进展情况。
关键词秸秆酒精预处理研究进展
中图分类号TS262.2文献标识码A文章编号1007-5739(2008)13-0240-02
收稿日期2008-05-07
240现代农业科技》2008年第13期
3水解工艺
玉米秸秆进行预处理后,纤维素水解只有在催化剂存
在的情况下才能显著进行。常用催化剂是无机酸和酶,由此
分别形成了酸水解工艺和酶水解工艺,酸水解工艺又分为
稀酸水解和浓酸水解。水解主要是破坏纤维素、半纤维素的
氢键,使之转化为发酵的单糖。
3.1浓酸水解
用70%的硫酸50℃下在反应器中反应2~6h,半纤维素
首先被降解,溶解在水里的物质经过几次浓缩沥干后得到
糖,半纤维素水解后的固体残渣经过脱水后,在30%~40%的
硫酸中浸泡1~4h。溶液再经脱水和干燥后,在70%的硫酸下
反应1~4h,回收的糖和酸溶液经过离子交换,分离出的酸在
高效蒸发器中重新浓缩,剩余的固体残渣则再循环利用到
下一次的水解中。浓酸水解过程的主要优点是糖的回收率
高,大约有90%的半纤维素和纤维素转化的糖被回收。但浓
硫酸腐蚀性强,而且从经济方面考虑必须回收浓硫酸,增加
了工艺的复杂程度。
3.2稀酸水解
为了解决浓酸水解法存在的问题,一般采用稀硫酸
(0.2%~0.5%),在较温和条件下进行。此时水解一般分2个
阶段:第1阶段为低温操作,从半纤维素获得最大糖产量
第2阶段采用高温操作使纤维素水解为六碳糖,糖的转化
率一般为50%左右。但稀酸水解容易产生大量副产物。
3.3酶水解
酶水解是利用产纤维素酶的微生物或者纤维素酶制
品,直接将半纤维素、纤维素水解成可发酵糖。与酸水解相
比,它可在常压下进行,反应条件温和、效率高、能耗低、选
择性强、环保效果好,显示出良好的应用价值和前景。水解
后可形成单一产物,产率较高(>95%)。匈牙利Eniko等人采
用NovoYm188等水解经湿氧化处理的玉米秸秆,酶解纤维
素转化率(ECC)高达85%。
该法的关键在于纤维素酶的获得和利用,同时要考虑
纤维素酶的成本。丹麦诺维信公司曾经宣布其纤维素酶生
产成本已比当初降低了12倍,现在该公司又取得了重大进
展,纤维素酶生产成本已比最初降低了20倍,生产lL燃料
级乙醇所需纤维素酶的成本已低于6.6美分。这极大地推进
了燃料乙醇的商业化进程。
4发酵工艺
由于农作物秸秆的相当部分由半纤维素构成,其水解
产物为以木糖为主的五碳糖,还有相当量的阿拉伯糖生成
(可占五碳糖的10%~20%),故五碳糖的发酵效率是决定过
程经济性的重要因素。木糖的存在对纤维素酶水解起抑制
作用,将木糖及时转化为酒精对玉米秸秆的高效率酒精发
酵是非常重要的。目前人们研究最多且最有工业应用前景
的木糖发酵产乙醇的微生物有3种酵母菌种,即管囊酵母、
树干毕赤酵母和体哈塔假丝酵母,主要的发酵方法有以下
几种。
4.1直接发酵法
直接发酵法是基于纤维分解细菌直接发酵纤维素生产
乙醇,不需要经过酸水解或酶水解前处理过程。一般利用混
合菌直接发酵,例如热纤梭菌(Clostridium thermoceUum)能
分解纤维素,但乙醇产率较低(50%),热硫化氢梭菌(Col-
stridium thermohydz)不能利用纤维素,但乙醇产率相当高,
如果进行混合发酵,产率可达70%。吕福英介绍了热纤梭菌
的生理生化特性及发酵生产的研究进展,并对热纤梭菌发
酵生产乙醇的因素以及乙醇等发酵产物对热纤梭菌的抑制
作用作了概述。但热纤梭菌产生乙醇也存在以下问题:发酵
不完全、发酵速度慢、终产物乙醇和有机酸对细胞有相当大
的毒性,需要进一步改进。
4.2间接发酵法
间接发酵是目前研究最多的一种方法。使用纤维素酶
水解纤维素,收集酶解后的糖液作为酵母发酵的碳源,先用
纤维素酶水解纤维素,酶解后的糖液作为发酵碳源。但是受
末端产物抑制,低细胞浓度以及底物基质抑制作用影响乙
醇产量。因此可采取的方法有:减压发酵法和阿尔法—拉伐
公司的Bi-otile法,还可以通过筛选在高糖浓度下存活并能
利用高糖的微生物突变菌株来克服基质抑制。
4.3同步糖化发酵法(SSF法)
这种方法的原理和间接发酵法相同,是为了克服反馈
抑制作用,由Gauss等提出的在同一反应器中糖化和发酵同
步进行。这样纤维素酶对纤维素的酶水解和发酵糖化过程
在同一装置内连续进行。水解产物葡萄糖由于菌体的不断
发酵而被利用,消除了葡萄糖因基质浓度对纤维素酶的反
馈抑制作用。在工艺上采用一步发酵法,简化了设备,节约
了总生产时间,提高了生产效率。当然也存在一些抑制因
素,如木糖的抑制作用,糖化和发酵温度不协调。张继泉在
这方面进行了大量的实验研究,并取得了一定的进展。
4.4固定化细胞发酵
固定化细胞发酵能使发酵罐内细胞浓度提高,细胞可
连续使用,使最终发酵液酒精浓度得以提高。常用的固定化
载体有海藻酸钠、卡拉胶、多孔玻璃等。固定化细胞的新动
向是混合固定细胞发酵,如酵母与纤维二糖酶一起固定化。
将纤维二糖基质转化成乙醇,被看作是玉米秸秆生产乙醇
的重要方法。
5结论与展望
今后,玉米秸秆生产酒精的研究方向将主要集中在以
下几个方面。
5.1预处理方法
单纯的物理法和化学法不足以破坏纤维素晶体结构以
及去除半纤维素和木质素,应综合运用物理法与化学法,一
步完成预处理和水解2个阶段,有效提高纤维素的水解率。
5.2糖化工艺
发酵过程的酒精产率受许多因素影响,其中主要是水
解效率和单糖产量。比较而言,酶水解较酸水解有较大的优
越性,将成为今后糖化工艺的主要发展方向。
(下转第243页)
大田农艺
241现代农业科技》2008年第13期
区,在生产中培育优质高产栽培典型,将优良品种、生产技
术传授给农民,提高生产水平,从而自觉地实行生产操作规
程。为此,课题组要求各县(市)区狠抓园区建设工作,3年总
计建设20个千亩以上园区,均收到了良好的效果。在新品
种引进种植展示园和绿色有机杂粮规范化种植展示园方
面,通过实地技术操作和展示效果验证,产生了较强的辐
射带动作用。
2.7为确保实现标准化生产,在栽培管理上大力推选“九
改”集成技术
实现了从基地到餐桌全过程质量控制,涌现出许多谷
物优质高产典型。如2005年北票市北四家子乡南四家子村
集中连片种植朝新谷5号33hm2,平均产量7 740kg/hm2,最
高产量达到9 780kg/hm2。
2.8兴建龙头企业,培育绿色有机杂粮市场,延长产业链,
提高产品附加值
“辽西绿色有机杂粮生产基地建设与食品开发”项目实
施3年,累计建设杂粮生产基地5.33万公顷以上,其中绿色
有机杂粮生产基地2.16万公顷,从而形成了规模效应,为农
产品加工业提供了可靠的优质原料保障。目前全市共有各
类杂粮加工企业743个,年生产加工销售能力100万吨,其
中绿色有机杂粮6万吨,实现销售收入4.5亿元。同时,杂粮
基地规模化也带动了当地的杂粮市场建设。东北最大的杂
粮集散地建平朱碌科,建起25 000m2的杂粮交易批发市场,
绿色有机杂粮收购、加工、销售“十里长街”已初具规模,产
品主要销往国内大中城市并出口日本、韩国、德国、新西兰
等国家。
3项目成效
3.1规模大、有特色
建设绿色有机杂粮生产基地与食品开发,认证标识累
计规模为2.16万公顷,占全省认证总面积的60%,具有先进
农业区域经济与外向型经济的特色。经国内同行专家验收
一致认为:该项目产业化规模和技术水平在我国同类地区
具有领先地位。
3.2为旱作农业开辟了一条新路
针对辽西干旱地区的自然地理条件的特点,科学地开
发利用有限的耕地,实施绿色、有机杂粮标准认证,提高了
农产品的质量,创造了农业干旱地区增产增收的新途径。
3.3创出一条“科研+公司+农户+生产基地”四位一体的新
模式
形成产、加、销良性循环,拉动绿色有机杂粮加工业的
发展,实施农业名牌战略,提高了绿色有机杂粮食品的市场
占有率。3年累计出口创汇1.37亿元,促进了外向型经济的
迅猛发展。
3.4提高了农产品的附加值
3年中,绿色A级杂粮平均产值为1.92万元/hm2,平均
效益为1.60万元/hm2有机食品产值2.79万元/hm2,效益为
2.41万元/hm2。绿色、有机杂粮平均效益为2.03万元/hm2,比
项目区外杂粮对照平均效益增收1.03万元/hm2。
3.5改善了农业生态环境
绿色、有机农业就是生态农业。通过该项目的实施,在
认证的区域范围内,从根本上改变了农业的耕作方式,保护
了生态体系及周围环境生物的多样性,有效地减少和治理
了环境污染,不仅提供了安全的食品,而且促进了人与自然
的和谐。
通过3年绿色有机杂粮生产基地建设项目的实施,极
大地推进了科技产业化进程,推动了外向型经济的快速发
展,促进了第二、第三产业的繁荣,加速了杂粮新品种的更
新换代。由于推广粮草兼用型朝新谷5号新品种粮草比为
1∶1.3,不仅促进了农业的二元结构向三元结构的转移,而且
还带动了辽西畜牧业的发展。实践证明:干旱地区建设绿色
有机杂粮生产基地,在科技产业化中发挥了重要的作用,具
有广阔的前景。
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
(上接第241页)
5.3发酵菌株
菌种是发酵工业的灵魂,在玉米秆原料生产酒精过程
中,运用现代的育种技术培育出高效的直接发酵菌株,在适
应特殊基质条件、简化生产工艺等方面将会有所突破。若能
筛选到抗高浓度糖的基因突变菌株则可以克服纤维素原料
水解过程的抑制效应,提高发酵效率。
5.4发酵工艺
可以采用一定的技术手段,将发酵过程产生的乙醇不
断抽出,使发酵罐中的乙醇浓度≤10%,减轻乙醇对菌株生
长及乙醇生成的抑制作用,降低生产成本。
以玉米秸秆等纤维素生产酒精技术是世界各国研究的
热点,与其他生物能源、替代能技术相比,无论是在经济合
理性、技术可行性方面,还是在资源可持续性和环境协调性
方面都具有明显的优势,而且还可解决我国的石油资源短
缺和环境污染问题,有利于保证国家能源安全和社会协调
发展。
中国白酒按国家标准分为3类:
1、固态法白酒
用纯粮食在窖池里发酵,呈固态,故名。这也是传统酿造法。粮食的主要成分是淀粉,微生物(酒曲)把淀粉转化为糖,把糖转化为酒精。粮食还含有脂肪、蛋白以及很多种微量的其他有机成分,它们或被微生物转化,或与酒精反应,或者相互反应,生成几百种有机分子。
1瓶固态法白酒,酒精和水占98%,几百种有机分子占2%。酒的优劣,不决定于那98%,只决定于这2%。这2%中,最重要的是酯类。酯类分子有大有小,酯类大分子是这样产生的:微生物把脂肪转化为脂肪酸,再转化为脂肪酸酯。脂肪酸酯不溶于水,溶于酒精,酒精度高则溶解度高,酒精度低则溶解度低。1瓶固态法白酒,脂肪酸酯大分子溶在酒精里,所以酒是无色的,如果兑水,酒精度降低,则脂肪酸酯大分子析出,于是呈白色浑浊。这是鉴定固态法白酒最简单有效的方法。
2、液态法白酒
以富含淀粉、糖类的原料加曲、加水发酵,呈液态,故名。其发酵产物基本是酒精,其他有机分子微乎其微。食用酒精企业也是这样发酵的,所以国家标准允许白酒企业直接利用食用酒精。因为食用酒精不含其他有机分子,所以国家标准又允许勾兑香精以改善口感。勾兑的香精都是小分子,在酒精中的溶解度很高,有的甚至也溶于水,所以,液态法白酒对水后不会有析出,不会呈现白色浑浊。
3、固液法白酒
30%固态法白酒+70%液态法白酒。但是绝大多数酒企加的固态法白酒都不够30%,即便加够,兑水也仅呈现微微浅蓝。
为了遏止白酒标签欺诈消费者,2013年11月28日,国家食药监局发出《关于进一步加强白酒质量安全监督管理工作的通知》,规定:液态法白酒标签必须标注食用酒精、水、香精,不得标注粮食;固液法白酒中必须有30%的固态法白酒,标签只标注粮食是不行的,也要标注食用酒精、香精。
白酒生产大省四川更进一步,从2015年10月1日起,四川省施行新的《酒类管理条例》,规定:瓶装白酒标签应标注是固态法白酒、液态法白酒还是固液法白酒;年份酒标签应标注所含“陈酿酒”的比例和贮存年限,厂内应保存材料、资料以备追溯、查验。
扩展资料:
⑴、感官。白酒质量的优劣主要通过物理、化学分析和感官检验的方法来判定,正确的反映出酒的色、香、味的内容,必须依靠人的感官鉴定。白酒的感官质量包括色、香、味、格四个部分。要通过眼、鼻、舌三方面的形象来判断酒体。
⑵、酒精度。在20℃时,100mL酒样中含有酒精的毫升数或100g酒样中含有的酒精的克数。
⑶、固形物。白酒固形物是指在100~105℃下测定,经蒸发排除乙醇、水分和其他挥发性组分后的残留物。
⑷、甲醇。国家标准规定,以粮谷类为原料的白酒中甲醇含量不得超过0.6g/L,以其他原料生产的白酒中甲醇含量不得超过2.0g/L。(甲醇指标按 100%酒精度折算)
⑸、铅。国标规定,60%vol蒸馏酒的铅含量不得超过1mg/L(以Pb计)。铅超标会引起中毒。
⑹、锰。卫生标准要求锰在酒含量中,不得超过2mg/l(以Mn计)。锰是人体正常代谢必需的微量元素,但过量的锰进入机体可引起中毒。
参考资料:百度百科白酒
纯保鲜剂对人的危害有多大
保鲜剂 食品中常用的保鲜剂有:苯甲酸,是世界各国允许使用的一种食品保鲜剂,它在动物体内易随屎液排出体外,不蓄积,毒性低且价格低廉,目前占据国内大部分保鲜剂市场;丁基羟基茴香醚(BHA),是目前国际广泛应用的抗氧化剂之一,并有很强的抗微生物作用,主要用于食用油脂,最大用量为0.2g/kg,缺点是成本较高;二丁基羟基甲苯(BHT),是目前我国生产量最大的抗氧化剂之一,价格低廉,为BHA的1/5~1/8,但抗氧化性不入BHA强,使用范围与BHA相同,缺点是毒性较高;没食子酸丙酯(PG),抗氧化作用较BHA、BHT强,主要用于油炸食品、方便面和罐头,最大用量为0.1g/kg,缺点是与金属离子产生呈色反应;异抗坏血酸,用于一般食品抗氧化、防腐,且无毒性;叔丁基对苯二酚(TBHQ),对于油脂、不饱和的粗植物油很有效,对高温很稳定,且挥发性比BHA、BHT小,因此对加工和食用中需加热的食品非常适用。 2. 天然食品保鲜剂 为了适应人们崇尚自然、健康的思想,开发应用高效安全的食品保鲜剂已成为当今世界食品保鲜剂重要的研究领域。据有关资料证实,在人们长期食用的食品中,天然保鲜剂成分的毒性远远低于人工合成的保鲜剂。因此,近年来从自然界寻求天然保鲜剂的研究已引起各国科学家的高度重视。各国开发的大量天然保鲜剂产品,受到人们的普遍欢迎。 2.1 茶多酚类 即从茶叶中提取的抗氧化物质,对人体无毒。含有4种组分:表没食子儿茶素、表没食子儿茶素没食子酸酯、表儿茶素没食子酸酯以及儿茶素。它的抗氧化能力比VE、VC、BHT、BHA强几倍,因此日本已开始茶多酚类抗氧化剂的商品化生产。 2.2 天然维生素E(生育酚混合物) 天然VE大量存在于植物油脂中,无毒,且存在状态通常比较稳定。在油脂精制过程中,可回收大量的精制VE混合物。该成分抗氧化性较好,使用安全,在食品保鲜中已得到大量使用。限用于脂肪和含油食品,是目前我国唯一大量生产的天然抗氧化剂。价格较高,一般场合适用较少,主要用于保健食品、婴儿食品和其它高价值食品。 2.3类黑精类(melanoidins) 它们是氨基化合物和羰基化合物加热后的产物,其抗氧化能力相当于BHA和BHT,且具有抗菌作用。耐热性很强,可赋予食品良好的香味。 2.4 红辣椒提取物 红辣椒中含有大量的抗氧化物质,是VE和香草酰胺的混合物。如能将其中辣味去掉,则是一种极好的抗氧化剂。 2.5 香辛料提取物 早在20世纪30年代,人们就开始对香辛料的抗氧化作用进行研究。到50年代,科研人员对32种香辛料进行分析,发现其中抗氧化性能最好的是迷迭香和鼠尾草。这类产品多含有黄酮类、类萜、有机酸等多种抗氧化成分,能切断油脂的自动氧化链、螯合金属离子,并起到与有机酸的协同增效作用。法国从迷迭香干叶粉中提取出两种晶体抗氧化物质———鼠尾草酚和迷迭香酚,它们比人工合成的氧化剂BHT和BHA的抗氧化能力强4倍多。
2.6 果胶分解物 一般从蔬菜水果中提取,其酶分解物在酸性环境中有抗菌作用。目前,国外以果胶分解物为主要成分,混入其它一些天然防腐剂,已广泛应用于蔬菜、咸鱼、牛肉等食品的防腐。 2.7 糖醇类 糖类从化学结构上可分为单糖类、双糖类、三糖类、四糖类等,但均为低分子碳水化合物。其中五碳糖和六碳糖单糖促进氧化,双糖略有抗氧化作用,果糖和糖醇则具有较强的抗氧化能力。食品中广泛使用的抗氧化剂是山梨糖醇和麦芽糖醇。木糖醇也是抗氧化剂,它具有和VE协同增效的作用。 2.8 甘草黄酮类 棕红色粉末,具甘草物气味。是很好的天然抗氧化剂和防霉剂,抗氧化能力优于BHT的最大用量。 2.9植酸(PA) 浅黄色液体或褐色浆状液体,来源于米糠、玉米及食品加工中的废液。植酸与金属的螯合作用,可防止有毒金属在消化道内吸收。 2.10 蜂胶提取物 该提取物具有抗菌、消炎、抑制病毒、增强抗体免疫等作用。将蜂胶精提物直接加入牛奶、咖啡、保健口服液,以及饮料乳制品、流质食品中具有很好的保鲜作用。 除上述所介绍的外,还有:芝麻酚,大多不经离析,以芝麻油作为抗氧化剂使用;米糠素,来自于米糠油;栎精,存在于栎树皮中;棉花素,存在于草棉花瓣中,对不饱和脂肪酸的酯类有强抗氧化作用;芸香苷,存在于荞麦、槐花蕾、烟叶、蕃茄的茎叶中;胚芽油提出物,对动植物油脂都有效,适于高温加工食品使用;脑磷脂,取自新鲜羊脑和人胚胎脑。 3. 新型食品保鲜剂 3.1乳链球菌素(Nisin) 它是由乳酸乳球菌产生的小肽,由34个氨基酸组成,其中碱性氨基酸含量高,因此带正电荷。乳链球菌素与溶菌酶一起使用有协同作用;与其他杀菌措施结合可以更有效地防止食品腐败。Nisin的作用位点主要是细胞膜,其作用机制很可能是插入细胞膜中后,在细胞膜上形成有一定孔径的膜通道,导致细胞质的外泄,引起细胞的死亡。Nisin主要用于蛋白质含量高的食品的防腐,如肉类、豆制品等,不能用于蛋白质含量低的食品中,否则,反而被微生物作为氮源利用。 3. 2聚赖氨酸(POly-lysine缩写为PLL) 是日本新开发的广谱防腐剂,是由链霉菌属的生产菌产生的代谢产物,经分离提取精制而获得的发酵产品,是继Nisin(乳链球菌素)之后又一种新型天然防腐剂。其单体赖氨酸是一种必需氨基酸,因此安全性高。聚赖氨酸的热稳定性高,水溶性好,在中性至微酸性范围内有较好的抑菌效果,但在酸性及碱性pH范围内效果不好。
3.3 鱼精蛋白 是以鱼类精巢为原料分离得到的具有广谱杀菌作用的蛋白质,具有热稳定性好,安全无毒,适用pH值范围广(在中除或偏碱性条件下杀菌效果更好)等优点。但是,鱼精蛋白的价格高,添加量大,难于应用于普通食品。 3.4 溶菌酶 该酶可以水解细菌细胞壁肽聚糖的B-1,4一糖苷键,导致细菌自溶死亡,而且即使是已经变性的溶菌酶也有杀菌效果,这是由于它是碱性蛋白的缘故,故可用于食品防腐。当溶菌酶与EDTA一起使用时,EDTA可以络合掉脂多糖维持其结构所必需的钙离子,破坏其结构,使溶菌酶可以作用于其细胞壁。常与甘氨酸等配合使用于面类、水产熟食品、色拉等食品防腐。 3.5 森柏保鲜剂 是英国研制、开发的无色、无味、可食性果蔬保鲜剂,可广泛应用于果蔬的保鲜,并在花卉保存中也取得了成功。森柏保鲜剂是由植物油和糖组成的化合物,活性成分是“蔗糖酯”。其保鲜机理是通过抑制果蔬的呼吸作用和水分蒸发而让果实休眠,放慢成熟和老化的速度。一般1千克保鲜剂可处理苹果28吨左右。 3.6 壳聚糖(脱乙酰甲壳质) 一种节肢动物外壳提取物,主要成分是脱乙酰甲壳素的衍生物,是一种阳离子高分子多糖,壳聚糖用于食品保鲜剂具有安全、无毒,易被水洗掉,可以被生物降解且不存在残留毒性的优点。壳聚糖的作用机理是在果实表面形成半透膜,从而调节果实采摘后的生理代谢,并对微生物有抑制作用。壳聚糖是由甲壳质脱乙酰基生产,分子内含羟基和氨脯蜜饯及果汁饮料等生产中代替亚硫酸盐作为一种无公害、不影响产品基,可形成1种独特的复合膜,通过对气体选择性通透,达到延缓果蔬老化的目的。 3.7 复合维生素C衍生物保鲜剂 美国科学家研究发现,维生素C的衍生物的化合物可以保持实验中切开的苹果48小时无褐变。其化学成分是维生素C衍生物、肉桂酸、β-环糊精及磷酸钠盐等,可用于水果去皮后、加工前的保鲜处理,在罐头、果味的保鲜剂来应用。 4. 合成安全食品保鲜剂 除了天然食品保鲜剂,一些合成无毒高效的食品保鲜剂同样有着广阔的开发前景。相比之下,合成无毒无污染食品保鲜剂,更廉价且容易实现。 4.1 双乙酸钠 其分子式为CH3COONa.CH3COOH.nH2O 它可以用于食品、饲料的防霉。该防腐剂毒性小、效果与常用的防霉剂丙酸钙相当,价格却为它的三分之二。 4.2 2,4—乙二烯酸(山梨酸) 是目前国际上公认的安全无毒、高效和最理想的新型食品保鲜剂、防腐剂、防霉剂,是天然的食品添加剂。广泛应用于各类食品。合成方式以3,5-壬二烯-2-酮、氯气、烧碱和硫酸为主要原料,并取得了最佳工艺条件,所得产品收率达到95%以上,质量符合国家标准的各项要求。 4.3 单辛酸甘油酯 该防腐剂抗菌谱广,对细菌、霉菌、酵母菌都有较好的抑制作用,其效果优于苯甲酸钠和山梨酸钾。它的防腐效果不受pH值影响;并且其代谢产物均为人体内脂肪代谢的中间产物,分解产生的辛酸可经B-氧化途径彻底分解为二氧化碳和水,甘油可经三羧酸循环分解,是一种安全无毒的防腐剂,在日本的食品卫生法中规定不受使用量和用途的限制。但该产品同时存在着溶解性、分散性不好(难溶于水)以及对革兰氏阴性细菌抗菌效果较差等缺点。 4.4 羟甲基甘氨酸钠 该防腐剂应用范围广泛,抗菌谱广,对细菌、霉菌、酵母菌可抑制,杀菌效率高;在高pH值时防腐效果仍较好。 4.5 富马酸二甲酯 其分子式为:CH3OOCCH=CHCOOCH3,该产品的防霉效果特别好,适用的PH值范围宽,在PH3.0~8.0的范围内均有很好的防霉效果,远高于通常使用的丙酸钙,例如在同样的储存条件下,添加丙酸钙的面包可以保持15~30天不生霉,而添加富马酸二甲酯的面包则可以475天不生霉。富马酸二甲脂有低毒性,对皮肤有过敏作用。 5. 双乙酸钠性质和合成方法 这里要特别介绍一下双乙酸钠。双乙酸钠是一种公认安全可靠的新型高效、广谱抗菌防霉剂,并可提高饲料谷物效价的食品添加剂。联合国粮农组织(FAO)和世界卫生组织(WHO)批准为食品、谷物、饲料的防霉、防腐保鲜剂。 5.1 双乙酸钠的性质 双乙酸钠为白色晶体,具有吸湿性及乙酸气味。可燃,可溶于水及乙醇,平时需保存在40。C以下的阴凉处,密封,防晒,防潮。双乙酸钠的毒性很低,小鼠口服LD50为3.31g/kg,大鼠口服LD50为4.96g/kg,每人每天允许摄入量(ADI)为0~15mg/kg。双乙酸钠在生物体内的最终代谢产物为水和CO2,不会残留在人体内,对人畜、生态环境没有破坏作用或副作用。 双乙酸钠用于粮食谷物、食品和饲料防霉具有高效抑霉效果,尤其对黄曲霉素有较强的抑制作用,它通过渗透于微生物细胞壁,干扰细胞内各种酶体系的生长,可以高效抑制常见的十余种霉菌素和4种细菌发生、滋长和蔓延,其抑霉效果优于防霉剂丙酸钙。国外已大量用于粮食谷物、食品和饲料的防霉保鲜,国内尚处于起步阶段。 5.2 双乙酸钠的合成方法 5.2.1 乙酸—纯碱法 反应式:4CH3COOH + Na2CO3=== 2CH3COONa.CH3COOH+CO2+H2O 1. 以乙醇为溶剂 该法采用35%的乙醇水溶液作介质,在乙酸中逐渐加入碳酸钠,在室温下反应。待生成的待生成的乙酸钠物料变稠,及时加热80~83。C,回流反应30min,反应后冷却到25。C,结晶、过滤、干燥后得成品,所得滤液可再次浓缩后结晶处理。此方法产品收率在95%以上,原料易得,成本低,产出母液少不能回收利用,需配置溶剂回收装置。缺点是产生大量CO2。
2. 以水为溶剂 反应器中加入水和碳酸钠,搅拌升温至40。C,碳酸钠全部溶解,缓慢加入乙酸,投料比n(乙酸):n(碳酸钠):n(水)=1:0.27:0.54,升温至70。C,恒温反应3h,冷却、结晶、干燥得成品。滤液经薄膜蒸发脱去30%的含水量后循环使用,产品收率在96%左右。该法工艺简单,原料价廉易得,能耗低,收率高,母液可循环使用,无“三废”污染环境。 3. 不加溶剂 加入碳酸钠与乙酸,投料比为1:3.77~4.33。搅拌并加热至90。C,反应3h,结晶、冷却、干燥,得产品。产品分散均匀且颗粒性好,母液可完全循环利用,反应过程无废液排出,符合环境友好生产工艺的要求。 5.2.2 乙酸—烧碱法 反应式:2CH3COOH+NaOH====CH3COONa.CH3COOH+H2O 此反应不用外加溶剂,一步合成双乙酸钠。将乙酸加热搅拌,缓慢加入氢氧化钠,控制温度为105~125。C,投料比为2.1~2.2:1,反应时间45~120min。反应后将产物冷却结晶,取结晶晶体在105。C下干燥,所得产品产率达97%以上。该法不存在母液回收问题,原料价廉易得,操作容易,反应时间短,质量稳定,无“三废”排放,产率高,是绿色环境生产工艺。 5.2.3 乙酸—乙酸钠法 反应式:CH3COONa+CH3COOH+xH2O====CH3COONa.CH3COOH.xH2O 该法分为气相法和液相法,气相法由德国开发成功,以N2和CCl4作流动介质,将乙酸钠与乙酸在20~200。C的流化床反应器中反应。气相法生成能力大,但必须严格控制操作条件,废气中有大量酸雾,必须回收。 液相法最早是由印度开发成功,将乙酸钠与乙酸要乙醇溶液中反应制得,该方法工艺简单,操作方便,设备投资少,收率较高。但半成品熔点很低(50~60。C),干燥温度必须严格控制,而且乙醇必须回收。 1. 以乙醇为溶剂 0.1mol乙酸钠和5ml 50%乙醇水溶液搅拌混合后,加热到60。C,再滴加0.1mol冰乙酸,约30min滴完。控制乙酸钠与乙酸投料的物质量比为(1.004~1.025):1。然后于60~80。 C加热4h,冷却至室温,静至结晶,分离后的滤液经浓缩后再次结晶,合并两次结晶产物,烘干后可得产物13.3g。该法产品收率在95%左右,母液可重复利用,产品质量好。缺点是需用乙醇作溶剂,原料成本稍高,反应时间较长。 2. 以水为溶剂 加入乙酸钠、乙酸和水,其量比为1:1:1.25,搅拌混合,缓慢加热至乙酸钠熔化,回流反应30min,冷却、过滤、干燥即得双乙酸钠成品,产品收率在95%左右。该法制备工艺简单,生产成本低,无三废排放,易于工业化操作。设备投资少的优点,宜于小厂小规模生产。 5.2.4 醋酐—乙酸钠法和醋酐—乙酸—纯碱法 醋酐—乙酸钠法, 反应式:(CH3CO)2O+ CH3COONa=== CH3COONa.CH3COOH+CO2 是将配比为1:2的醋酐和乙酸钠在一定量的水存在下,进行反应,再结晶而得双乙酸钠产品。 该法反应收率高,但反应时间长,醋酐的成本也较醋酸高,因成本问题不易工业化。 醋酐—乙酸—纯碱法,反应式:(CH3CO)2O+2CH3COOH+Na2CO3====2CH3COONa.CH3COOH+CO2 是将纯碱预先溶于水中,然后交叉滴加冰乙酸和醋酐,滴完后于70。C反应3h,再冷却,静置8~10h,结晶而得双乙酸钠产品。用醋酐作原料,具有产品质量好,符合FDA饲料级标准。用水作溶剂,母液可重复利用的优点;缺点是醋酐价格昂贵,生产成本高,反应时间长,收率低。因此国内对以醋酐为原料的生产工艺开发研究较少。 我国主要是以乙酸—乙酸钠液相反应法生成双乙酸钠,但是最理想的生产工艺是乙酸—碳酸钠法和乙酸—氢氧化钠法,原料价廉易得,工艺操作简单,生产成本低,收率高。用水作溶剂或不用溶剂,不会带来环境污染问题。并可增加疲软的乙酸、纯碱、烧碱等化工基础原料的市场需求,具有良好的经济效益和社会效益。 5.3 市场前景 总的来说,双乙酸钠具有诸多优点。如防霉效果好、用量少(用量为丙酸盐的一半即可挥发相同的防霉效果)、价格低、毒性低、投资少、生产简易、原料易得、增加饲料营养价值,省却粮食晾晒处理等。应成为首选的饲料及粮食防霉剂。目前我国仅有10家左右的双乙酸钠生产企业,在防霉剂市场中只有很少的分额,全国双酸钠总的生产能力不超过3000t/a,年产量约2000t/a。由此可见,双乙酸钠的潜在巨大市场,前途广阔。双乙酸钠的生产和推广应用可为国内疲软的乙酸、纯碱、烧碱等化工原料带来新的市场需求,扭转国内丙酸短缺而又大量进口的不利局面。国内研究单位应加强双乙酸钠生产工艺的开发,并不断开拓其应用领域,推动我国防霉防腐剂的更新换代。
一、涂膜液配方 山梨酸钠10克,抗坏血酸8克,乙_二醇5克,乙醇4克,硬脂酸酯类(以甘油脂为佳)10克,蔗糖酯2克,苯甲酸钠(防腐剂)2克.水50克,乙酸1克(凋节pH值用)。 二、配制方法 先将固体山梨酸钠、硬脂酸酯类、蔗糖酯、苯甲酸钠投入盛水的不锈钢反应器具中,在搅拌下加热使其混合溶解(溶解温度40℃)。溶解后的溶液应用凉水降温到15℃,加入易挥发的消毒、杀菌剂乙醇、乙二醇,混合均匀即为涂膜液,置于阴凉处保存。 三、使用方法 先将涂膜液用乙酸调节pH值为4~5,鲜蔬果类洗净、晾干,放人15℃的涂膜液中。2分钟后捞出,于阴凉处晾 F即可在果蔬表面形成半透气性、可食用的透明保鲜膜。涂膜后的果蔬应放人阴凉的房内或地窖贮存。保鲜期可达6个月
1.GB 2760-1996规定为允许使用的食用香料。可少量用于玉兰、依兰、桂花、兔耳草花及花露水、果香型等香精作头香来提调新鲜果香之用,特别是用于香水香精中,有圆熟的效果。适用于樱桃、桃子、杏子、葡萄、草莓、悬钩子、香蕉、生梨、凤梨、柠檬、甜瓜等食用香精。酒用香精如白兰地、威士忌、朗姆、黄酒、白酒等亦用之。
2.乙酸乙酯是应用最广的脂肪酸酯之一,是一种快干性溶剂,具有优异的溶解能力,是极好的工业溶剂,也可用于柱层析的洗脱剂。可用于硝酸纤维、乙基纤维、氯化橡胶和乙烯树脂、乙酸纤维素酯、纤维素乙酸丁酯和合成橡胶,也可用于复印机用液体硝基纤维墨水。可作粘接剂的溶剂、喷漆的稀释剂。乙酸乙酯是许多类树脂的高效溶剂,广泛应用于油墨、人造革生产中。用作分析试剂、色谱分析标准物质及溶剂。
3.在纺织工业中可用作清洗剂,在食品工业中可作为特殊改性酒精的香味萃取剂,还用作制药过程和有机酸的萃取剂。乙酸乙酯也是制造染料、药物和香料的原料。
3.检定铋、金、铁、汞、氧化剂和铂。
4.分离糖类时作为校正温度计的标准物质。
5.生化研究,蛋白质顺序分析。
6.环保、农药残留量分析。
乙酸乙酯,一种化合物,化学式是C4H8O2,分子量为88.11。又称醋酸乙酯,是一种具有官能团-COOR的酯类(碳与氧之间是双键),能发生醇解、氨解、酯交换、还原等一般酯的共同反应。低毒性,有甜味,浓度较高时有刺激性气味,易挥发,具有优异的溶解性、快干性,用途广泛,是一种重要的有机化工原料和工业溶剂。属于一级易燃品,应贮于低温通风处,远离火种火源。
实验室一般通过乙酸和乙醇的酯化反应来制取。酯化反应是一个可逆反应。为了提高酯的产量,必须尽量使反应向有利于生成酯的方向进行。一般是使反应物酸和醇中的一种过量。在工业生产中,究竟使哪种过量为好,一般视原料是否易得、价格是否便宜以及是否容易回收等具体情况而定。在实验室里一般采用乙醇过量的办法。乙醇的质量分数要高,如能用无水乙醇代替质量分数为95%的乙醇效果会更好。催化作用使用的浓硫酸量很少,一般只要使硫酸的质量达到乙醇质量的3%就可完成催化作用,但为了能除去反应中生成的水,应使浓硫酸的用量再稍多一些。
制备乙酸乙酯时反应温度不宜过高,在保持在60℃~70℃之间,温度过高时会产生乙醚和亚硫酸或乙烯等杂质。液体加热至沸腾后,应改用小火加热。事先可在试管中加入几片碎瓷片,以防止液体暴沸。
对样品中某种辐射的总发射率进行测定,称为总放射性活度测定。主要包括α和β放射性活度测定。虽然总放射性测定的结果没有对核素进行定性、定量,所能提供的信息经常需要其他信息的补充,但是在某种情况下还是很有意义的。
环境监测中总放射性活度测定的主要目的如下:
A.对大量待分析样品进行分类或筛选,初步判断有无放射性,以筛选出需进一步仔细测量的样品;
B.当已知样品中核素的大致组成时,总放射性测定结果同时也可以大致反映出各单个核素的活度大致水平;
C.在样品核素成分不明的情况下,以总放射性数据同样品中可能含有的限制最严的核素的排放限值比较,判断可否排放;
D.在较大区域中,比较总放射性数据以判明是否存在本底升高或沾污的可能。
此外,总放射性测定也可提供对同类辐射(α、β、γ)的各单个核素的分析数据进行核对。研究环境样品中α谱或γ谱的组成时,有时也需进行总放射性测定。在商检工作中有时亦用到总放射性测定。
总放射性测定在事故应急监测中应用较多,尤其是用于食品和水样的早期污染判断中。就常规监测而言,总α和总β放射性测定目前仍然作为多数核设施常规监测项目的内容。
10.2.1.1 α放射性活度测定
天然放射性核素所发射的α粒子能量在2~8 MeV之间。粒子的射程很短,在一般的地质和生物样品中,较高能量的α粒子射程在4~6 mg/cm2间。
环境样品总α放射性测定分为直接测定法;浓集(载带或蒸发)测定法;化学分离——α谱仪法。其中以化学分离——α谱仪法灵敏度最高,同时该法还可给出单个α核素的活度浓度值。
按测定样品的厚度不同,总α放射性测定可以分为薄层样、厚层样(饱和层厚度)和介于两者之间的中间层样品。
低水平放射性测定的关键在于测定装置的性能及样品制备。常用的α辐射测定装置有正比计数器、闪烁计数器(ZnS和液闪体系)、固体径迹或核乳胶、半导体探测器、屏栅电离室等。正比计数器和半导体探测器具有本底低、效率高、维护简便、价格较低等优点,应用较广泛。但这类装置的探测面积较小。屏栅电离室探测面积大,可作绝对测定,但制样要求高,装置价格较贵。
制样分为薄层样、中间层样和饱和层样。
(1)薄层样品
当样品厚度很薄,α粒子在样品中的自吸收可忽略时,由探测器测定到的α净计数率经探测效率校正,就可方便地计算出样品中α放射性的活度浓度值。理论推算表明,只要样品厚度<30 μg/cm2,即使对准确度要求较高的绝对测量(±1%)而言,其自吸收修正也可忽略。
对于厚样品的自吸收校正方法有理论计算和实验测定两类,后者又可分为吸收法、能谱位移法、等放射性活度法和等活度浓度法等。
若以n0,ni分别表示源物质无自吸收和有自吸收时的计数率,则我们定义f为自吸收系数,为
环境地球物理学概论
几种α核素自吸收系数与质量厚度的关系参见表10.2.1。
从环境放射性监测的准确度要求来看,特别是在常规监测和污染源调查中,允许忽略。自吸收的样品厚度,可放宽到0.5~1 mg/cm2间,此时所得的结果偏低10%左右。
表10.2.1 一些α核素在不同质量厚度时的自吸收系数
薄层样的制样技术可选用电沉积法、点滴蒸发法、浸取(或萃取)-蒸干法。蒸发制样中不仅要注意样品宏观均匀性,同时要控制技术条件,使蒸干后的固体粒径尽可能细小、均匀,常用的技术措施有加表面活性剂、缓慢蒸发,以及研磨至100目在乙醇中再铺样等。
总α放射性的活度浓度计算:当样品是水或其他液体样品时,薄层样法计算公式如下
环境地球物理学概论
式中:Cα为待测样品的总α放射性的活度浓度,Bq/L;nα为样品源的α计数率(包括本底),s-1;nb为本底(空白样品+仪器本底)计数率,s-1;MT为每升水样中残渣的质量,mg/L;ηα为仪器对α粒子探测效率;Md为样品源质量,mg;Y为制样回收率,可由实验获得,Y≤1。
当被测样品为生物样品灰或土壤、沉积物、矿物质、烟尘等固体样品时,研磨粉碎80~100目,在乙醇中铺成薄层样。其总α放射性的活度浓度计算公式为
环境地球物理学概论
由于被测的是固体物质,式中Cα的单位应重新定义。
(2)中间层样品
当铺样厚度尚未达到α粒子在该物质中射程、其自吸收又不可忽略时,则应对α粒子在源物质中自吸收加以校正。此时,对固体样品总α放射性的活度浓度计算公式为
环境地球物理学概论
式中:S为样品源面积,cm2;δm为样品源质量厚度,mg/cm2;δs为样品物质的α吸收饱和层厚度,mg/cm2;Cα单位为Bq/kg。
当样品源是由水或其他液体样品蒸发而制备时,其总α放射性的活度浓度由下式计算
环境地球物理学概论
式中Cα的单位为Bq/L。
对中间层样品的自吸收校正,也可用实验方法测定。通常较多采用的是“等放射性活度法”,即在不同质量样品中加入等量的放射性标准,混匀后,测定计数率。
(3)饱和层样品(厚源法)
当样品厚度大于某一厚度时,再继续增大其厚度,α计数率不再增大。此时样品源的厚度即称为饱和层厚度。应该注意的是,饱和层厚度δs并不等于α粒子在源物质中的最大射程Rp。对一定能量的α粒子,Rp基本上是一个常数,但δs不仅与α粒子能量有关,而且与测量仪器特性有关。饱和层厚度的物理意义是:α粒子由源物质最底层垂直穿透样品表层,而其剩余能量刚好高于仪器甄别阈而被记录时的临界样品层厚度。
通常,饱和层厚度在10~20 mg/cm2,随α粒子能量及样品密度而异。
厚度大于饱和层的样品称厚源样品,此时对固体样品(生物样品灰、土壤等)总α活度浓度计算公式为
环境地球物理学概论
式中Cα的单位为Bq/L。
对水或液体样品的蒸残物制备的厚样,其总α放射性的活度浓度计算公式为
环境地球物理学概论
式中Cα的单位为Bq/L。
(4)饱和层厚度δs的确定
确定δs的方法有理论估算和实验测定两类。
A.理论估算法。可近似以α粒子在源物质中的射程用Rρ来表征δs。α粒子在源物质中的射程,可由Brage-Kleeman方程计算,即
环境地球物理学概论
式中Rρ为α粒子在样品密度为ρ的物质中的射程,mg/cm2;Rα为同样能量的α粒子在空气中的射程;A为依据原子份额计算的源物质平均原子量。
按原子份额计算化合物或混合物的平均原子量可用下面两式求得
环境地球物理学概论
式中Pi是原子量为Ai的第i种原子在混合物或化合物中所占的质量百分比。
环境地球物理学概论
式中fi是原子量为Ai的第i种原子在混合物或化合物中原子数的百分比。
式(10.2.10)的准确度约在10%内,α粒子能量低时误差会增大。
B.实验测定法。又分为作图法和铝箔吸收法。
作图法。制备一系列厚度不同而放射性活度相同的样品源,测量其计数率,做出计数率-质量厚度关系曲线。从曲线拐点处查出相对应的质量厚度,即为δs,如图10.2.1所示。
图10.2.1 样品厚度与α计数率关系
该法较简便,但薄而均匀的样品源制备不易,有时拐点不明显,较难测准,同时还和测量仪器有一定关系。
铝箔吸收法。该法是先由实验测出α粒子在铝吸收体中的饱和层厚度δAl,然后由下式计算出δs
环境地球物理学概论
式中AAl为Al的原子量,而A则可由式(10.2.9)或(10.2.10)来计算。
实验用的平面α标准源(与待测核素α粒子能量相同)及已知厚度的铝吸收片(约l mg/cm2)进行,以下式计算出δAl:
环境地球物理学概论
式中:δAl为铝箔吸收饱和厚度,mg/cm2;DAl为Al吸收体质量厚度,mg/cm2;n1为不加吸收体时标准源计数率,s-1:nAl为加铝箔后标准源计数率,s-1。
(5)α标准源选择及效率刻度
总α放射性测量中α标准源的选择应与待测样品中α放射性粒子能量相一致,但这很难做到。因不同核素α粒子的能量不同,δ及ηα均与α粒子能量相关。在待测样品中,往往不清楚含有哪些α放射性核素。一般,天然存在的主要α粒子能量在3.9~8 MeV间,选择天然铀源作仪器效率刻度较宜。而对人工沾污为主的待测样品,通常选用239+240Pu标准源来刻度。
对于精细的测量,对标准源与待测样品中由α粒子能量不一致而带来的误差,应做必要的修正。
(6)低本底α谱仪及其应用
在环境监测中,会遇到一些源于核燃料循环和同位素生产及应用的人工α放射性核素(如钋、钚、镅、锔等)。它们的毒性大、寿命长,因此在环境中的限制浓度很低,从而构成了一类特殊的测量问题。环境中还到处存在铀、钍、锕系的天然α放射性核素,除了在矿冶和核燃料制备等设施的环境监测中当作直接的监测对象外,很多场合常被作为干扰核素需要加以鉴别。α谱仪是鉴别α核素的重要工具。
相对于其他类型辐射,α粒子的显著特点是射程很短,因此很容易把来自周围的α辐射屏蔽掉,从而设计出本底很低的α测量仪。所谓低水平样品,一般指其α活度浓度在若干Bq/kg以下的样品。
由于环境介质的α放射性水平一般较低,同时α粒子和射程极短,因此,一方面要使样品必须足够薄,另一方面要求样品的面积足够大。
目前已有多种金硅面垒或离子注入型多道α谱仪。
金硅面垒半导体探测器的α能谱仪,突出的优点是能量分辨率高,价格较低,使用方便,已经广泛应用。除了用上述方法制备的各种液体、固体环境样品,进行α谱分析之外,半导体α谱仪特别适用于利用微孔滤纸收集空气样品直接进行α能谱分析。滤纸孔径适当,可以把大量空气中的放射性气溶胶颗粒收集在滤纸表面,滤纸面吸收可忽略不计。通过α能谱分析,可以把空气中存在的氡、氢子体核素和人工α核素(钋、钚、镅、锔等)分别测量出来,如图10.2.2所示,为两种微孔滤纸收集的气溶胶样品中Rac′(7.687 MeV)谱峰。
10.2.1.2 β放射性活度测量
(1)基本原理
图10.2.2 气溶胶样品中Rac′α能谱
β粒子贯穿物质的本领要比α粒子大得多,不同核素所发射的β粒子的最大能量相差很大。因此,很难采用“饱和层样”或“薄层样”来测量样品的总β放射性。总β放射性测量的样品,一般需均匀铺成厚度在10~50 mg/cm2(以20 mg/cm2为宜)之间。厚度太大,低能β损失过大,会增大测量误差。
(2)制样及计算方法
对环境中天然总β放射性活度测定而言,40K的贡献是主要的。对有可能受到人工β核素沾污的样品,常常采用“去钾总β测量”。
通常采用两类方法进行。一类是测量样品中的总β放射性和钾含量(可用原子吸收法或火焰光度法等来分析钾含量),根据样品中钾含量计算40K的β放射性活度,再从总β放射性活度中减去40K放射性活度;另一类是用化学分离法去除钾,直接测定去钾后样品的总β放射性活度。
对固体样品,总β放射性活度计算公式如下
环境地球物理学概论
式中:Aβ为待测样品总β放射性的质量活度浓度,Bq/kg;na为样品计数率(包括本底),s-1;nb为本底计数率(空白样+仪器本底),s-1;m为样品盘内待测样品质量,mg;ηβ为样品源活度的探测效率(包括自吸收)。
对水样或其他液体蒸残物所制备的样品,总β放射性的计算公式为
环境地球物理学概论
式中:w为每升水(或其他液体)所含残渣质量,mg/L;Y为制样回收率(应由实验确定,Y≤1)。Aβ的单位为Bq/L。
当被测样品为动植物样或其他生物样品灰时,总β放射性活度计算公式为
环境地球物理学概论
式中K为样品的鲜干质量比;Aβ的单位为Bq/kg。
(3)标准源选择及探测效率刻度
在作环境样品总β测量中,一般选用KCl作为标准来刻度仪器的探测效率。其中40K的平均β能量为0.40 MeV与放置2年的混合裂变产物的平均β能量(0.48 MeV)接近。可选用优级纯KCl,在玛瑙研钵中研细,100目筛子过筛,烘箱中于110℃下干燥4~6 h,冷却后在样品盘中制成不同厚度的一系列标准样品,测定相应的β计数率,绘成ηβ厚度曲线。
计算时,只要根据样品盘中待测样品的实际质量厚度,在实验曲线上查出相应的值,代入公式后,即可算出样品的总β放射性。
1、看酒的防伪标,真品防伪标志在不同的角度下可出现不同的图案变换,防伪线可撕下来;假酒的防伪标志无光泽,图案变换不明显,防伪线有时是印上去的。
2、在对白酒的香气进行感官鉴别时,最好使用大肚小口的玻璃杯,将白酒注入杯中稍加摇晃,即刻用鼻子在杯口附近仔细嗅闻其香气。或倒几滴酒在手掌上,稍搓几下,再嗅手掌,即可鉴别香气的浓淡程度与香型是否正常。
3、白酒的正常色泽应是无色透明,无悬浮物和沉淀物的液体。将白酒注入杯中,杯壁上不得出现环状不溶物。将酒瓶倒置,在光线中观察酒体,不得有悬浮物、浑浊和沉淀。冬季如白酒中有沉淀可用水浴加热到30~40℃,如沉淀消失为正常。
4、取食用油一滴,滴入酒中,若能有规则地扩散,均匀下沉,为优质酒,反之扩散无规则,下沉不明显为劣质酒。
扩展资料:
其他特征鉴别
(1)标记特征:根据包装上的标记特征进行鉴别。如茅台、五粮液、西凤等其包装上字体有凹凸感,而伪劣酒包装上字体平,凹凸感极差或无凹凸感。
(2)瓶盖特征:根据材质、图案、颜色、结构不同进行鉴别。如汾酒其真品瓶盖是用进口铝质材料制成的,螺纹盖上印有“古井亭”图案,整齐清楚,盖内壁呈银白色,内垫有弹性的白色硬质塑料垫,封口整齐。
(3)瓶型特征:根据酒瓶形状,制作质量等特征进行鉴别。如五粮液真品瓶型有鼓形(俗称萝卜瓶)、麦穗形两种,瓶子用料细,制作精,瓶底圆形,周围有规则的凸出条纹。假五粮液瓶型较杂乱,有方形,圆柱形,还有一些不规则的异形瓶。
参考资料来源:百度百科:酒水鉴别