饲料测总磷时盐酸对磷酸氢钙有什么影响
利用磷矿粉和废盐酸反应生成磷酸,净化后加入碱性氨化合物,中和反应生成饲料级磷酸氢钙,分离后的母液继续加入碱性氨化含物或通入CO_2可制得高纯碳酸钙,第二次分离母液经处理可制成工业级氯化铵。该工艺的特点为:充分利用磷矿粉自身钙资源,无需外加氢氧化钙中和剂;萃取工艺采取返酸技术,可使盐酸单耗降低15%左右;采用“复合沉淀脱氟”技术,可使饲料级磷酸氢钙产品中的五氧化二磷收率由65%提高到85%以上;生产过程中产生的CaCl^2母液经通氨、磷化技术联产出高纯碳酸钙与工业氯化铵。该工艺实现了固体、液体废物零排放和气体达标排放。该工艺生产的产品磷酸氢钙为饲料添加剂,碳酸钙广泛应用于塑料、涂料、油墨等领域,氯化铵应用作电池及复合肥等的原料。该项目已在全国10个省市20家企业工程化装置上运行。该项技术的应用,可消化掉化工企业大量副产盐酸,消除污染
水中磷检测方法-分光光度计/维生素丙法 一、方法概要水样以硫酸、过硫酸盐消化处理,使其中之磷转变为正磷酸盐之形式存在後,再加入钼酸铵、酒石酸锑钾,使其与正磷酸盐作用生成一杂多酸 - 磷钼酸(phosphomolybdic acid),经维生素丙还原为蓝色复合物钼蓝(molybdenum blue),以分光光度计於波长 880 nm 处测其吸光度定量之。水样如未经消化处理,所测得仅为正磷酸盐之含量。二、适用范围本方法适用於地面水体、地下水、海域水质及废(污)水中磷之检验。采用1公分样品槽时检量线范围为 0.02 ~ 0.50 mg P / L;采用 5 公分样品槽则为 0.005 ~ 0.050 mg P / L。方法侦测极限为0.006 mg P / L。三、干扰(一)高浓度之铁离子或砷酸盐浓度大於 0.1 mg As / L 时,产生干扰,可以亚硫酸氢钠排除干扰。(二)六价铬、亚硝酸盐、硫化物、矽酸盐产生干扰。(三)水样含有较高之色度或浊度时,可於水样中添加除维生素丙与酒石酸锑钾以外之所有相同试剂,并测定其吸光度,作为空白校正值。四、设备及材料(一)玻璃器皿:所有之玻璃器皿先以(1 + 1)之热盐酸溶液清洗,再以蒸馏水淋洗之。(二)pH 计。(三)加热装置或高压灭菌釜。(四)分光光度计,使用波长 880 nm,附 1、5 公分之样品槽。五、试剂(一)试剂水:不含足以形成干扰之污染物之蒸馏水。(二)酚?指示剂:溶解 0.5 g酚?(phenolphthalein)於 50 mL 95 % 乙醇或异丙醇(isopropylalcohol),加入 50 mL 蒸馏水。(三)硫酸溶液,11 N:缓慢将 310 mL 浓硫酸加入於 600 mL 试剂水,冷却後稀释至 1 L。(四)硫酸溶液,5 N:缓慢将 70 mL 浓硫酸加入於 300 mL 试剂水,冷却後稀释至 500 mL。(五)硫酸溶液,1 N:缓慢将 14 mL 浓硫酸加入於 300 mL 试剂水,冷却後稀释至 500 mL。(六)过硫酸铵:试药级,结晶状。(七)氢氧化钠溶液,1 N:溶解 40 g 氢氧化钠(NaOH)於试剂水,稀释至 1 L。(八)酒石酸锑钾溶液:在 500 mL 量瓶内,溶解 1.3715 g 酒石酸锑钾於 400 mL 试剂水,稀释至刻度。贮存於附有玻璃栓盖棕色瓶中,并保持 4 ℃ 冷藏。(九)钼酸铵溶液:溶解 20 g 钼酸铵於试剂水中,再定量至 500 mL。贮存於塑胶瓶并保持 4 ℃ 冷藏。(十)维生素丙溶液,0.1 M:溶解 1.76 g 维生素丙(ascorbic acid)於试剂水中,再定量至 100 mL。使用当天配制。(十一)混合试剂:依次混合 50 mL 5N 硫酸溶液,5 mL 酒石酸锑钾溶液,15 mL 钼酸铵溶液及 30 mL 维生素丙溶液使成 100 mL 混合试剂,每种试剂加入後,均需均匀混合,且混合前所有试剂均需保持於室温,若混合後产生浊度时,摇汤数分钟使浊度消失,本试剂不稳定,应於使用前配制。(十二)磷标准储备溶液:在 1,000 mL 量瓶内,溶解 0.2197 g 无水磷酸二氢钾於试剂水,稀释至刻度;1.00 mL = 50.0 &mug P。(十三)磷标准溶液(Ⅰ):在 1,000 mL 量瓶内,以试剂水稀释 10.0 mL 磷标准储备溶液至刻度;1.00 mL = 0.50 &mug P,适用於 1 cm 样品槽。(十四)磷标准溶液(Ⅱ):在 1,000 mL 量瓶内,以试剂水稀释 100 mL 磷标准溶液(Ⅰ)至刻度;1.00 mL = 0.05 &mug P,适用於 5 cm 样品槽。(十五)亚硫酸氢钠溶液,溶解 5.2 g 亚硫酸氢钠於 1.0 N 硫酸溶液中,再以 1.0 N 硫酸溶液定量至 100 mL。六、采样及保存以 1 + 1 热盐酸洗净之玻璃瓶采集水样,添加硫酸至 pH 值 < 2,於 4 ℃ 暗处冷藏,保存期限为七天。若为检测正磷酸盐,则无须添加硫酸,且须於 48 小时内进行检测。七、步骤(一)总磷(包括正磷酸盐、聚(焦)磷酸盐及有机磷,【orthophosphate、condensed phosphate and organically bound phosphate】)1.取 50 mL 水样或适量水样稀释至 50 mL,置於 125 mL 之三角烧瓶,加入一滴酚?指示剂,如水样呈红色,滴加 11 N 硫酸溶液至颜色刚好消失,再加入 1.0 mL 11 N 硫酸溶液。2.加入 0.4 g 过硫酸铵。3.置於已预热之加热装置上,缓慢煮沸 30 ~ 40 分钟或直至残留约 10 mL 液体时(注意勿使水样乾涸);或将水样置於高压釜中,以 120 ℃,1.0 ~ 1.4 Kg / cm2 加热 30 分钟。4.冷却後以蒸馏水稀释至约 30 mL(注 1),以 1 N 或适当浓度之氢氧化钠溶液调整 pH 至 7.0 ± 0.2 後稀释至 50.0 mL。若使用高压釜消化,则冷却後以 1 N 或适当浓度之氢氧化钠溶液调整 pH 至 7.0 ± 0.2 後稀释至 100 mL(注 2)。5.加入 8 mL 混合试剂,混合均匀,在 10 ~ 30 分钟时段内以分光光度计,读取 880 nm 之吸光度,由检量线求得磷含量(&mug)。(二)正磷酸盐1.取 50.0 mL 水样或适量水样稀释至 50.0 mL,置於 125 mL 之三角烧杯,加入 1 滴酚?指示剂,如水样呈红色,滴加 5 N 硫酸溶液至颜色刚好消失。2.依上述(一)5. 步骤操作之。(三)检量线制备分别精取 0.00,5.00,10.0,20.0,30.0, 50.0 mL 磷标准溶液(I)或(Ⅱ)(或其他适合之浓度)稀释至 50.0 mL,依水样相同之步骤操作,读取 880 nm 之吸光度,绘制磷含量(&mug)- 吸光度之检量线。八、结果处理磷浓度(mg P / L)= 检量线求得磷含量(&mug)/ 水样体积(mL)九、品质管制(一)检量线:检量线之相关系数应大於或等於 0.995。(二)空白分析:每十个样品或每批次样品至少执行一次空白样品分析,空白分析值应小於方法侦测极限之二倍。(三)重覆分析:每十个样品或每批次样品至少执行一次重覆分析。(四)查核样品分析:每 10 个或每一批次之样品至少执行一个查核样品分析,并求其回收率。(五)添加标准品分析:每十个样品或每批次样品至少执行一次添加标准品分析。十、精密度与准确度国内某单一实验室进行试剂水添加标准品分析结果表一。十一、参考资料(一)American Public Health Association, American Water Work Association & Water Pollution Control Federation, Standard Methods for the Examination of Water and Wastewater, 20th ed, Method 4500 - P E, pp4 &ndash 146 ~ 4 - 147, APHA, Washington, D.C. USA, 1998.(二)U.S. Environmental Protection Agency. Environmental Monitoring and Support Laboratory. Methods for Chemical Analysis of Water and Wastewater, Method 365.2, 365.3. Cincinnati, Ohio. USA, 1983. 注一:若水样含砷或高浓度铁,加入5mL亚硫酸氢钠溶液,混合後置於 95 ℃ 水浴中 30 分钟(保持水样温度为 95 ℃ 20 分钟)冷却之。注二:水样中和後如呈浑浊,添加 2 ~ 3 滴 11 N 硫酸溶液混合均匀,视需要过滤再行稀释。注三:废液分类处理原则 - 本检验废液依一般无机废液处理。 表一 国内某单一实验室进行试剂水添加标准品分析结果水样基质添加浓度平均测定值测定次数回收率(%)相对误差(%)试剂水0.0050.005171020.03试剂水0.010.00917910.09试剂水0.030.031471050.06单位:mg P/ L ,采用5 cm样品槽
分析方法有:紫外可分光光度法(UV)、原子吸收法(AAS)、原子荧光法(AFS)、电感耦合等离子体法(ICP)、X荧光光谱(XRF)、电感耦合等离子质谱法(ICP-MS).日本和欧盟国家有的采用电感耦合等离子质谱法(ICP-MS)分析,但对国内用户而言,仪器成本高.也有的采用X荧光光谱(XRF)分析,优点是无损检测,可直接分析成品,但检测精度和重复性不如光谱法.最新流行的检测方法--阳极溶出法,检测速度快,数值准确,可用于现场等环境应急检测.
(一)原子吸收光谱法(AAS) 原子吸收光谱法是20世纪50年代创立的一种新型仪器分析方法,它与主要用于无机元素定性分析的原子发射光谱法相辅相成,已成为对无机化合物进行元素定量分析的主要手段.现在由于计算机技术、化学计量学的发展和多种新型元器件的出现,使原子吸收光谱仪的精密度、准确度和自动化程度大大提高.用微处理机控制的原子吸收光谱仪,简化了操作程序,节约了分析时间.现在已研制出气相色谱—原子吸收光谱(GC-AAS)的联用仪器,进一步拓展了原子吸收光谱法的应用领域.
(二)紫外可见分光光度法(UV) 其检测原理是:重金属与显色剂—通常为有机化合物,可于重金属发生络合反应,生成有色分子团,溶液颜色深浅与浓度成正比.在特定波长下,比色检测. 分光光度分析有两种,一种是利用物质本身对紫外及可见光的吸收进行测定;另一种是生成有色化合物,即“显色”,然后测定.虽然不少无机离子在紫外和可见光区有吸收,但因一般强度较弱,所以直接用于定量分析的较少.加入显色剂使待测物质转化为在紫外和可见光区有吸收的化合物来进行光度测定,这是目前应用最广泛的测试手段.显色剂分为无机显色剂和有机显色剂,而以有机显色剂使用较多.大多当数有机显色剂本身为有色化合物,与金属离子反应生成的化合物一般是稳定的螯合物.显色反应的选择性和灵敏度都较高.有些有色螯合物易溶于有机溶剂,可进行萃取浸提后比色检测.近年来形成多元配合物的显色体系受到关注.多元配合物的指三个或三个以上组分形成的配合物.利用多元配合物的形成可提高分光光度测定的灵敏度,改善分析特性.显色剂在前处理萃取和检测比色方面的选择和使用是近年来分光光度法的重要研究课题.
(三)原子荧光法(AFS) 原子荧光光谱法是通过测量待测元素的原子蒸气在特定频率辐射能激以下所产生的荧光发射强度,以此来测定待测元素含量的方法. 原子荧光光谱法虽是一种发射光谱法,但它和原子吸收光谱法密切相关,兼有原子发射和原子吸收两种分析方法的优点,又克服了两种方法的不足.原子荧光光谱具有发射谱线简单,灵敏度高于原子吸收光谱法,线性范围较宽干扰少的特点,能够进行多元素同时测定.原子荧光光谱仪可用于分析汞、砷、锑、铋、硒、碲、铅、锡、锗、镉锌等11种元素.现已广泛用环境监测、医药、地质、农业、饮用水等领域.在国标中,食品中砷、汞等元素的测定标准中已将原子荧光光谱法定为第一法.现已研制出可对多元素同时测定的原子荧光光谱仪,它以多个高强度空心阴极灯为光源,以具有很高温度的电感耦合等离子体(ICP)作为原子化器,可使多种元素同时实现原子化.
(四)电化学法—阳极溶出伏安法 电化学法是近年来发展较快的一种方法,它以经典极谱法为依托,在此基础上又衍生出示波极谱、阳极溶出伏安法等方法.电化学法的检测限较低,测试灵敏度较高,值得推广应用.如国标中铅的测定方法中的第五法和铬的测定方法的第二法均为示波极谱法. 阳极溶出伏安法是将恒电位电解富集与伏安法测定相结合的一种电化学分析方法.这种方法一次可连续测定多种金属离子,而且灵敏度很高,能测定10-7-10-9mol/L的金属离子.此法所用仪器比较简单,操作方便,是一种很好的痕量分析手段.我国已经颁布了适用于化学试剂中金属杂质测定的阳极溶出伏安法国家标准.示波极谱法又称“单扫描极谱分析法”.一种极谱分析新力一法.它是一种快速加入电解电压的极谱法.常在滴汞电极每一汞滴成长后期,在电解池的两极上,迅速加入一锯齿形脉冲电压,在几秒钟内得出一次极谱图,为了快速记录极谱图,通常用示波管的荧光屏作显示工具,因此称为示波极谱法.其优点:快速、灵敏.。
(五)X射线荧光光谱法(XRF) X射线荧光光谱法是利用样品对x射线的吸收随样品中的成分及其多少变化而变化来定性或定量测定样品中成分的一种方法.它具有分析迅速、样品前处理简单、可分析元素范围广、谱线简单,光谱干扰少,试样形态多样性及测定时的非破坏性等特点.它不仅用于常量元素的定性和定量分析,而且也可进行微量元素的测定,其检出限多数可达10-6.与分离、富集等手段相结合,可达10-8.测量的元素范围包括周期表中从F-U的所有元素.多道分析仪,在几分钟之内可同时测定20多种元素的含量. x射线荧光法不仅可以分析块状样品,还可对多层镀膜的各层镀膜进行成分和膜厚的分析.
(六)电感耦合等离子体质谱法(ICP-MS) ICP-MS的检出限给人极深刻的印象,其溶液的检出限大部份为ppt级,实际的检出限不可能优于你实验室的清洁条件.必须指出,ICP-MS的ppt级检出限是针对溶液中溶解物质很少的单纯溶液而言的,若涉及固体中浓度的检出限,由于ICP-MS的耐盐量较差,ICP-MS检出限的优点会变差多达50倍,一些普通的轻元素(如S、 Ca、Fe 、K、 Se)在ICP-MS中有严重的干扰,也将恶化其检出限. ICP-MS由作为离子源ICP焰炬,接口装置和作为检测器的质谱仪三部分组成。
由酸洗池中取5毫升溶液,注入500毫升三角烧瓶中,并加入100毫升蒸馏水和约5毫升磷酸,然后用0.1克当量过锰酸钾规定液滴入(规定液是用3.16克过锰酸钾溶于1000毫升蒸馏水中而成,需标定,用草酸钠)上待溶液成鲜艳粉红色为止。
亚铁含量的计算为:
硫酸亚铁含量(克/升)=3.04×消耗的滴定液毫升数
氯化亚铁含量(克/升)=2.535×消耗的滴定液毫升数
H3PO4+HCl混合溶液的含量测定
实验原理:
盐酸是强酸,遵循强酸滴定的规律
磷酸是弱酸,遵循弱酸滴定的规律
HCl+NaOH=NaCl+H
H3PO4+2NaOH=Na2HPO4
我们先主要看弱酸磷酸,磷酸pka1为2.12
Pka2为7.21 pka3为12.66
三部电离的pka差值大于四,说明可以分步滴定。由多元弱酸化学计量点计算公式ph=(pka1+pka2)\2可知第一化学
计量点ph为4。66 第二化学计量点为9.94
也就是说滴定到ph为4.66时候,溶液中磷酸已经转化成了nah2po4,盐酸已经被完全中和了(误差允许范围内)
这个时候在选取指示剂的时候会发现,甲基红和甲基橙均可。然而我更倾向于使用甲基红。记下滴定体积为V1
第二部滴定到9.94的指示剂有酚酞和百里酚酞,然而酚酞(红)和第一步滴定的指示剂(黄)可能会产生颜色干扰,而且酚酞变色范围为8-10,百里酚酞为
常用方法为:
1、将饱和食盐水进行电解,除得氢氧化钠外,在阴极有氢气产生,阳极有氯气产生:
2NaCl+2H2O==通电==2NaOH+Cl2↑+H2↑
2、在反应器中将氢气和氯气通至石英制的烧嘴点火燃烧,生成氯化氢气体,并发出大量热:
H2+Cl2==点燃==2HCl
3、氯化氢气体冷却后被水吸收成为盐酸。
在氯气和氢气的反应过程中,有毒的氯气被过量的氢气所包围,使氯气得到充分反应,防止了对空气的污染。在生产上,往往采取使另一种原料过量的方法使有害的、价格较昂贵的原料充分反应。[4]
实验室制法
原理:
NaCl(s)+H2SO4(浓)==微热==NaHSO4+HCl
NaHSO4+NaCl(s) ==加热==Na2SO4+HCl
总式:
2NaCl(s)+H2SO4(浓)==加热==Na2SO4+2HCl
1 原理
碘化汞和碘化钾的碱性溶液与氨反映生成淡红棕色胶态化合物,其色度与氨氮含量成正比,通常可在波长410~425nm范围内测其吸光度,计算其含量.
本法最低检出浓度为0.025mg/L(光度法),测定上限为2mg/L.采用目视比色法,最低检出浓度为0.02mg/L.水样做适当的预处理后,本法可用于地面水,地下水,工业废水和生活污水中氨氮的测定.
2 仪器
2.1 带氮球的定氮蒸馏装置:500mL凯氏烧瓶,氮球,直形冷凝管和导管.
2.2 分光光度计
2.3 pH计
3 试剂
配制试剂用水均应为无氨水
3.1 无氨水可选用下列方法之一进行制备:
3.1.1 蒸馏法:每升蒸馏水中加0.1mL硫酸,在全玻璃蒸馏器中重蒸馏,弃去50mL初馏液,按取其余馏出液于具塞磨口的玻璃瓶中,密塞保存.
3.1.2 离子交换法:使蒸馏水通过强酸型阳离子交换树脂柱.
3.2 1mol/L盐酸溶液.
3.3 1mol/L氢氧化纳溶液.
3.4 轻质氧化镁(MgO):将氧化镁在500℃下加热,以出去碳酸盐.
3.5 0.05%溴百里酚蓝指示液:pH 6.0~7.6.
3.6 防沫剂,如石蜡碎片.
3.7 吸收液:
3.7.1 硼酸溶液:称取20g硼酸溶于水,稀释至1L.
3.7.2 0.01mol/L硫酸溶液.
3.8 纳氏试剂:可选择下列方法之一制备:
3.8.1 称取20g碘化钾溶于约100mL水中,边搅拌边分次少量加入二氯化汞(HgCl2)结晶粉末(约10g),至出现朱红色沉淀不易溶解时,改写滴加饱和二氯化汞(HgCl2)溶液,并充分搅拌,当出现微量朱红色沉淀不再溶解时,停止滴加二氯化汞溶液.
另称取60g氢氧化钾溶于水,并稀释至250mL,冷却至室温后,将上述溶液(3.8.1)徐徐注入氢氧化钾溶液中,用水稀释至400mL,混匀.静置过夜将上清液移入聚乙烯瓶中,密塞保存.
3.8.2 称取16g氢氧化纳,溶于50mL水中,充分冷却至室温.
另称取7g碘化钾和碘化汞(HgI2)溶于水,然后将此溶液在搅拌下徐徐注入氢氧化纳溶液中,用水稀释至100mL,贮于聚乙烯瓶中,密塞保存.
3.9 酒石酸钾纳溶液:称取50g酒石酸钾纳KNaC4H4O6•4H2O)溶于100mL水中,加热煮沸以除去氨,放冷,定容至100ml.
3.10 铵标准贮备溶液:称取3.819g经100℃干燥过的优级纯氯化铵(NH4Cl)溶于水中,移入1000mL容量瓶中,稀释至标线.此溶液每毫升含1.00mg氨氮.
3.11 铵标准使用溶液:移取5.00mL铵标准贮备液于500mL容量瓶中,用水稀释至标线.此溶液每毫升含0.010mg氨氮.
4 测定步骤
4.1 水样预处理:取250mL水样(如氨氮含量较高,可取适量并加水至250mL,使氨氮含量不超过2.5mg),移入凯氏烧瓶中,家数滴溴百里酚蓝指示液,用氢氧化纳溶液或盐酸溶液调节至pH=7左右.加入0.25g轻质氧化镁和数粒玻璃珠,立即连接氮球和冷凝管,导管下端插入吸收液液面下.加热蒸馏,至馏出液达200mL时,停止蒸馏,定容至250mL.
采用酸滴定法或纳氏比色法时,以50mL硼酸溶液为吸收液采用水杨酸-次氯酸盐比色法时,改用50mL 0.01mol/L硫酸溶液为吸收液.
4.2 标准曲线的绘制:吸取0,0.50,1.00,3.00,7.00和10.0mL铵标准使用液分别于50mL比色管中,加水至标线,加1.0mL酒石酸钾溶液,混匀.加1.5mL纳氏试剂,混匀.放置10min后,在波长420nm处,用光程20mm比色皿,以水为参比,测定吸光度. 由测得的吸光度,减去零浓度空白管的吸光度后,得到校正吸光度,绘制以氨氮含量(mg)对校正吸光度的标准曲线.
4.3 水样的测定:
4.3.1分取适量经絮凝沉淀预处理后的水样(使氨氮含量不超过0.1mg),加入50mL比色管中,稀释至标线,家0.1mL酒石酸钾纳溶液.以下同标准曲线的绘制.
4.3.2 分取适量经蒸馏预处理后的馏出液,加入50mL比色管中,加一定量1mol/L氢氧化纳溶液,以中和硼酸,稀释至标线.加1.5mL纳氏试剂,混匀.放置10min后,同标准曲线步骤测量吸光度.
4.4 空白实验:以无氨水代替水样,做全程序空白测定.
5 计算
由水样测得的吸光度减去空白实验的吸光度后,从标准曲线上查得氨氮量(mg)后,
按下式计算:
氨氮(N,mg/L)=m/V×1000
式中:m——由标准曲线查得的氨氮量,mg
V——水样体积,mL.
6 注意事项:
6.1 纳氏试剂中碘化汞与碘化钾的比例,对显色反应的灵敏度有较大影响.静置后生成的沉淀应除去.
6.2 滤纸中常含痕量铵盐,使用时注意用无氨水洗涤.所用玻璃皿应避免实验室空气中氨的玷污.
总磷、正磷酸盐含量的测定——钼酸铵分光光度法
1 方法提要
在酸性介质中,膦酸盐和亚膦酸在硫酸和过硫酸铵存在下,加热,氧化成磷酸.利用钼酸铵、酒石酸锑钾和磷酸反应生成锑磷钼酸配合物,以抗坏血酸还原成“锑磷钼蓝”, 用吸光光度法测定总磷酸盐(以PO43-计)的含量和正磷酸盐(以PO43-计)的含量.
2 试剂和材料
2.1 磷酸盐(以PO43-计)标准储备溶液:1mL溶液含有0.500mg PO43-.
称量0.7165g预先在100~105℃干燥至恒重的磷酸二氢钾,精确至0.0002g.置于烧杯中,加水溶解,移入1000mL容量瓶中,用水稀释至刻度,摇匀.
2.2 磷酸盐(以PO43-计)标准溶液:1mL溶液含有0.020mg PO43-.
吸取20.00mL磷酸盐标准贮备溶液(2.1)于500mL容量瓶中,用水稀释至刻度,摇匀.
2.3 钼酸铵溶液:称量6.0g钼酸铵溶于约500mL水中,加入0.2g酒石酸锑钾及83 mL硫酸,冷却后用水稀释至1000mL,摇匀,贮存于棕色试剂瓶中,贮存期6个月;
2.4 抗坏血酸溶液:称量17.6g抗坏血酸溶于约50mL水中,加入0.2g乙二胺四乙酸二钠及8 mL甲酸,用水稀释至1000mL,摇匀.贮存于棕色试剂瓶中,贮存期15天;
2.5 硫酸:c(1/2H2SO4)=1mol/L溶液;
2.6 过硫酸铵:24.0g/L溶液,贮存期7天.
3 仪器和设备
一般实验室用仪器和
3.1 分光光度计:波长范围400 ~ 800nm;
3.2 可调电炉:800W.
4 分析步骤
4.1 总磷酸盐(以PO43-计)含量的测定
吸取5.00mL水样于50mL锥形瓶中,加入1mL硫酸溶液(2.5)、5mL过硫酸铵溶液(2.6).在电炉上加热至沸,保持10min以上,至溶液体积为原来的一半(1/2).取下冷却至室温,然后全部移至50 mL比色管中,加入5 mL钼酸铵溶液(2.3)、3 mL抗坏血酸溶液(2.4),用水稀释至刻度,摇匀.在25 ~30℃下放置10min,用1cm比色皿在710nm处,以试剂空白为参比,测定其吸光度.
4.2 正磷酸盐(以PO43-计)含量的测定
吸取10.00mL水样于50mL比色管中,加入20mL水,5mL钼酸铵溶(2.3)、3mL抗坏血酸溶液(2.4),用水稀释至刻度,摇匀.于25 ~30℃下放置10min.用1cm比色皿在710nm处,以试剂空白为参比,测定其吸光度.
4.3 磷酸盐(以PO43-计)工作曲线的绘制
取7个50mL比色管依次加入0.00、1.00、2.00、3.00、4.00、5.00、6.00 mL磷酸盐标准溶液(2.2),各加入20mL水、5 mL钼酸铵溶液(2.3)、3 mL抗坏血酸溶液(2.4),用水稀释至刻度,摇匀.于25 ~ 30℃下放置10min.用1cm比色皿在710nm处,以试剂空白为参比,测量其吸光度.以磷酸盐(以PO43-计)的毫克数为横座标,对应的吸光度为纵座标,绘制工作曲线.
5 分析结果的计算
5.1 水样中总磷酸盐含量X(毫克/升),按下式计算:
X = A/Vw * 1000
式中:A——从标准曲线查得的总磷酸盐的含量,毫克;
Vw——水样体积,毫升.
5.2 水样中正磷酸盐含量X(毫克/升),按下式计算:
X = A/Vw * 1000
式中:A——从标准曲线查得的正磷酸盐的含量,毫克;
Vw——水样体积,毫升.
6 允许差
取平行测定结果的算术平均值为测定结果,两次平行测定结果的绝对差值不大于0.30%.
你可以再看一下其他的资料 钾不清楚1 原理
碘化汞和碘化钾的碱性溶液与氨反映生成淡红棕色胶态化合物,其色度与氨氮含量成正比,通常可在波长410~425nm范围内测其吸光度,计算其含量.
本法最低检出浓度为0.025mg/L(光度法),测定上限为2mg/L.采用目视比色法,最低检出浓度为0.02mg/L.水样做适当的预处理后,本法可用于地面水,地下水,工业废水和生活污水中氨氮的测定.
2 仪器
2.1 带氮球的定氮蒸馏装置:500mL凯氏烧瓶,氮球,直形冷凝管和导管.
2.2 分光光度计
2.3 pH计
3 试剂
配制试剂用水均应为无氨水
3.1 无氨水可选用下列方法之一进行制备:
3.1.1 蒸馏法:每升蒸馏水中加0.1mL硫酸,在全玻璃蒸馏器中重蒸馏,弃去50mL初馏液,按取其余馏出液于具塞磨口的玻璃瓶中,密塞保存.
3.1.2 离子交换法:使蒸馏水通过强酸型阳离子交换树脂柱.
3.2 1mol/L盐酸溶液.
3.3 1mol/L氢氧化纳溶液.
3.4 轻质氧化镁(MgO):将氧化镁在500℃下加热,以出去碳酸盐.
3.5 0.05%溴百里酚蓝指示液:pH 6.0~7.6.
3.6 防沫剂,如石蜡碎片.
3.7 吸收液:
3.7.1 硼酸溶液:称取20g硼酸溶于水,稀释至1L.
3.7.2 0.01mol/L硫酸溶液.
3.8 纳氏试剂:可选择下列方法之一制备:
3.8.1 称取20g碘化钾溶于约100mL水中,边搅拌边分次少量加入二氯化汞(HgCl2)结晶粉末(约10g),至出现朱红色沉淀不易溶解时,改写滴加饱和二氯化汞(HgCl2)溶液,并充分搅拌,当出现微量朱红色沉淀不再溶解时,停止滴加二氯化汞溶液.
另称取60g氢氧化钾溶于水,并稀释至250mL,冷却至室温后,将上述溶液(3.8.1)徐徐注入氢氧化钾溶液中,用水稀释至400mL,混匀.静置过夜将上清液移入聚乙烯瓶中,密塞保存.
3.8.2 称取16g氢氧化纳,溶于50mL水中,充分冷却至室温.
另称取7g碘化钾和碘化汞(HgI2)溶于水,然后将此溶液在搅拌下徐徐注入氢氧化纳溶液中,用水稀释至100mL,贮于聚乙烯瓶中,密塞保存.
3.9 酒石酸钾纳溶液:称取50g酒石酸钾纳KNaC4H4O6•4H2O)溶于100mL水中,加热煮沸以除去氨,放冷,定容至100ml.
3.10 铵标准贮备溶液:称取3.819g经100℃干燥过的优级纯氯化铵(NH4Cl)溶于水中,移入1000mL容量瓶中,稀释至标线.此溶液每毫升含1.00mg氨氮.
3.11 铵标准使用溶液:移取5.00mL铵标准贮备液于500mL容量瓶中,用水稀释至标线.此溶液每毫升含0.010mg氨氮.
4 测定步骤
4.1 水样预处理:取250mL水样(如氨氮含量较高,可取适量并加水至250mL,使氨氮含量不超过2.5mg),移入凯氏烧瓶中,家数滴溴百里酚蓝指示液,用氢氧化纳溶液或盐酸溶液调节至pH=7左右.加入0.25g轻质氧化镁和数粒玻璃珠,立即连接氮球和冷凝管,导管下端插入吸收液液面下.加热蒸馏,至馏出液达200mL时,停止蒸馏,定容至250mL.
采用酸滴定法或纳氏比色法时,以50mL硼酸溶液为吸收液采用水杨酸-次氯酸盐比色法时,改用50mL 0.01mol/L硫酸溶液为吸收液.
4.2 标准曲线的绘制:吸取0,0.50,1.00,3.00,7.00和10.0mL铵标准使用液分别于50mL比色管中,加水至标线,加1.0mL酒石酸钾溶液,混匀.加1.5mL纳氏试剂,混匀.放置10min后,在波长420nm处,用光程20mm比色皿,以水为参比,测定吸光度. 由测得的吸光度,减去零浓度空白管的吸光度后,得到校正吸光度,绘制以氨氮含量(mg)对校正吸光度的标准曲线.
4.3 水样的测定:
4.3.1分取适量经絮凝沉淀预处理后的水样(使氨氮含量不超过0.1mg),加入50mL比色管中,稀释至标线,家0.1mL酒石酸钾纳溶液.以下同标准曲线的绘制.
4.3.2 分取适量经蒸馏预处理后的馏出液,加入50mL比色管中,加一定量1mol/L氢氧化纳溶液,以中和硼酸,稀释至标线.加1.5mL纳氏试剂,混匀.放置10min后,同标准曲线步骤测量吸光度.
4.4 空白实验:以无氨水代替水样,做全程序空白测定.
5 计算
由水样测得的吸光度减去空白实验的吸光度后,从标准曲线上查得氨氮量(mg)后,
按下式计算:
氨氮(N,mg/L)=m/V×1000
式中:m——由标准曲线查得的氨氮量,mg
V——水样体积,mL.
6 注意事项:
6.1 纳氏试剂中碘化汞与碘化钾的比例,对显色反应的灵敏度有较大影响.静置后生成的沉淀应除去.
6.2 滤纸中常含痕量铵盐,使用时注意用无氨水洗涤.所用玻璃皿应避免实验室空气中氨的玷污.
总磷、正磷酸盐含量的测定——钼酸铵分光光度法
1 方法提要
在酸性介质中,膦酸盐和亚膦酸在硫酸和过硫酸铵存在下,加热,氧化成磷酸.利用钼酸铵、酒石酸锑钾和磷酸反应生成锑磷钼酸配合物,以抗坏血酸还原成“锑磷钼蓝”, 用吸光光度法测定总磷酸盐(以PO43-计)的含量和正磷酸盐(以PO43-计)的含量.
2 试剂和材料
2.1 磷酸盐(以PO43-计)标准储备溶液:1mL溶液含有0.500mg PO43-.
称量0.7165g预先在100~105℃干燥至恒重的磷酸二氢钾,精确至0.0002g.置于烧杯中,加水溶解,移入1000mL容量瓶中,用水稀释至刻度,摇匀.
2.2 磷酸盐(以PO43-计)标准溶液:1mL溶液含有0.020mg PO43-.
吸取20.00mL磷酸盐标准贮备溶液(2.1)于500mL容量瓶中,用水稀释至刻度,摇匀.
2.3 钼酸铵溶液:称量6.0g钼酸铵溶于约500mL水中,加入0.2g酒石酸锑钾及83 mL硫酸,冷却后用水稀释至1000mL,摇匀,贮存于棕色试剂瓶中,贮存期6个月;
2.4 抗坏血酸溶液:称量17.6g抗坏血酸溶于约50mL水中,加入0.2g乙二胺四乙酸二钠及8 mL甲酸,用水稀释至1000mL,摇匀.贮存于棕色试剂瓶中,贮存期15天;
2.5 硫酸:c(1/2H2SO4)=1mol/L溶液;
2.6 过硫酸铵:24.0g/L溶液,贮存期7天.
3 仪器和设备
一般实验室用仪器和
3.1 分光光度计:波长范围400 ~ 800nm;
3.2 可调电炉:800W.
4 分析步骤
4.1 总磷酸盐(以PO43-计)含量的测定
吸取5.00mL水样于50mL锥形瓶中,加入1mL硫酸溶液(2.5)、5mL过硫酸铵溶液(2.6).在电炉上加热至沸,保持10min以上,至溶液体积为原来的一半(1/2).取下冷却至室温,然后全部移至50 mL比色管中,加入5 mL钼酸铵溶液(2.3)、3 mL抗坏血酸溶液(2.4),用水稀释至刻度,摇匀.在25 ~30℃下放置10min,用1cm比色皿在710nm处,以试剂空白为参比,测定其吸光度.
4.2 正磷酸盐(以PO43-计)含量的测定
吸取10.00mL水样于50mL比色管中,加入20mL水,5mL钼酸铵溶(2.3)、3mL抗坏血酸溶液(2.4),用水稀释至刻度,摇匀.于25 ~30℃下放置10min.用1cm比色皿在710nm处,以试剂空白为参比,测定其吸光度.
4.3 磷酸盐(以PO43-计)工作曲线的绘制
取7个50mL比色管依次加入0.00、1.00、2.00、3.00、4.00、5.00、6.00 mL磷酸盐标准溶液(2.2),各加入20mL水、5 mL钼酸铵溶液(2.3)、3 mL抗坏血酸溶液(2.4),用水稀释至刻度,摇匀.于25 ~ 30℃下放置10min.用1cm比色皿在710nm处,以试剂空白为参比,测量其吸光度.以磷酸盐(以PO43-计)的毫克数为横座标,对应的吸光度为纵座标,绘制工作曲线.
5 分析结果的计算
5.1 水样中总磷酸盐含量X(毫克/升),按下式计算:
X = A/Vw * 1000
式中:A——从标准曲线查得的总磷酸盐的含量,毫克;
Vw——水样体积,毫升.
5.2 水样中正磷酸盐含量X(毫克/升),按下式计算:
X = A/Vw * 1000
式中:A——从标准曲线查得的正磷酸盐的含量,毫克;
Vw——水样体积,毫升.
6 允许差
取平行测定结果的算术平均值为测定结果,两次平行测定结果的绝对差值不大于0.30%.
盐酸呈无色液体,属于氯化氢的水溶液,可以加速溶解磷肥和钾肥g4。
伴随着有机化学工业生产的迅速发展趋势,盐酸的主要用途更为的普遍。
土壤中的有效磷测量时硫酸的作用:土样以盐酸和硫酸溶液浸提,使土样中较活性的磷酸铁、铝盐被溶解释出,然后以钼锑抗光度法测定磷。
土壤中有效磷含量与全磷含量之间虽不是直线相关,但当土壤全磷含量低于0.03%时,土壤往往表现缺少有效磷。土壤有效磷是土壤磷素养分供应水平高低的指标,土壤磷素含量高低在一定程度反映了土壤中磷素的贮量和供应能力。
土壤的成分:
土壤是矿物质、有机质和活的有机体以及水分和空气等的混合体;按重量计,矿物质占到固相部分,即土壤干重的九成或更多,有机质约占一成,可见土壤成分以矿物质为主;土壤有机质就是土壤中以各种形态存在的有机化合物。
除此之外还有土壤溶液,它是土壤水分及其所含的溶解物质和悬浮物质的总称,土壤溶液是植物和微生物从土壤中吸收营养物的媒介,也是污染物在土壤中迁移的主要途径。