建材秒知道
登录
建材号 > 苯酚 > 正文

对氟硝基苯生产工艺是危险工艺吗

碧蓝的小猫咪
聪慧的蜜蜂
2023-01-01 01:42:26

对氟硝基苯生产工艺是危险工艺吗?

最佳答案
微笑的大碗
强健的火车
2025-07-28 14:12:13

氟硝基苯类精细化学品的工业生产方法主要是卤素交换法、亲核取代、Schiemann反应和硝化氟化法,以下举例介绍氟硝基苯类精细化学品的生产实例。

1.  间氟硝基苯

间氟硝基苯由间二硝基苯与氟化钾反应而得,其反应式如下:

间二硝基苯在Ph4PBr和邻苯二甲酰氯中,与氟化钾于180℃反应3h,得到89%的间硝基氟苯。

这一合成路线利用易得的廉价间硝基物直接氟化,得到的收率较用间氨基有机化学品重氮化分解法的收率要高得多。

2.  对氟硝基苯

对氟硝基苯以对硝基氯苯为原料,经卤素交换法制得,其反应式如下:

该反应中采用由N-甲基吡咯烷酮、二甲基亚砜及环丁砜所构成的两种溶剂的混合溶剂。对硝基氯苯与混合溶剂之比为0.5~1.5,氟化钾用量为原料对硝基氯苯物质的量的1.1~2.0倍,反应温度为160~240℃。

制备实例1:向带有搅拌器、蒸气出口、氮气导入口及温度计的玻璃反应器中加入氟化钾75.5g、二甲苯20g及混合溶剂(由30% N-甲基吡咯烷酮和70%二甲基亚砜构成)200g。在搅拌下边通氮气,边加热二甲苯至溶剂达到沸点,采用这种方法将反应系统中的水分除去。接着加入对硝基氯苯157.5g,在190~200℃下反应6h。反应液中的不溶物经过滤除去,然后采用水蒸气蒸馏、乙醚萃取及蒸馏,得产品对硝基氟苯。对硝基氯苯转化率90.6%,对硝基氟苯选择性94%,对硝基氟苯收率85.2%。

制备实例2:在搅拌下向熔化的对硝基氯苯中加入含水0.2%的氟化钾和三癸基三甲基溴化胺。混合物在140℃下加热28h,反应混合物冷却至100℃,加入甲苯进行过滤。除去甲苯,真空蒸馏,得对硝基氟苯,收率60%,对硝基氯苯回收率20%。

3.  2,4-二硝基氟苯

2,4-二硝基氟苯以2,4-二硝基氯苯与无水氟化钾为原料,经亲核取代反应而得,其反应式如下:

制备实例1:向反应器中加入165g氟化钾、360mL二甲基亚砜及适量阻聚剂,搅拌、加热升温到120℃,加入2,4-二硝基氯苯300g,控制温度不低于110℃。加毕,于110~120℃保温反应30h,然后快速冷却至常温。抽滤、滤出氟化钾残渣,滤液加600mL水,洗涤、静置分层,水层回收二甲基亚砜套用,回收率50%~70%。油层用2×300mL水洗,减压蒸馏,收集110~120℃(266×10-6 MPa)馏分,即为2,4-二硝基氟苯,收率90.7%,含量96.45%。

本法较佳工艺条件:2,4-二硝基氯苯,氟化钾,二甲基亚砜,阻聚剂=1.0:1.8:3.4:0.1(摩尔比),反应温度110~120℃,反应时间3h。在此条件下,2,4-二硝基氟苯收率90.7%,含量96.45%。

此法关键是应用阻聚剂,抑制2,4-二硝基氟苯在二甲基亚砜中的副反应,使得2,4-二硝基氟苯收率由原来的78%提高到90%。如不用二甲基亚砜,则反应时间长达7h,收率可达92%,但反应温度高(90~120℃),容易发生爆炸,有些厂家已因此被迫停产。如用乙腈作溶剂,18-C-6作相转移催化剂,反应时间仅1h,收率可达95%,但工业上实现困难。

制备实例2:向1L烧瓶中加入2,4-二硝基氯苯202.5份、氟化钾69.7份、三苯基胺4份和二甲基甲酰胺400mL,在100℃、常压下反应,反应开始2h后取样分析,得2,4-二硝基氟苯58.5份。

制备实例3:向1L高压釜中加入2,4-二硝基氯苯202.5份、氟化钾69.7份、乙腈400mL和四甲基乙二胺10份,于110℃和0.05065~0.1013MPa压力下(表压)反应。反应开始3h后取样分析,得2,4-二硝基氟苯47.1份。

制备实例4:向20mL乙腈中加入氟化钴(Ⅲ)0.22g、联二吡啶1.20g和2,4-二硝基氯苯0.91g,在氮气流下搅拌回流。反应47h后取样分析,得2,4-二硝基氟苯,收率49%。

4.  2,4-二氟硝基苯

2,4-二氟硝基苯的制备有间二氟苯法和2,4-二氯硝基苯法两种生产方法。

(1)间二氟苯法由间二氟苯经混酸硝化制得,其反应式如下:

将适量的混酸预先加入反应釜内,反应温度升至30℃,滴加间二氟苯,加毕保持反应2h。然后静置,分出有机相;用碳酸钠水溶液中和,再水洗,即得合格产品,收率95%。

此法的特点是反应条件温和、产品纯度高、收率高,但原料成本也高。

(2) 2,4-二氯硝基苯法由2,4-二氯硝基苯经用氟盐取代制得,其反应式如下:

将反应釜预热至50℃,在氮气保护下,依次加入氟化钾、催化剂、二甲基亚砜(DMSO)和2,4-二氯硝基苯,开动搅拌器,升温至180℃,保持反应6h。再降温至30℃,加入适量二氯甲烷,搅拌20min,过滤,然后进行蒸馏,蒸出滤液中的二氯甲烷,再经减压蒸馏而得成品。

最新回答
轻松的往事
年轻的花瓣
2025-07-28 14:12:13

建议你这样试试看:

甲苯为原料,三氯化铁为催化剂,通氯气生成对氯甲苯与邻氯甲苯的混合物;

混合物经精馏结晶法获得对氯甲苯;

对氯甲苯氯代,条件—光照+氯气,生成对氯三氯甲苯;

对氯三氯甲苯与无水氟化氢反应,生成对氯三氟甲苯;

对氯三氟甲苯通氯气,三氯化铁催化,得到目标结构—3,4-二氯三氟甲苯。

这样做的好处:

可工业生产,获得大量的目标产物。

合成路线

坦率的小刺猬
醉熏的机器猫
2025-07-28 14:12:13

酚(phenol),通式为ArOH,是芳香烃环上的氢被羟基(—OH)取代的一类芳香族化合物。最简单的酚为苯酚。依分子中羟基数分为一元酚、二元酚及多元酚;羟基在萘环上的称为萘酚,在蒽环上称为蒽酚。 与普通的醇不同,由于受到芳香环的影响,酚上的羟基(酚羟基)有弱酸性,酸性比醇羟基强,如苯酚自身在水中的部分电离,但酸性比碳酸弱,不能使指示剂变色。酚可与强碱生成酚盐,如苯酚钠。易被氧化,在空气中白色的晶体酚易被氧化为红色或粉红色的醌。酚在溶液中与三氯化铁可形成配合物,并呈现蓝紫色,可以鉴定三氯化铁或酚。酚羟基的邻对位易发生各种亲电取代反应;酚羟基可发生烷基化及酰基化反应。酚一般可由芳烃磺化后经碱熔融制得;酚也可由卤代芳烃与碱在高温高压催化下反应制得;异丙苯氧化可制得苯酚与丙酮;由芳烃制成的格氏试剂与硼酸酯反应,经过氧酸氧化后水解可制得酚;1,3,5-三甲苯与1,2,3,5-四甲苯可与过氧三氟乙酸在低温与中反应制得相应酚;芳烃与三氟醋酸铊反应,产物与醋酸高铅、三苯膦先后反应,在加HCl使铅、铊离子沉淀后加NaOH水解制得酚;芳香伯胺经重氮盐水解也可制得酚。

酚是重要的化工原料,可制造染料、药物、酚醛树脂、胶粘剂等。苯酚及其类似物可制作杀菌防腐剂。邻苯二酚、对苯二酚可作显影剂。

工业显影图片

自然界存在有两千多种酚类化合物,它们是植物生命活动的产物,在植物生长发育、免疫、抗真菌、光合作用、呼吸代谢等生命活动中起重要作用。 酚是公认的有毒化学物质,一旦被人吸收就会蓄积在各脏器组织内,很难排出体外,当体内的酚达到一定量时就会破坏肝细胞和肾细胞,造成慢性中毒,使人出现不同程度的头昏、头痛、皮疹、精神不安、腹泻等症状。权威的《化学试剂目录手册》特别强调,“酚接触皮肤或吞入时有毒,应防止儿童接近。” 酚污染会给生态系统带来很大危害。 环境酚污染主要来自焦化厂、煤气发生站、炼油、木材防腐、绝缘材料的制造、制药、造纸以及酚类化工厂的废水、废气。酚类化合物挥发到空气中可使大气受污染,含酚的废水流入农田会使土壤受污染,流入地下则会造成地下水污染。被酚污染的土壤会使农作物减产或枯死;水体酚污染会使水生生物受到抑制,繁殖下降,生长变慢,严重时导致死亡。酚侵入人体,会与细胞原浆中蛋白质结合形成不溶性蛋白,使细胞失去活性。酚对神经系统、泌尿系统、消化系统均有毒害作用。

具有煤油味的鱼是因为被酚类化学物质污染

中国规定最高允许浓度:饮用水中挥发酚:0.002毫克/升;地面水中挥发酚:0.010毫克/升;渔业水体挥发酚:0.005毫克/升;居住区大气一次测定值最高限:0.02毫克/立方米;废水排放限度:0.5毫克/升。

  吸入高浓度酚蒸气可引起头痛、头昏、乏力、视物模糊、肺水肿等表现。误服可引起消化道灼伤, 出现烧灼痛, 呼出气带酚气味, 呕吐物或大便可带血,可发生胃肠道穿孔,并可出现休克、肺水肿、肝或肾损害。一般可在48小时内出现急性肾衰竭,血及尿酚量增高;皮肤灼伤,初期为无痛性白色起皱,继而形成褐色痂皮,常见浅Ⅱ度灼伤。酚可经灼伤的皮肤吸收,经一定潜伏期后出现急性肾衰竭等急性中毒表现。若眼接触,可致灼伤。

若急性中毒,应立即脱离现场至新鲜空气处。皮肤污染后立即脱去被污染的衣着,用大量流动清水冲洗至少20分钟面积小也可先用50%酒精擦拭创面或用甘油、聚乙二醇或聚乙二醇和酒精混合液(7∶3)涂抹皮肤后立即用大量流动清水冲洗,再用饱和硫酸钠溶液湿敷。口服者给服植物油 15~30毫升,催吐,后温水洗胃至呕吐物无酚气味为止,再给服硫酸钠15~30毫克。消化道已有严重腐蚀时勿用上述处理。早期则给氧,合理应用抗生素。防治肺水肿、肝、肾损害等对症,支持治疗。糖皮质激素的应用视灼伤程度及中毒病情而定。病情(包括皮肤灼伤)严重者需早期应用透析疗法排毒及防治肾衰。口服者需防治食道瘢痕收缩致狭窄。眼接触:用生理盐水、冷开水或清水至少冲洗10分钟。

标致的泥猴桃
傻傻的背包
2025-07-28 14:12:13
对氯三氟甲苯主要用途是制药、农药、染料生产的中间体。

对氯三氟甲苯又名对氯三氟甲基苯(英文名称p-Chlorbenzotrifluorid)又名4-氯三氟甲苯(4-Chlorobenzotrifuoride);对氯三氟苄;对氯苄川三氟;简称 PCBTF。无色透明液体,不溶于水,可溶于醇、醚、苯等有机溶剂,分子式为C7H4F3Cl。

对氯三氟甲苯为易燃、有毒化学品,对皮肤、眼睛又刺激作用,遇明火、高热或与氧化剂接触能燃烧,并散发有毒气体。

眯眯眼的机器猫
傻傻的方盒
2025-07-28 14:12:13
精细化工领域。对氯三氟甲氧基苯是一种有机中间体,可将对氯苯酚制成对氯苯甲醚,合成关键指标有精细化工领域。对氯三氟甲苯,简称PCBTF,无色透明液体,不溶于水,可溶于醇、醚、苯等有机溶剂。

甜美的眼神
潇洒的乌龟
2025-07-28 14:12:13

所谓医药中间体,实际上是一些用于药品合成工艺过程中的一些化工原料或化工产品。

这种化工产品,不需要药品的生产许可证,在普通的化工厂即可生产,只要达到一些的级别,即可用于药品的合成。

其实药品的合成亦属于化工类,只不过比一般的化工厂要求要严格,所以药厂需要GMP认证,而医药中间体为药品合成的原料,非药品,所以相对来说要求比药品低,生产厂不需要药品GMP认证。

舒服的煎蛋
谦让的萝莉
2025-07-28 14:12:13
氟代甲苯属于限制类精细化学品

甲苯是一种溶剂,广泛用于涂料、树脂、染料、油墨等行业做溶剂;用于医药、炸药、农药等行业做合成单体或溶剂;也可作为高辛烷值汽油组分,是有机化工的重要原料。还可以用于去除车身的沥青。医院病理科主要用于组织、切片的透明和脱蜡。对氯三氟甲苯溶于丙二醇,因为两者都是有机物,根据相似相溶原理,二者能够互溶。 相似相溶原理是指由于极性分子间的电性作用,使得极性分子组成的溶质易溶于极性分子组成的溶剂,难溶于非极性分子组成的溶剂;

繁荣的篮球
难过的手机
2025-07-28 14:12:13
毒性分级低毒

急性毒性非肠道-小鼠 LD50: 500 毫克/公斤

可燃性危险特性易燃受热分解有毒氟化物气体

储运特性库房通风低温干燥与氧化剂分开储运存放

http://www.chemicalbook.com/ProductChemicalPropertiesCB7487028.htm

踏实的含羞草
兴奋的火车
2025-07-28 14:12:13
网上现在有的工艺是一、光气及光气化工艺;二、电解工艺(氯碱);三、氯化工艺;四、硝化工艺;五、合成氨工艺;六、裂解(裂化)工艺;七、氟化工艺

八、加氢工艺;九、重氮化工艺;十、氧化工艺;十一、过氧化工艺;十二、胺基化工艺。当然,十二、胺基化工艺没写全,我也补充了一下。具体如下

12、胺基化工艺

反应类型 放热反应 重点监控单元 胺基化反应釜

工艺简介

胺化是在分子中引入胺基(R2N-)的反应,包括R-CH3烃类化合物(R:氢、烷基、芳基)在催化剂存在下,与氨和空气的混合物进行高温氧化反应,生成腈类等化合物的反应。涉及上述反应的工艺过程为胺基化工艺。

工艺危险特点

(1)反应介质具有燃爆危险性;

(2)在常压下20℃时,氨气的爆炸极限为15%—27%,随着温度、压力的升高,爆炸极限的范围增大。因此,在一定的温度、压力和催化剂的作用下,氨的氧化反应放出大量热,一旦氨气与空气比失调,就可能发生爆炸事故;

(3)由于氨呈碱性,具有强腐蚀性,在混有少量水分或湿气的情况下无论是气态或液态氨都会与铜、银、锡、锌及其合金发生化学作用;

(4)氨易与氧化银或氧化汞反应生成爆炸性化合物(雷酸盐)。

典型工艺

邻硝基氯苯与氨水反应制备邻硝基苯胺;

对硝基氯苯与氨水反应制备对硝基苯胺;

间甲酚与氯化铵的混合物在催化剂和氨水作用下生成间甲苯胺;

甲醇在催化剂和氨气作用下制备甲胺;

1-硝基蒽醌与过量的氨水在氯苯中制备1-氨基蒽醌;

2,6-蒽醌二磺酸氨解制备2,6-二氨基蒽醌;

苯乙烯与胺反应制备N-取代苯乙胺;

环氧乙烷或亚乙基亚胺与胺或氨发生开环加成反应,制备氨基乙醇或二胺;

甲苯经氨氧化制备苯甲腈;

丙烯氨氧化制备丙烯腈等。

重点监控工艺参数

胺基化反应釜内温度、压力;胺基化反应釜内搅拌速率;物料流量;反应物质的配料比;气相氧含量等。

安全控制的基本要求

反应釜温度和压力的报警和联锁;反应物料的比例控制和联锁系统;紧急冷却系统;气相氧含量监控联锁系统;紧急送入惰性气体的系统;紧急停车系统;安全泄放系统;可燃和有毒气体检测报警装置等。

宜采用的控制方式

将胺基化反应釜内温度、压力与釜内搅拌、胺基化物料流量、胺基化反应釜夹套冷却水进水阀形成联锁关系,设置紧急停车系统。

安全设施,包括安全阀、爆破片、单向阀及紧急切断装置等。

13、磺化工艺

反应类型 放热反应 重点监控单元 磺化反应釜

工艺简介

磺化是向有机化合物分子中引入磺酰基(-SO3H)的反应。磺化方法分为三氧化硫磺化法、共沸去水磺化法、氯磺酸磺化法、烘焙磺化法和亚硫酸盐磺化法等。涉及磺化反应的工艺过程为磺化工艺。磺化反应除了增加产物的水溶性和酸性外,还可以使产品具有表面活性。芳烃经磺化后,其中的磺酸基可进一步被其他基团[如羟基(-OH)、氨基(-NH2)、氰基(-CN)等]取代,生产多种衍生物。

工艺危险特点

(1)应原料具有燃爆危险性;磺化剂具有氧化性、强腐蚀性;如果投料顺序颠倒、投料速度过快、搅拌不良、冷却效果不佳等,都有可能造成反应温度异常升高,使磺化反应变为燃烧反应,引起火灾或爆炸事故;

(2)氧化硫易冷凝堵管,泄漏后易形成酸雾,危害较大。

典型工艺

(1)三氧化硫磺化法

气体三氧化硫和十二烷基苯等制备十二烷基苯磺酸钠;

硝基苯与液态三氧化硫制备间硝基苯磺酸;

甲苯磺化生产对甲基苯磺酸和对位甲酚;

对硝基甲苯磺化生产对硝基甲苯邻磺酸等。

(2)共沸去水磺化法

苯磺化制备苯磺酸;

甲苯磺化制备甲基苯磺酸等。

(3)氯磺酸磺化法

芳香族化合物与氯磺酸反应制备芳磺酸和芳磺酰氯;

乙酰苯胺与氯磺酸生产对乙酰氨基苯磺酰氯等。

(4)烘焙磺化法

苯胺磺化制备对氨基苯磺酸等。

(5)亚硫酸盐磺化法

2,4-二硝基氯苯与亚硫酸氢钠制备2,4-二硝基苯磺酸钠;

l-硝基蒽醌与亚硫酸钠作用得到α-蒽醌硝酸等。

重点监控工艺参数

磺化反应釜内温度;磺化反应釜内搅拌速率;磺化剂流量;冷却水流量。

安全控制的基本要求

反应釜温度的报警和联锁;搅拌的稳定控制和联锁系统;紧急冷却系统;紧急停车系统;安全泄放系统;三氧化硫泄漏监控报警系统等。

宜采用的控制方式

将磺化反应釜内温度与磺化剂流量、磺化反应釜夹套冷却水进水阀、釜内搅拌电流形成联锁关系,紧急断料系统,当磺化反应釜内各参数偏离工艺指标时,能自动报警、停止加料,甚至紧急停车。

磺化反应系统应设有泄爆管和紧急排放系统。

14、聚合工艺

反应类型 放热反应 重点监控单元 聚合反应釜、

粉体聚合物料仓

工艺简介

聚合是一种或几种小分子化合物变成大分子化合物(也称高分子化合物或聚合物,通常分子量为1×104—1×107)的反应,涉及聚合反应的工艺过程为聚合工艺。聚合工艺的种类很多,按聚合方法可分为本体聚合、悬浮聚合、乳液聚合、溶液聚合等。

工艺危险特点

(1)聚合原料具有自聚和燃爆危险性;

(2)如果反应过程中热量不能及时移出,随物料温度上升,发生裂解和暴聚,所产生的热量使裂解和暴聚过程进一步加剧,进而引发反应器爆炸;

(3)部分聚合助剂危险性较大。

典型工艺

(1)聚烯烃生产

聚乙烯生产;

聚丙烯生产;

聚苯乙烯生产等。

(2)聚氯乙烯生产

(3)合成纤维生产

涤纶生产;

锦纶生产;

维纶生产;

腈纶生产;

尼龙生产等。

(4)橡胶生产

丁苯橡胶生产;

顺丁橡胶生产;

丁腈橡胶生产等。

(5)乳液生产

醋酸乙烯乳液生产;

丙烯酸乳液生产等。

(6)涂料粘合剂生产

醇酸油漆生产;

聚酯涂料生产;

环氧涂料粘合剂生产;

丙烯酸涂料粘合剂生产等。

(7)氟化物聚合

四氟乙烯悬浮法、分散法生产聚四氟乙烯;

四氟乙烯(TFE)和偏氟乙烯(VDF) 聚合生产氟橡胶和偏氟乙烯-全氟丙烯共聚弹性体(俗称26型氟橡胶或氟橡胶-26)等。

重点监控工艺参数

聚合反应釜内温度、压力,聚合反应釜内搅拌速率;引发剂流量;冷却水流量;料仓静电、可燃气体监控等。

安全控制的基本要求

反应釜温度和压力的报警和联锁;紧急冷却系统;紧急切断系统;紧急加入反应终止剂系统;搅拌的稳定控制和联锁系统;料仓静电消除、可燃气体置换系统,可燃和有毒气体检测报警装置;高压聚合反应釜设有防爆墙和泄爆面等。

宜采用的控制方式

将聚合反应釜内温度、压力与釜内搅拌电流、聚合单体流量、引发剂加入量、聚合反应釜夹套冷却水进水阀形成联锁关系,在聚合反应釜处设立紧急停车系统。当反应超温、搅拌失效或冷却失效时,能及时加入聚合反应终止剂。安全泄放系统。

15、烷基化工艺

反应类型 放热反应 重点监控单元 烷基化反应釜

工艺简介

把烷基引入有机化合物分子中的碳、氮、氧等原子上的反应称为烷基化反应。涉及烷基化反应的工艺过程为烷基化工艺,可分为C-烷基化反应、 N-烷基化反应、 O-烷基化反应等。

工艺危险特点

(1)反应介质具有燃爆危险性;

(2)烷基化催化剂具有自燃危险性,遇水剧烈反应,放出大量热量,容易引起火灾甚至爆炸;

(3)烷基化反应都是在加热条件下进行,原料、催化剂、烷基化剂等加料次序颠倒、加料速度过快或者搅拌中断停止等异常现象容易引起局部剧烈反应,造成跑料,引发火灾或爆炸事故。

典型工艺

(1) C-烷基化反应

乙烯、丙烯以及长链α-烯烃,制备乙苯、异丙苯和高级烷基苯;

苯系物与氯代高级烷烃在催化剂作用下制备高级烷基苯;

用脂肪醛和芳烃衍生物制备对称的二芳基甲烷衍生物;

苯酚与丙酮在酸催化下制备2,2-对(对羟基苯基)丙烷(俗称双酚A);

乙烯与苯发生烷基化反应生产乙苯等。

(2) N-烷基化反应

苯胺和甲醚烷基化生产苯甲胺;

苯胺与氯乙酸生产苯基氨基乙酸;

苯胺和甲醇制备N,N-二甲基苯胺;

苯胺和氯乙烷制备N,N-二烷基芳胺;

对甲苯胺与硫酸二甲酯制备N,N-二甲基对甲苯胺;

环氧乙烷与苯胺制备N-(β-羟乙基)苯胺;

氨或脂肪胺和环氧乙烷制备乙醇胺类化合物;

苯胺与丙烯腈反应制备N-(β-氰乙基)苯胺等。

(3) O-烷基化反应

对苯二酚、氢氧化钠水溶液和氯甲烷制备对苯二甲醚;

硫酸二甲酯与苯酚制备苯甲醚;

高级脂肪醇或烷基酚与环氧乙烷加成生成聚醚类产物等。

重点监控工艺参数

烷基化反应釜内温度和压力;烷基化反应釜内搅拌速率;反应物料的流量及配比等。

安全控制的基本要求

反应物料的紧急切断系统;紧急冷却系统;安全泄放系统;可燃和有毒气体检测报警装置等。

宜采用的控制方式

将烷基化反应釜内温度和压力与釜内搅拌、烷基化物料流量、烷基化反应釜夹套冷却水进水阀形成联锁关系,当烷基化反应釜内温度超标或搅拌系统发生故障时自动停止加料并紧急停车。

安全设施包括安全阀、爆破片、紧急放空阀、单向阀及紧急切断装置等。

单纯的溪流
含蓄的树叶
2025-07-28 14:12:13
1 前言

酚醛泡沫是由酚醛树脂通过发泡而得到的一种泡沫塑料。与早期占市场主导地位的聚苯乙烯泡沫、聚氯乙烯泡沫、聚氨酯泡沫等材料相比,在阻燃方面它具有特殊的优良胜能。其重量轻,刚性大,尺寸稳定性好,耐化学腐蚀,耐热性好,难燃,自熄,低烟雾,耐火焰穿透,遇火无洒落物,价格低廉,是电器、仪表、建筑、石油化工等行业较为理想的绝缘隔热保温材料,因而受到人们的广泛重视。目前,酚醛泡沫已成为泡沫塑料中发展最快的品种之一。消费量不断增长,应用范围不断扩大,国内外研究和开发都相当活跃。然而,酚醛泡沫最大的弱点是脆性大,开孔率高,因此提高它的韧性是改善酚醛泡沫性能的关键技术。本文主要就酚醛泡沫的制备中所用发泡助剂、发泡机理和泡沫增韧的新进展作一介绍。

2 发泡助剂

2.1 催化剂/固化剂

酚醛泡沫一般是在室温或低热条件下制备,因此需以酸作催化剂。当酸作催化剂时,酸能加速树脂分子间的缩聚反应,反应放出的热量促使发泡剂急剧气化,而使乳化树脂膨起,同时树脂固化。反应的催化剂也是树脂的固化剂。在环境温度下固化剂的类型和数量对获得优质泡沫是极其重要的。固化剂的选择应使聚合物的固化速度与发泡速度匹配。因此,要求所用的固化剂能够使固化速度在很宽的范围内变化,固化反应本身又能在比较低的温度下进行。

固化剂分无机酸和有机酸,无机酸如硫酸、盐酸、磷酸等。有机酸有草酸、已二酸、苯硝酸、酚硝酸、甲苯磺酸,苯磺酸,石油磺酸等。无机酸价格低,但固化速度太快,对金属有很强的腐蚀作用,因此防腐成为酚醛泡沫使用中的一大难题。研究表明,可利用甲醇、乙醇、丙醇等稀释无机酸达到缓蚀,也可加入抗腐蚀剂如氧化钙、氧化铁、碳酸钙、无水硼砂、碱金属和碱土金属碳酸盐及锌、铝等。有人已考虑用碱中和剂来处理泡沫,但这种方法的有效性尚末得到证实。有关这方面的研究还在进行中。文献曾报导,使用酸性的萘磺酸酚醛既起催化作用又参与酚醛的缩合反应,降低了酸的渗透性,对金属的腐蚀性也就很小。文献中还提到其它降低泡沫材料腐蚀性方法,如以盐酸作固化剂时首先用真空法除去成型产品中易挥发物,再用NH3除去残存的酸或在80-130℃条件下热处理,或在树脂配方添加中和剂等,这些方法使生产工艺复杂化,并增加成本。

现在采用芳族磺酸为基础的固化剂很普遍。这是因为它腐蚀性小,并具有增塑作用。还有将有机酸和无机酸混合使用。为保证分散均匀,使用时应将固态有机磺酸配成高浓度的水溶液,一般溶液的浓度在40-65%为宜。

2.2 发泡剂

发泡剂是塑料发泡成型中发泡动力的来源塑料发泡方法一般分为机械发泡、物理发泡和化学发泡。机械发泡是借助于机械的强烈搅拌,使气体均匀地混入树脂中形成气泡。物理发泡则是借助于溶解在树脂中的发泡剂物理状态的改变,形成大量的气泡。以上两种发泡完全是物理过程,没有发生任何化学变化。化学发泡是发泡过程中使化学发泡剂发生化学变化,从而分解并产生大量气体,使发泡过程进行。发泡剂的种类和用量对发泡效果具有重要影响。它直接影响泡沫密度,进而影响到产物的物理、机搬胜能。此外,使用发泡剂使泡沫具有大量球状微孔,泡沫耐燃性及韧性提高。

根据酚醛树脂发泡反应机理,大多数以物理发泡方法进行。物理发泡剂分惰性气体和低沸点液体两类。酚醛泡沫常用的发泡剂为各种沸点在30-60℃之间的挥发性液体,如氟利昂、氯化烃、正戊烷等。现在的科研和工厂生产中使用的发泡剂绝大多数仍然是氟氯烃化合物,其中以氟利昂一11与氟利昂-21的1:4(mol)混和物使用最广泛。氟氯烃发泡剂效果非常好,但氟氯烃会破坏大气的臭氧层,所以已限制使用且开始选择代用品。在近期的专利中为减少对大气臭氧层的危害,选择了危害小的氟氯烃,如 CF32CF2CHC12、HCF2CF2CEt,被称为不耗臭氧的发泡剂。还有人采用减少氟化物发泡剂的使用量,加入部分代用品,如 F-11和戊烷混合使用。在新的代用品中最有前途的当属惰性气体发泡剂二氧化碳、氮气等。它们无毒、无污染,臭氧消耗系数(ODP)为零,温室效应系数(GwP)很小,不燃,价廉易得,是氟利昂替代品研究的热点,但难度较高。可喜的是有文献报道,日本的Asahi化工公司的研究者用CO2代替氟氯烃作生产酚醛泡沫材料的发泡剂,效果良好。它们由酚醛共聚树脂(含有羟甲基脲)与发泡剂CO2及催化剂混合物制得的酚醒泡沫材料。其密闭气孔含量为96.0%,气孔直径为190μm,热导率(JISA1412)为0.0231Kcal/m.h.℃,C O2含量为5.2%,脆度(JIS A9511)为11%。氯化烃中以二氯甲烷最常用,其化学性质较为稳定、发气量也高于氟氯烃,故近年已有许多厂家用之代替氟氯烃或二者并用。在塑料发泡工业中有选用低沸点脂肪族烷烃G4-G7混合物如正戊烷作为发泡剂,但其效果不理想,还有易燃的危险。有时通过几种发泡剂并用的办法来解决发泡剂汽化温度与树脂固化反应速度相匹配的问题,这样发泡剂在汽化时,树脂已具有了适当的粘度,从而有利于泡孔结构的形成和稳定。

化学发泡剂也有应用,如发泡剂H(N,N一二亚硝基五次甲基四胺),它遇酸会强烈分解,释放出氮气,从而使树脂发泡。

2.3 表面活性剂

表面活性剂的分子中含有亲水结构和疏水结构,具有界面走向和降低液体树脂的表面张力的作用,使泡沫塑料中亲水性和疏水性相差很大的原料乳化成为均匀体系,各组分充分接触,使各种反应能较平衡地进行。表面活性剂的用量虽小,只为树脂的2-6%,但它对发泡工艺和产品性能影响很大。它可以保证发泡过程中各组份充分混合均匀,形成均匀微细多泡孔结构和稳定的闭孔率,还可以加快反应过程,缩短固化时间,对泡沫制品的抗压强度,泡孔尺寸等均有较大的影响。

泡沫塑料发泡成型通常分三个阶段。第一阶段是在发泡基体的熔体或液体中形成大量均匀细密的气泡核,然后再膨胀成具有要求泡体结构的泡体,最后通过加热,固化定型,得到泡沫塑料制品。发泡第一阶段是要制得以发泡剂为分散相、树脂为连续相的乳状液,在树脂中形成大量分布均匀、粒径微小的发泡剂液滴(气泡核)。如单纯以高速搅拌将发泡剂分散到树脂中,这种分散体系极不稳定,容易破坏。表面活性剂能降低界面张力,使分散体系在热力学上稳定。这时表面活性剂起到了乳化剂或匀泡剂的作用。当在高速搅拌下,往酚醛树脂与发泡剂的乳状液中加入固化剂时,酚醛发泡成型进入了第二阶段。在固化剂作用下甲阶树脂发生缩合反应,转化为乙阶树脂阶段,最后固化为丙阶树脂,同时树脂缩合释放出的大量反应热使发泡剂液滴气化,发泡料在变稠的同时,体积迅速增大,原先的乳状液已转变成泡沫,此泡沫是不稳定的,已形成的气泡可以继续膨胀,也可能合并、塌陷或破裂。在酚醛泡沫没有固化定型前表面活性剂起着稳定泡沫的作用。

酚醛泡沫塑料各组分之间的相容性较差,所以选用表面活性剂更要考虑其乳化性能。良好的乳化性能可以提高各组分混合的均匀程度,有利于形成均匀微细的泡孔结构,而且可以加快反应过程,缩短固化时间。此外表面活性剂还必须对固化剂的强酸性保持稳定。尽管能用于酚醛泡沫塑料的表面活性剂种类很多,但非离子型表面活性剂效果最好,较常用的有①脂肪醇聚氧乙烯、聚氧丙烯醚类;②烷基酚聚氧乙烯醚类,如壬基酚与环氧乙烷的加成物;③聚硅氧烷、聚氧乙烯、聚氧丙烯的嵌段共聚物,这类表面活性剂不仅有良好的泡沫稳定性能,而且有极强的乳化作用。

近年来也有研究者采用多种表面活性剂混合物来得到具有特定性能的泡沫,如池田义宏等用硅酮与十二烷基苯磺酸钠混合的表面活性剂制成高吸水性泡沫。

3 泡沫增韧研究

酚醛树脂结构上的薄弱环节是酚羟基和亚甲基易氧化。其泡沫延伸率低,质脆,硬度大,不耐弯曲。这大大限制了酚醛泡沫的应用,所以对泡沫的增韧是十分必要的。酚醛泡沫的增韧,可以通过以下几种途径实现:①在体系加入外增韧剂,通过共混的方式达到增韧的目的;②通过甲阶酚醛树脂与增韧剂的化学反应,达到增韧的目的;③用部分带有韧性链的改性苯酚代替苯酚合成树脂。

3.1 加入外增韧剂

这一改性方式要求树脂和增韧体系须具有一定的混溶性,才能改善其脆性,提高韧性和抗压性能,可根据溶解度参数δ预测有机化合物之间的混溶性。这种改性方式的实施一般是按如下步骤进行。首先合成普通的甲阶酚醛树脂,然后在体系内加入改性剂,脱水,发泡。这类改性剂常用的有三类。

第一类是橡胶弹性体改性剂。橡胶增韧酚醛树脂属物理掺混改性,但由于弹性体通常带有活性的端基(如羧基、羟基等)和双键,能与甲阶酚醛树脂中的羟甲基发生不同程度的接校或嵌段共聚反应。在树脂固化及发泡过程中这些橡胶类弹性体段一般能从基体中析出,在物理上形成海岛两相结构。这种橡胶增韧的热固性树脂及泡沫的断裂韧性比起未增韧的树脂及泡沫有较大幅度的提高。常用的橡胶有丁腈、丁苯、天然橡胶和端羧基丁腈橡胶及其他含有活性基团的橡胶。增韧的效果还与共混比例等有关,橡胶量太少达不到效果,但若橡胶含量较高,影响耐热性,同时也会影响酚醛橡胶间的相容性。橡胶的加入量一般宜控制在5-20%之间。

第二类是热塑性树脂。用于酚醛泡沫改性的有聚乙烯醇,聚乙二醇等。聚乙烯醇分子中的羟基有可能与酚醛缩聚物中的羟甲基发生化学反应,形成接枝共聚物。聚乙烯醇改性酚醛树脂可提高泡沫的压缩强度。据文献报道,泡沫压缩强度与聚乙烯醇的加入量有关。加入聚乙烯醇的量太少,压缩强度提高不明显;加入过多量的聚乙烯醇会导致粘锅,使反应难以继续进行。聚乙烯醇的加入量为苯酚重量的l.5-3%较为合适。

聚乙二醇也是酚醛树脂有效的增韧剂。聚乙二醇中的一OH可能与树脂中的一OH结合,但在碱性条件下反应较困难。聚乙二醇中的一OH与树脂中的一OH也可能形成部分氢键,使树脂中导入长的柔性醚链,从而起到增韧的效果。葛东彪等人用不同分子量的聚乙二醇系列来增韧泡沫,发现改性效果随着聚乙二醇分子量的增大而增大,分子量为1000时达到峰值,而后随着聚乙二醇分子量的增大减小。所给出的结论是:先随着分子量的增大,酚醛树脂中导入的聚醚柔性链比较长,有利于拉伸强度和断裂伸长率增大;但聚乙二醇分子量大于1000时,由于加人聚乙二醇的质量是一定的,其分子链两端羟基所占的比例相对减小,使得羟基和酚醛树脂的羟甲基反应的机率减小,影响了聚乙二醇的改性效果。分子量适中的聚乙二醇1000和800改性的泡沫韧性最好。

聚乙二醇增韧改性的酚醛泡沫与纯酚醛泡沫相比,不仅尺寸稳定性好、压缩强度高、表观密度适中,而且泡孔闭孔率较高、大小均匀、致密,且易加工切割,断面无或少碎屑。此外氯化聚乙烯(CPE)、聚氯乙烯(PVC)增韧树脂及泡沫也有报道。

第三类是小分子物质如乙二醇。乙二醇增韧泡沫是合成酚醛树脂后,按一定比例加入乙二醇混合均匀,依次加入稳定剂、发泡剂、均泡剂,搅拌均匀,然后加入固化剂,剧烈搅拌,迅速倒入准备好的模具中团模发泡,待其固化完全后脱模即可。

有人根据纯酚醛泡沫与乙二醇改性酚醛泡沫(乙二醇含量为苯酚量15%)的红外光谱图的差别,推测乙二醇可能在酸催化作用下,部分或全部生成了甘油醇类的衍生物,参与了主反应。乙二醇的加入能在一定程度上改善酚醛泡沫的性能,提高其压缩强度,改善其脆性,而又不太多地损失其阻燃性,最佳用量为10-15份/100份树脂。此时其氧指数为37-38,压缩强度为0.40MPa,密度为0.059g/cm3,如表1所示。

表1 泡沫性能与乙二醇加入量

A B C D E F

乙二醇/w% 25 20 15 10 5 0

密度/g.cm-3 0.064 0.06 0.059 0.058 0.056 0.062

压缩强度/MPa 0.30 0.35 0.40 0.37 0.38 0.31

氧指数 35 37 37 38 38 40

添加短切玻纤也是外增韧的一种方法。短切玻纤属于无机材料,常温下无色、无味、无毒,易与酚醛树脂混匀。短切玻纤经用偶联剂处理后,与酚醛树脂共混,然后发泡制成酚醛泡沫塑料。短切玻纤含量对改性酚醛泡沫塑料主要性能的影响见表2。

表2 短切破纤含量与酚醛泡沫性能

短切玻纤/w% 0 3 4 5 6 8 10

容重/kg.cm-3 60 60 60 60 62 68 80

脆性质量损失/% 40.0 28.0 25.0 22.0 21.0 17.7 15.0

氧指数 45 45 46 48 48 50 50

压缩强度/MPa 0.20 0.25 0.26 0.28 0.31 0.39 0.43

由表2可知,随着短切玻纤含量的增加,酚醛泡沫塑料的压缩强度明显提高,容重增加,脆性降低,氧指数升高,但共混物的粘度随着短切玻纤含量的增加而升高,使发泡工艺难以控制,因此短切玻纤的含量一般控制在10%以下。文献也报道了邻苯二甲酸二辛酯、磷酸三甲苯酯等有机物质用于泡沫增韧。

3.2 化学增韧甲阶酚醒树脂

化学增韧改性方法是在合成甲阶树脂时加入改性剂,通过酚羟基和羟甲基的化学反应接枝上柔性链,从而得到内增韧的改性甲阶树脂,这种改性方法较共混方法的效果要好。

聚氨酯改性酚醛泡沫是一种很好的化学增韧方法,在日本、美国已进行了系列研究,取得了较好的成果。从采用的方法看有如下2种方式:①以糠醇树脂、芳胺多元醇等作为聚氨酯组分中的多羟基化合物,将酚醛树脂、多异氰酸酯(MDI、PAPI)和上述各种多元醇混合,加入发泡剂等助剂进行复合发泡。②聚醚、聚酯多元醇和异氰酸酯合成末端为一NCO基团的预聚体,再与酚醛树脂、发泡助剂混合,进行复合发泡。

在聚氨酯改性酚醛泡沫制备过程中,无论采用何种改性方法,其反应机理是一致的。主要有两种反应发生,①异氰酸酯基团和组分中的多羟基化合物的羟基进行交联或扩链反应;②异氰酸酯基团和甲阶酚醛树脂中的羟甲基进行交联反应。两种反应的结果是在酚醛刚性分子结构中引入了柔韧性链段,从根本上改变了酚醛树脂的刚性分子结构,从而提高了泡沫制品的韧性,降低了脆性;同时引入了聚氨酯的特性,如提高闭孔率,降低吸水性,加快固化反应速度,成型快,也提高了制品的强度。

以TDI与分子量为1000的聚乙二醇反应,合成带有一NCO基团的预聚体改性酚醛泡沫,其性能如表3所示。

表3 TDI改性聚乙二醇增韧酚醛泡沫性能

压缩强度/MPa 密度/kg.cm-3 吸水率/% 氧指数

0.288 0.1771 14.39 38.3

3.3 用部分带有韧性链的改性苯酚代替苯酚合成树脂

第三类改性方法是用含有与苯酚相类似官能团的韧性物质部分代替苯酚与甲醛缩合,从而达到增韧的目的。有文献报道用间苯二酚、邻甲酚、对甲酚、对苯二酚等改性。加入量控制在0.2-10%,可降低泡沫脆性,提高制品的强度和韧性。烷基酚和腰果壳油改性也都有报道。腰果壳油主要结构是在苯酚的间位上带一个15个碳的单烯或双烯烃长链,因此腰果壳油既有酚类化合物的特征,又有脂肪族化合物的柔性,用其改性酚醛泡沫,韧性有明显改善。

用桐油和亚麻油改性苯酚也有人尝试,桐油中的共轭三烯在酸催化下与苯酚发生阳离子烷基化反应,其中残留的双键由于空阻效应,参加反应的机率很小。反应产物在碱催化下进一步与甲醛反应,生成了桐油改性甲阶酚醛树脂。亚麻油是十八碳三烯酸甘油脂,其分子结构中都有三个双键。在催化剂的作用下,苯酚的邻、对位上的碳原子在亚麻油的双键上发生烷基化反应,合成改性酚,然后改性酚与甲醛共聚,柔顺的烷基链将脆性的酚醛分子链连结起未,有效地改善了酚醛泡沫脆性。桐油改性苯酚如图所示。

4 结束语

近几年来,国内外对酚醛泡沫原材料、发泡技术、工艺过程都进行了大量研究工作。泡沫制备工艺日臻完善,并已进入了工业化生产阶段。随着人们对材料耐火性及难燃性要求越来越高,泡沫改性研究的不断深入和泡沫韧性不断的提高,酚醛泡沫塑料的应用将更加广泛。