请问酸性环境下镀锡大概多长时间?二极管的电极镀锡! 谢谢
1酸性镀锡的特点
1、锡的沉积电位较正、镀液电导率较高
标准电极电位:Sn2++2e−=Snφº=-0.140V
而碱性条件下:HSnO−+H2O+2e−=Sn+3OH−φº=-0.79V
镀液中硫酸亚锡与硫酸的质量比又控制在1:3~4之间,故镀液导电性好。生产中槽电压不会大于4V,因而较省电。
2、电极反应极快
在硫酸液中,锡的交换电流密度io达110mA/cm²,比Cu2+、Zn2+大2~3个数量级。即:在无添加剂时,自身阴极极化很小,属电极反应极快的一种金属离子。在加有添加剂能获得光亮镀层时,其镀速仍快。
3、锡离子必须呈二价态
金属锡离子有+2和+4两种价态,Sn2+称为亚锡离子;Sn4+称为正锡离子。但Sn4+一般不以简单离子而以化合物形式存在,有时记为SnⅣ。
在加温的碱性镀锡液中,锡离子要求呈4价;Sn2+使镀锡层发灰暗而不白。为此,生产时常从锡阳极液附近加入适量双氧水,使阳极呈金黄色的半钝化态,以减少生成Sn2+。恰恰相反,在酸性镀锡时,要求锡呈二价态。Sn2+易被氧化为Sn4+。一旦Sn4+成为β−锡酸时,则使锡液浑浊、发白,严重时呈牛奶色。锡液黏度增大,分散能力与深镀能力下降,电导率下降,槽电压升高。镀层灰白无光、脆性加大,焊接性能下降。如何防止Sn2+转化为稳定的四价锡化合物,是工艺的重点与难点。
酸性镀锡现主要用硫酸盐体系与甲磺酸盐体系。前者成本低,应用也更广些。
2锡阳极
2.1锡对Sn2+的稳定作用
假若新配1L硫酸光亮酸性镀锌液,再分成两份于500ml烧杯中,其中一个烧杯内放入一根纯锡条,另一则不放;自然放置并观察,会发现:放有锡条的镀液保持清澈不浑的时间会比不放锡条的要长得多。原因是金属锡能将4价锡还原为2价锡,起到稳定镀液作用、减少β−锡酸的产生。
例如文献[1]列有反应:SnCl4+Sn=2SnCl2。
2.2锡阳极是否应加装阳极袋
首先应明确,在无氧化性介质的硫酸盐镀锡液中,钛材会很快被腐蚀,因而不能用钛阳极筐。
锡阳极板是否外套耐酸阳极袋,有利也有弊。好处是可以防止阳极泥渣直接落入镀液中,减少镀层毛刺、粗糙;坏处是几乎失去锡阳极的稳定镀液作用:阳极袋使对流、扩散传质过程受阻,袋内镀液Sn2+浓度较高,锡能起稳定作用;袋外镀液中Sn2+易氧化为Sn4+,易形成有害的β−锡酸。生产中现多数挂镀(只能采用阴极移动,而不能用空气搅拌)将槽作深点而不加阳极袋;滚镀对镀液翻动厉害,有时加阳极袋。
2.3阳极产生的黑色泥渣
2.3.1阳极泥渣为何物
金属锡是柔软的银白色金属,常温下在空气中不被氧化。亚锡化合物中,氧化亚锡为黑色,硫化亚锡为黑棕色,其余亚锡化合物几乎都无色。四价锡的氧化物为白色。SnO与SnO2均不溶于水。可以判定,黑色的阳极泥渣并非金属锡渣而是氧化亚锡SnO。
2.3.2黑色SnO泥渣的产生
在酸性镀锡时,阳极上也有气体产生,其为氧气:
4OH−−4e−→2H2O+O2↑
活性态的氧原子比氧气分子具有更强的氧化能力,使锡原子被氧化:Sn+O→SnO
2.3.3阳极泥渣的高化学稳定性
认为将阳极泥渣过滤丢弃太可惜了,文献[1]介绍,锌能将Sn2+和Sn4+完全还原为金属锡:
2Zn+Sn4+=Sn+2Zn2+
设想将SnO黑色阳极泥渣用还原性盐酸溶解,再加上锌粉还原,过滤得到锡粉来回收价高的锡。从工厂酸性镀锡槽底捞取了些阳极污泥,洗涤过滤后放入250ml烧杯中,先加入体积比1:1盐酸,过一段时间后用玻棒搅拌一阵。如此3昼夜后,SnO一点未见溶解。过滤后改用分析纯浓盐酸,同样几天都不溶。可见其化学稳定性很高,将SnO变成SnCl2都不大可能,就谈不上再用锌粉还原了。试验失败。(若将盐酸加热煮沸,则成本很高且不环保。)
2.3.4减少阳极泥渣的产生
阳极泥渣难以回收利用,则只能设法减少其产生。
阳极电流密度JA越大,阳极电流效率越低,析氧越严重,氧化产生SnO泥渣的量越大。为减小JA(以0.5~1.5A/dm²为宜),阳极面积应大些为好。不懂此理者,以为阳极少些消耗就少些,其实反而浪费更大。而且稀稀拉拉的阳极会使阴极电流分布不均匀,均镀能力下降。锡阳极少了,如前所述,镀液稳定性下降。不必担心阳极面积过大后镀液中锡离子浓度会升高,因为在配方硫酸范围内,锡的自溶量微乎其微。
镀液中硫酸过少,阳极活化不良,镀液电导率下降,阳极电流效率下降。硫酸过多,阳极泥渣从板上脱落加快,新的锡表面又很快氧化生成泥渣。
3β−锡酸的形成及其性能
SnO对应的氢氧化物为Sn(OH)2具有两性:与酸作用生成亚锡盐,与OH−作用生成亚锡酸盐,如:
Sn(OH)2+KOH=H2O+KHSnO2
白色的SnO2既不溶于水,也不溶于酸。其对应的氢氧化物有两种:Sn(OH)4即正锡酸,和锡酸H2SnO3,或记为SnO(OH)2。前者失去一分子水则成为后者:Sn(OH)4−H2O=SnO(OH)2。
Sn(OH)4具两性,主要呈碱性;H2SnO3也具两性,但主要呈酸性。二者与碱反应均生成锡酸盐:
H2SnO3+2KOH=2H2O+K2SnO3与酸反应:H2SnO3+4HCl=SnCl4+3H2O
Sn(OH)4+2KOH=3H2O+K2SnO3Sn(OH)4+4HCl=SnCl4+H2O
4价锡生成的溶于碱及酸的锡酸,称为α−锡酸。
α−锡酸易于聚合为分子量更大的锡酸,如[H2SnO3]5或[(SnO)5(OH)10],即β−锡酸。一般,5分子α−锡酸聚合为1分子β−锡酸:5H2SnO3→(SnO)5(OH)10
液温越高,这种聚合速度越快。若对α−锡酸持续加热煮沸,则会全部聚合为β−锡酸。α−锡酸溶于稀矿酸,β−锡酸则不溶。
在酸性镀锡液中,一旦二价锡离子Sn2+被氧化为4价的Sn4+后,则会先生成α−锡酸。部分α−锡酸被镀液中的硫酸所溶解,另一部分则聚合为β−锡酸。β−锡酸既不溶于水,也不溶于稀硫酸,又不形成固态沉淀物,而是以白色胶性态悬浮于镀液中,直接用溶液过滤机也难以滤除,只能絮凝沉淀后去除。其对镀液与镀层的危害性前已述及。液温越高,聚合生成β−锡酸的速度越快。
在室温下,β−锡酸是逐渐增加的。这从液色的逐渐变化可以表现出来:清澈透明→浑浊但不发白→浅乳白色→深乳白色→牛奶状。
曾设想从絮凝沉淀后的β-锡酸中回收金属锡。查资料后认为步骤太多,不划算,提出来供感兴趣的人参考。步骤为:
a、β−锡酸与浓的盐酸煮沸:生成SnCl4:(SnO)5(OH)10+20HCl=5SnCl4+15H2O;
b、冲稀溶液;
c、加锌粉还原:SnCl4+2Zn=Sn+2ZnCl2;
d、过滤、洗涤得到金属锡粉。
4氯离子对镀液稳定性的破坏作用
搞过酸性镀锡的人都知道,氯离子对镀液十分有害,但未必清楚是如何起坏作用的。简述如下:
Sn2++2Cl−⇆SnCl2(1)
SnCl2+H2O=HCl+Sn(OH)Cl(2)
当有氧存在时:4SnCl2+O2+2H2O=4Sn(OH)Cl+2Cl2(3)
反应3生成的氯并不游离析出,而将Sn2+氧化为Sn4+:Sn2++Cl2=Sn4++2Cl−(4)
这样,反应1~4循环恶性进行,起到2个坏作用:其一、不断将Sn2+转化为Sn4+,为最终形成β−锡酸提供了条件。其二、反应生成碱式氯化亚锡难溶于水,而使镀液浑浊,起到与β−锡酸相类似的坏作用。Cl−还会明显降低本来就嫌小了的过电位,使镀层粗糙而易呈树枝状结晶。
5减少4价锡生成的措施
在酸性条件下,很难找到对金属离子有强配位作用的配位剂,对酸性镀锡也不例外。硫酸盐体系的镀液中,二价锡离子以简单的Sn2+形式存在,很易被氧化为4价态。而一旦Sn4+转化为β−锡酸,则无法再还原为有用的Sn2+,只能设法去除(一般为絮凝沉淀过滤后作为工业废弃物处置)。甲磺酸对Sn2+、Pb2+具一定配位能力,因而镀液稳定较高些,既可镀纯锡,也可镀锡铅合金。但其生产成本高,对电镀加工单价不高的产品,用硫酸盐光亮酸性镀锡,仍处于主导地位。
排开氯离子造成的生成二价锡化合物碱式氯化亚锡也有害这一因素,酸性镀锡时电镀液中的最大液费,就是Sn2+因氧化为Sn4+,最终变为无用且害处很大的β−锡酸而被白白丢弃。因此,如何尽量防止或减少Sn2+被氧化为Sn4+,且在Sn4+转化为白色的β−锡酸之前能将Sn4+还原为Sn2+,就是该工艺的重点了。办法几乎都是在添加剂中加入所谓“稳定剂”。售品添加剂在开缸剂中加入稳定剂较多、主光剂(一般用苄叉丙酮与甲醛)加入量多且开缸剂用量大,而在光亮剂中加入稳定剂很少,甚至不加。
5.1稳定剂概述
文献[2]指出了不少物质对硫酸盐光亮酸性镀液具有稳定作用。例如:
1、酚类物质
有关酸性镀锡的专利很多,但专利上提出的物质是难购到现货的。就目前售品开缸剂中的稳定剂,几乎都含有酚类物质,如间苯三酚、邻苯二酚、甲酚磺酸,等等。
在镀液中,酚类物质具有三个作用:a、具还原性,能将简单Sn4+还原为Sn2+;b、具一定光亮作用,能提高镀层光亮性和整平性;c、能扩大允许的阴极电流密度,减少镀层烧焦。
在苯酚类中,国内用得较多的是对苯二酚,国外则多用间苯二酚。其原因可能是:与对苯二酚相比,间苯二酚苯环上两个羟基的距离较近,电子云密度较高,更容易失去电子,即具有更强的将Sn4+还原为Sn2+的还原能力。
2、具还原性无机化合物
如周期表中VB族化合物五氧化二钒V2O5、硫酸氧钒VOSO4、钒酸钠NaVO3、五氧化二铌Nb2O5、钽的氯化物。以及三氯化钛TiCl3、硫酸氧锆ZrOSO4、钨酸钠Na2WO4。但这些物质贵且难购,也不宜选虽具还原性,但会产生氯离子的无机化合物。这类物质用得不多。
化学镀镍用还原剂次磷酸钠也能将Sn4+还原为Sn2+,可以考虑采用。
3、有机酸类
具有还原性的有机酸可作为稳定剂。如抗坏血酸、苯酚磺酸、甲酚磺酸、萘酚磺酸、山梨酸钠、硫代苯果酸、酒石酸及其盐类、葡萄糖酸,等。
4、肼类物质
肼类物质还原性强、用量少、如水合肼、硫酸肼。但其腐蚀性较强、有一定毒性,应用不多。
5、其它
有人认为,硫酸亚铁是良好稳定剂(2g/L)。1998年,有人报导,2~2.5g/L氟硼酸钾或10~13ml/L的大蒜提取液,在生产中实践应用5年,证明与售品FS-1专用稳定剂效果相当。从《中国化工产品大全》中可以查到许多“抗氧剂”产品,其中是否有对酸性镀锡效果特别好的可用作稳定剂的,要作大量的试验筛选工作。
在上述稳定剂中特别要讲一下抗坏血酸,其又名维生素C。人体在新陈代谢过程中会不断产生有害的氧化自由基。补充抗坏血酸后,因其具有的还原性,能中和氧化自由基,有利于人体健康。在酸性镀锡液中,发生如下可逆反应:
可逆反应
抗坏血酸分子上有2个羟基在被氧化时,2个氢原子各失去一个电子,起到2个作用:a、将Sn4+还原为Sn2+:Sn4++2e−→Sn2+;b、新生态的氢原子具有极强的还原能力,能消耗液中的氧:4H+O2=2H2O。其去氧作用减少了Sn2+的被氧化。反应生成的“去氢抗坏血酸”在酸性条件下于阴极得到2个负电子,又恢复为抗坏血酸。即其是循环利用的,以带出消耗为主。因此,现有稳定剂中几乎都加有抗坏血酸。它在电镀镍铁合金与锌铁合金中也常用来还原三价铁Fe3+为二价铁Fe2+,以防生成Fe(OH)3沉淀。但其对Fe2+无配位作用,效果不如代号为RC的稳定剂好。最简单的稳定剂,就是产品“SS820”中,只加有一种,即甲基丙烯酸。
5.2保持镀液清澈的措施
5.2.1避免引入氯离子
在酸性镀锡液中,氯离子参与的化学反应,不但会使Sn2+氧化为Sn4+,抵消稳定剂的作用,而且直接与Sn2+生成碱式氯化亚锡Sn(OH)Cl沉淀,悬浮于液中,使镀液发浑,只能絮凝沉淀再过滤去除。
在生产中,镀锡前用流动纯水清洗一般是办不到的。但至少应该用硝酸银检验所用地下水是否被Cl-污染。若污染较重,应抽取的深层地下水供镀锡及光亮酸铜作镀前处理后的入槽前的清洗用。经前处理干净后的工件,若清洗水中Cl-含量不重,应先存放在含硫酸10g/L左右的纯水中贮存,一是可使工件处于活化态,有利提高镀层结合力;二是不经清洗直接带稀硫酸入槽,既可补充镀液硫酸带出,又可减少Cl-的带入。
5.2.2保证镀液中有足够量的稳定剂
酸性镀锡液的稳定剂组分中,除抗血酸(有报导,五氧化二钒V2O5具类似作用)可循环利用,多数在还原四价锡为二价锡时,自身也被氧化消耗掉了。为保证镀液中有足够量的稳定剂,可采取以下措施:
1、因开缸剂中稳定剂含量高,因而平时不能只加光亮剂,应配搭加入适量开缸剂。见过一个颇有经验的电镀小老板,采用硫酸盐光亮镀锡工艺滚镀锡,平时补充添加剂,也只补充开缸剂,从来不补充“光亮剂”,其滚镀液使用2年了,也一直清澈不浑浊。其原因就在于此。
霍尔槽试验时,1A搅拌镀3min,若试片高端烧焦区较宽,补加4g/L硫酸亚锡也无明显改善,则补加适量优质开缸剂应有明显改善。其原因是补加了稳定剂中能扩大允许电流密度的酚类物质。
2、加入单独的稳定剂产品
市场上有专门的复配型酸性镀锡稳定剂出售,可择优选用,按使用说明书或实验添加。也可依据前述对稳定剂的介绍,自行组合配制。提供一个参考配方:
酒石酸钾钠120g/L
间苯二酚8g/L
抗坏血酸5g/L
甲酚磺酸3g/L(亦可不加)
次磷酸钠6g/L
聚乙二醇(分子量6000~12000)2g/L(可用0.01g/L适于镀锡的优质聚丙烯酰胺代替)
注意:
①全部用分析纯材料;
②配制时除间苯二酚与抗坏血酸外,用热水溶解、搅拌,若液不清澈(酒石酸及其盐类不太好溶),则试加分析纯硫酸,再搅拌至溶液清亮为止。
③间苯二酚与抗坏血酸见光易变质,要用黑色袋作外包装,在60℃以下时加入搅溶。若配液未用完时,存于棕色玻璃瓶中,再套不透光袋。
④若甲酚磺酸不易购,可购混合甲酚加硫酸磺化产生:1体积混合甲酚加热到50~60℃,不断搅拌下加入等体积浓硫酸;于100~110℃保温2h。
⑤其用量由实验确定。
5.2.3及时去除镀液中的悬浮沉淀物
及时,是指镀液显浑浊时,就应当进行絮凝沉淀处理;当镀液已明显泛白,即生成β−锡酸已较多时,才絮凝处理,则已晚了一些:生成物较多、絮凝沉淀后必须翻槽过滤。絮凝剂少加、勤加,镀槽作深一点,则不必每次加入絮凝剂后都要翻槽过滤;而且下部沉淀物较为密实、含水率相对较低。
在讨论Cl-影响时,谈及反应2生成的碱式氯化亚锡也是一种悬浮于镀液中的有害物质。若能及时絮凝沉于槽底,多少有点除氯作用,能减少反应3、4的发生。
宋文超、左正忠等[4]在其研究的酸性镀锡添加中,认为加入聚乙二醇能起到絮凝作用。他们确定的稳定剂组分有(含量保密):聚乙二醇、钒酸盐、次磷酸钠及抗坏血酸。不加稳定剂时5~7天镀液浑浊,加入后静置3个星期才出现轻微浑浊。(显然实验用的是纯水,不含氯。)个人拙见,其稳定剂只考虑了对Sn4+的还原作用,未考虑许多有机酸对Sn2+有一定配位作用,以及大生产中酚类物质有扩大允许阴极电流密度的作用,而未加入。
假若在平时补加用的光亮剂中加入效果好的聚丙烯酰胺少量,也能及时絮凝沉淀β−锡酸与碱式氯化亚锡悬浮物,保持镀液清澈不浑。其成本增加甚微。
顺便提供一个生产实践经验:当酸性镀锡液已发白严重,需加8mg/L处理剂絮凝沉淀长时间,镀液下部沉淀已很多,但上部液仍澄不清时,应改为下述“二步处理法”:先按4ml/L量加入处理剂,沉淀过滤;过滤后的尚浑浊液中再加4ml/L处理剂,搅拌、沉淀过滤。最后,虽加入处理剂的总量一样,但所得镀液的清澈透明度却比“一步法”高得多,即处理效果要好得多。过滤时,由于用溶液过滤机很易堵滤芯等问题,实际生产中多采用虹吸法吸出上部清液,下部含污泥的浑浊镀液就舀来倒了。这是一种极大的浪费。正确作法是:作一个小而深的塑料槽,将下部浑液及污泥舀于其中静置沉淀24h以上,再虹吸出上部清液返回镀槽;余下部分用几个过滤布制成的类似阳极袋的袋子,舀于其中,悬空吊放作“袋式过滤”,滤出液为镀液再利用,一般10余h后袋内污泥已干化,可取出与废水处理污泥一起处理。
6结论
通过以上分析,在酸性镀锡时,为减少锡的浪费,除加强镀后对镀液的回收外,在生产上还应注意:
1、锡阳极板不加阳极袋,以发挥其将有害4价锡还原为有用2价锡的稳定作用。
2、锡阳极面积大些为好,以保证阳极电流密度不大于1.5A/d㎡。这样,阳极电流效率高些,其上析氧少些,锡阳极上生成的化学稳定性很高(浓盐酸温室下也不溶解)的、黑色的、难以再利用氧化亚锡SnO少些。
3、尽力避免氯离子污染镀液,否则,既会发生悬浮于镀液中的有害的碱式氯化亚锡Sn(OH)Cl,也会将有用的Sn2+氧化为有害的Sn4+。
4、采取一切可行措施,避免Sn2+被氧化为Sn4+。当Sn4+以H2SnO3,即α−锡酸形式存在时,危害尚不大;但当α−锡酸逐渐聚合为白色的、既不溶于稀矿酸,也不溶于水的液中悬浮物β−锡酸(SnO)5(OH)10时,则显示出对镀液与镀层的极大危害性。为此,
1)研究提出了很多酸性镀锡液稳定剂。他们或者是对Sn2+有一定配位作用的有机酸,或者是能减缓Sn2+氧化为Sn4+的“抗氧剂”,或者是在Sn4+还未转变为β−锡酸之前将其还原为Sn2+的还原剂,或兼具几种作用。
2)一般在开缸剂中稳定剂含量较高,主光剂(多用苄叉丙酮)含量较低;而平时补加的光亮剂中,稳定剂含量很低,甚至完全不含。因而生产中在补充光亮剂的同时应适量补加开缸剂。
3)也有专门的售品稳定剂出售。当所用添加剂总体稳定性不够时,可择优购买添加。
4)稳定剂也可参照本文及文献[2]自配。其良好与否及加入量可通过霍尔槽试验来确定。
5)无论是悬浮于镀液中的Sn(OH)Cl或(SnO)5(OH)10,用活性炭吸附去除,几乎无效。通常采用絮凝剂作絮凝沉淀再固液分离。絮凝剂以有机与无机物共用混合剂最好;其中有机物多用聚丙烯酰胺PAM,其用量很少。PAM有阴离子型、阳离子型、非离子型三大类,每类又有分子量从几十万到几千万的商品多种。实践证明,有的用作废水处理效果很好的PAM,用作酸性镀液不但毫无絮凝作用,反而增加镀液黏度、降低电导率、给镀后清洗带来困难。因此,最好试验优选水剂“处理剂”成品用。笔者主张勤加少加处理剂:在补加光亮剂时,同时少量加入。
苯酐又叫邻苯二甲酸酐,空气中邻苯二甲酸酐最高容许浓度为1mg/m3。被涂料生产中使用,邻苯二甲酸酐会引起支气管炎,眼炎,肺气肿等症状,对皮肤也有刺激
化学性质:
邻苯二甲酸分子内失去一分子水而形成的环酸酐。分子式1,2-C6H4(CO)2O。无色晶体。熔点131.6℃,沸点295℃(升华)。微溶于冷水、乙醚,易溶于热苯、乙醇、乙酸中。邻苯二甲酸酐可发生水解、醇解和氨解反应,与芳烃反应可合成蒽醌衍生物。邻苯二甲酸酐在工业上是在五氧化钒催化下,由萘与空气在350~360℃进行气相氧化制得,也可用空气氧化邻二甲苯制得。邻苯二甲酸酐可代替邻苯二甲酸使用,主要与一元醇反应形成酯,例如邻苯二甲酸二丁酯、邻苯二甲酸二辛酯,它们都是重要的增塑剂。邻苯二甲酸酐与多元醇(如甘油、季戊四醇)缩聚生成聚芳酯树脂,用于油漆工业;若与乙二醇和不饱和酸缩聚,则生成不饱和聚酯树脂,可制造绝缘漆和玻璃纤维增强塑料。邻苯二甲酸酐也是合成苯甲酸、对苯二甲酸的原料,也用于药物合成
我公司主营涂料原料、塑料原料、循环水原料、电镀原料、洗涤原料、造纸原料、水处理原料、 橡胶原料、建筑化学品、玻璃原料、陶瓷原料、选矿助剂、食用菌原料、环保化学品、有机化工原料、无机化工原料,油气田助剂,精细化工原料,油漆原料,建筑原料,香精香料,化学试剂,食品添加剂,乳胶漆原料,防水防火原料,有机化工溶剂,颜料染料,纺织印染原料等几十个大类1700余种常用基础化工原料,欢迎各位客户朋友双赢合作,共谋发展!
1 乙醇 乙醛 乙酸 乙酸乙酯 乙酸丁酯 乙酸钠 乙缩醛 乙腈
1 乙酰水杨酸 乙烯基三乙氧基硅烷 乙烯基硅油 乙醇钠 乙炔炭黑
1 乙醇酸 一乙醇胺 乙二醛 乙二酸 乙二醇 乙二胺 乙二胺四乙酸
1 乙二胺四乙酸二钠 乙二胺四乙酸四钠 乙二醇丁醚 乙二醇甲醚
1 乙二醇乙醚 乙二醇乙醚醋酸酯 乙基纤维素 乙萘酚 乙酰乙酸乙酯
2 八甲基环四硅氧烷 八溴醚 丁二酸钠 丁二酸 丁醇 丁酮 丁酸
2 丁酸乙酯 丁腈橡胶 二苯胺 二苯甲酮 二乙二醇 二丙二醇
2 二丙二醇乙醚 二丙二醇丁醚 二丙二醇甲醚 二丙酮醇 二丁酯
2 二辛酯 二甘醇 二甲胺 二甲苯 二甲基硅油 二甲基苯胺
2 二甲基甲酰胺 二甲基乙酰胺 二甲基亚砜 二甲醚二硫化钼
2 二硫化钼 二氯甲烷 二氯乙烷 二氯丙烷 二氯乙氰尿酸钠
2 二茂铁 二盐 二氧化氯 二氧化硅 二氧化锰 二氧化硒 二氧化锡
2 二氧化铅 二氧化锆 二乙醇胺 二乙二醇丁醚 二乙二醇乙醚
2 二乙二醇甲醚 二乙烯三胺 二月桂酸二丁基锡 二萘酚
2 十二烷基硫酸钠 十二烷基苯磺酸钠 十二羟基硬脂酸 十溴联苯醚
2 十八醇 十八烯酸 十二醇 十二叔胺 十六叔胺 十八叔胺
3 大红粉 大苏打 干冰 干酪素 干燥剂 干强剂 工程塑料 工业萘
3 工业盐 已二胺 已二酸 已二酸二辛酯 已酸乙酯 马日夫盐
3 三醋酸甘油酯 三甘醇 三聚磷酸铝 三聚磷酸钠 三聚氰胺
3 三氯化铁 三氯化铝 三氯甲烷 三氯乙烷 三氯乙烯
3 三氯乙氰尿酸钠 三盐 三氧化二锑 三乙醇胺 三乙胺
3 三乙烯二胺 三乙烯四胺 三元乙丙胶 三羟甲基丙烷 山梨醇
3 山梨酸钾 山嵛酸 小苏打
4 巴西棕榈蜡 不饱和聚酯树脂 分散剂 分子筛 分散染料
4 分散松香胶 化学试剂 六次甲基四胺 六甲基二硅氮烷
4 六偏磷酸钠 六氯乙烷 木村防腐剂 木质素磺酸钙 木质素磺酸钠
4 木糖醇 片碱 壬二酸 壬基酚聚氧乙烯醚 日落黄 双酚A
4 双氰胺 双氧水 双飞粉 双甲酯 双硬脂酸铝 水玻璃 水合肼
4 水合联胺 水杨酸 水杨酸钠 水杨酸甲酯 水处理原料 水化白油
4 水晶胶 水性色浆 水溶性树脂 太古油 天然乳胶 天然脂肪醇
4 无色钴 无机原料 乌洛托品 五氧化二钒 五氧化二磷 五氯酚钠
4 元明粉 月桂酸 云母粉 中铬黄 匀染剂
5 瓜尔胶 白炭黑 白油 白乳胶 丙二醇 丙二醇丁醚 丙二醇甲醚
5 丙二醇乙醚 丙二醇甲醚醋酸酯 丙二酸 丙炔醇 丙三醇 丙酸钙
5 丙酸 丙酮 丙烯酸 丙烯腈 丙烯酸乙酯 丙烯酸甲酯
5 丙烯酸异辛酯 丙烯酸羟乙酯 丙烯酸羟丙酯 丙烯酰胺 布罗波尔
5 电木粉 电镀添加剂 电镀光亮剂 电镀原料 冬青油 对氨基苯磺酸
5 对苯二酚 对苯二甲酸 对苯二甲酸二甲酯 对苯二甲酸二辛酯
5 对甲苯磺酸 对甲苯磺酸钠 对硝基苯酚 发泡剂AC 发泡调节剂
5 发兰液 甘油 甘氨酸 甘宝素 甘露醇 古马隆 加脂剂 甲苯
5 甲苯胺红 甲醇 甲醇钠 甲醛 甲酸 甲酮 甲酰胺甲酸钠
5 甲酸钙 甲基丙烯酸 甲基丙烯酸甲酯 甲基丙烯酸丁酯
5 甲基丙烯酸羟丙酯 甲基丙烯酸羟乙酯 甲基硅醇钠甲基硅油
5 甲基三乙氧基硅烷 甲基纤维素 甲基异丁基甲酮 甲基吡咯烷酮
5 甲硼氢 立德粉 立索尔犬红 立索尔宝红 尼泊金乙酯
5 尼泊金甲酯 尼泊金丙酯 尼泊金丁酯 尼龙 平平加 卡松
5 石蜡 石墨粉 石英砂 石英粉 石膏粉 石油醚 石油助剂
5 石油树脂 石油磺酸钠 石油磺酸钡 石棉粉 石棉绒 司盘
5 四氯化碳 四氯乙烯 四甲氧基硅烷 四氢呋喃 四氢噻吩
5 四溴双酚A 戊二醛 永固颜料 玉米淀粉 正硅酸乙酯 正已烷
5 正辛醇 正钛酸丁酯 正丁醇
6 冰醋酸 冰晶石 冰片 冰乙酸 成膜助剂 虫胶片 次磷酸钠
6 次亚磷酸钠 次亚硫酸钠 次氯酸钠 导热油 低压聚乙烯 地蜡
6 地板蜡 吊白块 多聚甲醛 多聚磷酸钠 多聚磷酸锌 多乙烯多胺
6 防老剂 防水剂 防水涂料 防水油膏 防火涂料 防锈剂 防锈油
6 防腐剂 防霉剂 防冻剂 防结皮剂 防黄硅油 防焦剂 防染盐
6 仿瓷粉 光亮剂 光稳定剂 光引发剂 过硫酸钠 过硫酸钾
6 过硫酸铵 过硼酸钠 过碳酸钠 过氧化苯甲酰 过氧化环已酮
6 过氧化甲乙酮 过氧化钠 过氧化钙 过氧化氢 过氧化二异丙苯
6 过氧乙酸 色浆(各种颜色) 色糊 红丹 红矾钾 红矾钠 红矾铵
6 红火漆 华兰 灰钙粉 交联剂 扩散剂 列克钠胶 吗啉
6 农药乳化剂 色素炭黑 杀菌剂 吐温 纤维素 纤维素酶
6 亚硫酸钠 亚硝酸钠 亚硝酸钾 亚氯酸钠 亚硫酸氢钠
6 亚硫酸氢钾 亚磷酸三酯 亚麻油 亚硒酸钠 亚甲基双丙烯酰胺
6 阴离子树脂
6 阳离子树脂 羊毛脂 异丙醇 异丙胺 异VC钠 异丁醇 异丁醛
6 异佛尔酮 异辛酸钴 异辛酸锰 异辛酸钾 异辛酸钙 异辛酸铅
6 异辛酸铝 异辛酸锌 异辛醇 异戊醇 早强剂 仲丁醇 仲辛醇
6 有机玻璃 有机膨润土 有机锡 有机硅防水剂 有机硅消泡剂
6 有机原料 再生胶
7 赤磷 赤血盐钠 赤血盐钾 纯苯 纯丙乳液 纯吡啶 芳烃溶剂油
7 纯碱 纯丙乳液 纺织助剂 印染原料 乳胶漆原料 肝素钠吸附树脂
7 汞 花生油酸 还原铁粉 还原剂 还原染料 间苯二酚 间苯二甲酸
7 间对甲酚 间甲酚 间二甲苯 芥酸 芥酸酰胺 抗氧剂 抗静电剂
7 沥青 邻苯二甲酸二丁酯 邻苯二甲酸二辛酯 邻二氯苯 卤片
7 玛瑙树脂 玛瑙粉 没食子酸 尿素 抛光膏 抛光水 吸水树脂
7 辛醇 辛酸亚锡 杨梅栲胶 皂基 皂片 助焊剂 助留剂 阻燃剂
7 阻垢剂 苄叉丙酮 呋喃树脂 吡啶
8 苯胺 苯丙乳液 苯酚 苯甲醇 苯甲醛 苯甲酸钠苯甲酸
8 苯甲酸铵 苯甲酸乙酯 苯甲酸苄酯 苯甲溴铵 苯乙烯 苯乙酮
8 苯扎氯铵 苯扎溴铵 苯酐 表面活性剂 表面活性剂 单甘酯
8 单宁酸 沸石粉 固化剂 固色剂 环已酮 环已烷 环烷酸
8 环烷油 环烷酸钴 环烷酸铅 环烷酸锌 环烷酸锰 环烷酸铜
8 环氧树脂 环氧固化剂 环氧丙烷 环氧大豆油环氧氯丙烷
8 环丁砜 季戊四醇 降阻剂 降失水剂 金刚砂金属清洗剂
8 净水剂 净洗剂 凯松 拉开粉 明胶 明矾 乳化剂 乳化硅油
8 乳酸 乳酸钠 乳酸亚铁 乳酸钙 乳酸乙酯 乳糖泡柔剂
8 苹果酸 若丁 叔丁醇 叔丁基过氧化氢 松香 松香胶 松油醇
8 松焦油 松节油 夜光粉 油酸 油酸酰胺 直接染料 油溶颜料
8 油漆原料 建筑原料
9 玻璃原料 保温涂料 保险粉 泵送剂 变性淀粉 变压器油
9 标胶 烟胶 玻璃珠 玻纤布 草酸 草酸钠 草酸钾 草酸钴
9 除垢剂 除锈剂 除油剂 促进剂 氢氟酸 氟硅酸 氟硅酸钠
9 氟硅酸钾 氟化钙 氟化钾 氟化铝 氟化铵 氟化氢铵
9 氟化氢钠 氟化镍 氟化聚乙烯 氟化钠 氟里昂 氟硼酸
9 氟硼酸钠 氟硼酸钾 氟硼酸铅 氟硼酸亚锡 氟橡胶 氟锆酸钾
9 氟锆酸铵 复合稳定剂 骨胶 癸二酸 癸二酸二辛酯 活性炭
9 活化剂 活性白土 活性染料 钠基膨润土 耐火材料 耐晒染料
9 耐酸水泥 耐酸树脂 柠檬酸 柠檬酸钠 柠檬酸铵 柠檬酸钾
9 柠檬酸亚锡二钠
9 氢氧化钠 氢氧化钾 氢氧化铝 氢氧化钡 氢氧化钙 氢氧化镁
9 氢氧化锂 氢氧化锶 氢氧化铈 氢氧化亚镍 氢溴酸 氢氟酸
9 单水氢氧化锂 药用硼砂
9 染料 柔软剂 柔软片 树脂 顺丁橡胶 顺酐 炭黑 钨酸钠
9 香蕉水 香精 香兰素 荧光粉 荧光增白剂 珍珠岩 重铬酸钾
9 重铬酸钠 重铬酸铵 咪唑啉 钛白粉 钛酸酯偶联剂
10 氨基硅油 氨基磺酸 氨基磺酸镍 氨基三甲叉膦酸 氨基树脂
10 氨基乙酸 氨三乙酸 氨水 高苯橡胶 高岭土高锰酸钾
10 高氯化聚乙烯树脂 高压聚乙烯 海藻酸钠 海泡石 海绵镉
10 钾明矾 胶体石墨 胶衣树脂 酒精 酒石酸 酒石酸钠
10 酒石酸钾 酒石酸钾钠 0酒石酸氢钾 酒石酸锑钾 绢白粉
10 绢云母 流平剂 破乳剂 破碎剂 铅粉 润滑剂 润湿剂
10 烧碱 速凝剂 桃胶 陶土 铁粉 铁红 铁黄 特白粉
10 桐油 透明红 消光粉 消泡剂 氧化铝 氧化钙 氧化铬绿
10 氧化聚乙烯 氧化铁红 氧化镁 氧化锌 氧化锑氧化铅
10 氧化铜 氧化亚镍 氧化亚锡 氧化钴 氧化铈 氧化锂
10 氧化铵 造纸助剂 陶瓷原料 造纸原料 脂肪醇聚氧乙烯醚
10 珠光粉 珠光浆 栲胶 钼铬红 钼酸钠 钼酸铵 钼酸锂 氧化锌
11 蛋白酶 淀粉酶 堵漏剂 酚醛树脂 铬粉 铬酸钾 铬酸钠
11 铬酸酐 铬雾抑制剂 硅油50-10000 硅灰石粉 硅胶 硅溶胶
11 硅烷偶联剂 硅树脂 硅酸钠 硅酸乙酯 硅酸锆 硅酮 硅酸铝
11 硅酸钾 硅微粉 硅橡胶 硅脂 硅藻土 黄丹东 黄糊精
11 黄血盐钾 黄血盐钠 黄原胶 黄药 混丙醇 混丁醇 混合醇
11 减水剂 铝粉 偏硅酸钠 偏钒酸钠 偏钒酸铵 偏硼酸钠
11 铝银浆 铝银粉 铝镁合金粉 铝酸酯偶联剂 清洗剂 深铬黄
11 渗透剂T(JFC.等) 酞菁兰 酞菁绿 铜金粉 甜菜碱 甜蜜素
11 脱硫剂 脱墨剂 脱氧剂 脱漆剂 脱脂剂 维生素C 硒粉
11 维生素A 维生素B 维生素D 维生素E 维生素B1
11 液碱 液体石蜡 萤光增白剂 萤石粉 萜烯树脂脲醛胶
11 喹啉 羟乙基纤维素 羟基乙叉二磷酸 羟乙基纤维素 铵明矾
11 粘合剂 维生素C
12 氮酮 氮化硼 氮化钛 道路剂 短切毡 富马酸 富马酸二甲酯
12 锅炉除垢剂 锅炉清灰剂 滑石粉 缓凝减水剂 缓蚀阻垢剂
12 焦磷酸钾 焦磷酸铜 焦磷酸镍 焦磷酸钠 焦亚硫酸钠 联苯胺黄
12 硫代硫酸钠 硫化钡 硫化黑 硫化剂 硫化碱 硫化钠
12 硫化锑 硫化镉 硫化亚铁 硫酸 硫磺粉 硫磺片 硫氢化钠
12 硫氰酸钠 硫氰酸钾 硫氰酸铵 硫酸钡 硫酸钾硫酸铝
12 硫酸钠 硫酸钙 硫酸镁 硫酸锰 硫酸铁 硫酸钴 硫酸铵
12 硫酸氢钠 硫酸氢钾 硫酸亚铁 硫酸亚锡 硫酸镉 硫酸铜
12 硫酸镍 硫酸锌 硫脲 氯丁胶 氯丁橡胶 氯丁胶乳 氯仿
12 氯化苯 氯化铬 氯化聚乙烯 氯化铝 氯化镁 氯化钠 氯化镍
12 氯化锰 氯化铜 氯化亚铜 氯化亚锡 氯化亚砜 氯化橡胶
12 氯化钴 氯化钯 氯化苄 氯化锶 氯化银 氯化铈
12 氯化钙 氯化钡 氯化钾 氯化石蜡 氯化锌 氯乙酸
12 氯磺化聚乙烯 氯酸钠 氯酸钾 氯化铵 葡萄糖 葡萄糖酸钙
12 葡萄糖酸钠 葡萄糖酸锌 葡萄糖酸镁 葡萄糖酸钾 湿强剂
12 硝化棉 硝酸钠 硝酸钾 硝酸钡 硝酸铬 硝酸镁 硝酸铝
12 硝酸锰 硝酸钙 硝酸锌 硝酸铜 硝酸镍 硝酸铁 硝酸铅
12 硝酸银 硝酸铵 硝酸钴 硝酸锶 硝基甲烷 锌粉锌锭
12 硬脂酸 硬脂酸酰胺 硬脂酸钡 硬脂酸锌 硬脂酸铝 硬脂酸铅
12 硬脂酸钠 硬脂酸钙 硬脂酸镁 硬脂酸镉 硬脂酸丁酯 植酸
12 植物油酸 紫处线吸收剂 棕榈蜡 棕榈油 棕榈酸异辛酯
12 铸石粉 锂基脂 锆英 锆英粉 锆英砂
13 碘 碘化钾 碘化钠 碘化汞 碘化银 碘酸钾 蜂蜡 赖氨酸
13 锚固剂 煤油 煤焦油 锰粉 催化剂 蓖麻油 硼砂 硼酸
13 硼酸锌 硼氢化钾 硼氢化钠 塑料增白剂 塑料颜料 微晶蜡
13 微晶纤维素 锡粉 锡酸钠 新洁尔灭 新戊二醇絮凝剂
13 蒸馏水 蒽昆 溴素 溴化钠 溴化钾 溴化铵 溴化锂 溴酸钾
13 溴酸钠 溴氢酸 溴乙烷 微沫剂 群青 溶剂油 羧甲基淀粉
13 羧丙基甲基纤维素 羧甲基纤维素素 聚氨酯发泡料 聚丙烯酰胺
14 聚氨酯 聚丙烯 聚丙烯酸 聚丙烯酸钠 聚丙烯酸钾
14 聚丙烯酸树脂 聚甲醛 聚乙烯 聚苯乙烯 聚磷酸铵
14 聚氯乙烯树脂 聚四氟乙烯 聚碳酸酯 聚酯切片 聚酯薄膜
14 聚酯树脂 聚维酮碘 聚酰胺树脂 聚醚 聚乙二醇 聚乙烯醇
14 聚乙烯蜡 聚乙烯醇缩丁醛 腐植酸钠 腐植酸钾 镀锌添加剂
14 镀锌光亮剂 镀镍光亮剂 镀铜光亮剂 褐煤蜡碱性染料
14 碱性玫瑰精 精甲醇 精奈 精碘 模具硅橡胶 模具胶 精炼剂
14 镁粉 碳酸钠 碳酸氢钠 碳酸氢钾 碳酸氢铵 碳酸钾 碳酸钡
14 碳酸钙 碳酸镁 碳酸锰 碳酸锌 碳酸锂 碳酸铜 碳酸镍
14 碳酸钴 碳酸铈 碳酸锶 碳纤维 稳定剂 酸性染料 漂粉精
14 漂白粉
15 醋酸 醋酸钡 醋酸钠 醋酸钾 醋酸镁 醋酸铬 醋酸镍
15 醋酸铜 醋酸铵 醋酸铅 醋酸锌 醋酸钴 醋酸甲酯 醋酸丁脂
15 醋酸乙烯 醋酸乙酯 醋酸正丙酯 醋酸异辛酯醋丙胶乳
15 醋酸丁酸纤维素 醇酸树脂 糊精 黄糊精 镍板 镍粉
15 橡胶原料 橡胶大红 橡宛栲胶 颜料 镉红 镉黄 樟脑
15 樟脑粉 醇酯12 增稠剂 增塑剂 增亮剂 增粘剂 增强剂
15 增白剂
16 薄荷脑 薄荷油 磺化酚醛树脂 磺化单宁 磺化褐煤 磺化煤
16 磺基水杨酸 磺化油 磺酸钠 磺药 磺酸 霍霍巴油 膨润土
16 膨化剂 膨胀石墨 膨胀止水条 膨胀剂 糖钙 糖醛 糖精
17 糠醛 糠醇 磷酸 磷化液 磷化粉 磷化表调剂磷酸钙
17 磷酸钠 磷酸铝 磷酸三钠 磷酸三钾 磷酸二氢钠 磷酸二氢钾
17 磷酸二氢钙 磷酸二氢铝 磷酸二氢镁 磷酸二氢锌 磷酸二氢铵
17 磷酸氢二钠 磷酸氢二钾 磷酸氢二铵 磷酸氢二锌 磷酸氢二钙
17 磷酸氢钙 磷酸氢镁 磷酸一铵 磷酸二铵 磷酸脲 磷铬酸锌
17 磷酸锌 磷酸三乙酯 磷酸三甲酚酯 磷酸三苯酯 磷酸三甲苯酯
17 磷酸三氯乙酯 磷酸乙酯 磷酸三丁脂
开放分类: 化学、有机化学、有机酸、羧酸
CAS:144-62-7
分子式:C2H2O4
分子质量:90.04
熔点:190℃
中文名称:草酸;乙二酸;修酸
英文名称:Oxalic acid;Ethanedioic acid;aquisal
性状描述:草酸一般含有二分子结晶水,为无色透明结晶,其晶体结构有两种形态,即α型(菱形)和β型(单斜晶形),熔点分别为,α型:189.5℃,β型:182℃。相对密度,α型:1.900,β型:1.895。折射率1.540。
草酸在100℃开始升华,125℃时迅速升华,157℃时大量升华,并开始分解。易溶于乙醇,溶于水,微溶于乙醚,不溶于苯和氯仿。
草酸遍布于自然界,常以草酸盐形式存在于植物如伏牛花、羊蹄草、酢浆草和酸模草的细胞膜,几乎所有的植物都含有草酸钙。
草酸工业化生产方法主要有:甲酸钠法、氧化法、羰基合成法、乙二醇氧化法、丙烯氧化法、一氧化碳偶联法。
1.甲酸钠法一氧化碳净化后在加压情况下与氢氧化钠反应,生成甲酸钠,然后经高温脱氢生成草酸钠,草酸钠再经铅化(或钙化)、酸化、结晶和脱水干燥等工序,得到成品草酸。一氧化碳与氢氧化钠合成压力一般为1.8-2.0MPa。脱氢温度为400℃。
2.氧化法以淀粉或葡萄糖母液为原料,在矾触媒存在下,与硝酸-硫酸进行氧化反应得草酸。废气中的氧化氮送吸收塔回收生成稀硝酸。
3.羰基合成法一氧化碳经提纯到90%以上,在钯催化剂存在下与丁醇发生羰基化反应,生成草酸二丁酯,然后通过水解得到草酸,此法分为液相法和气相法两种,气相法反应条件较低,反应压力为300-400kPa。而液相法反应压力为13.0-15.0MPa。
4.乙二醇氧化法以乙二醇为原料,在硝酸和硫酸存在下,用空气氧化而得。
5.丙烯氧化法 :氧化过程分两步进行。第一步用硝酸氧化,使丙烯转化为α-硝基乳酸;然后进一步催化氧化得到草酸。第二步也可采用混酸为氧化剂。丙烯氧化法生产工业级草酸二水化合物,以丙烯计总收率大于90%。
原料消耗定额:焦炭(84%)510kg/t;硫酸(100%)950kg/t;烧碱(100%)920kg/t。
用途:草酸主要用于生产抗菌素和冰片等药物以及提炼稀有金属的溶剂、染料还原剂、鞣革剂等。
此外,草酸还可用于合成各种草酸酯、草酸盐和草酰胺等产品,而以草酸二乙酯及草酸钠、草酸钙等产量最大。
草酸还可用于钴-钼-铝催化剂的生产、金属和大理石的清洗及纺织品的漂白。不过要小心,不锈钢很怕草酸!手也怕浓度高的草酸
草酸oxalic acid
含有二分子结晶水的无色柱状晶体,分子式是H2C2O4,是植物特别是草本植物常具有的成分,多以钾盐或钙盐的形式存在。秋海棠、芭蕉中以游离酸的形式存在。草酸又名乙二酸,是最简单的二元酸。晶体受热至100℃时失去结晶水,成为无水草酸。无水草酸的熔点为189.5℃,能溶于水或乙醇,不溶于乙醚。实验室可以利用草酸受热分解来制取一氧化碳气体。在人尿中也含有少量草酸,草酸钙是尿道结石的主要成分。
最简单的二元酸。结构简式HOOCCOOH。广泛存在于自然界中,特别是植物中,例如草本植物、大黄属植物、酢浆草、菠菜等,并常以钾盐的形式存在。在人或肉食动物的尿中,草酸以钙盐或草尿酸的形式存在。此外,肾和膀胱结石中也含有草酸钙。无水草酸为无色晶体,有吸湿性;熔点189.5℃;在约157℃时升华;易溶于水,能溶于乙醚。商品草酸含两分子结晶水;无色晶体;熔点101.5℃,加热至100℃可失去结晶水;微溶于乙醚。草酸分子中两个羧基直接相连,具有一些特殊性质,例如,草酸具有还原性,可使高锰酸钾还原成二价锰,这一反应在定量分析中被用作测定高锰酸钾浓度的方法;草酸还可用作纤维、油脂和制革工业的漂白剂,也是利用它的还原性。草酸受热发生脱羧脱水,生成二氧化碳、一氧化碳和水。草酸能与许多金属形成溶于水的络合物。
工业上是由一氧化碳与氢氧化钠作用,先生成甲酸钠,再经迅速加热至300℃,即转变成草酸。将木屑等碳水化合物与浓氢氧化钠水溶液于240~285℃共热,也可生成草酸钠。在钒催化下碳水化合物经浓硝酸氧化,最终产物也是草酸。草酸可作铁锈、墨水迹的清洗剂和金属抛光剂。草酸锑可作媒染剂,草酸铁铵是印制蓝图的药剂。
草酸的危害
草酸在人体内不容易被氧化分解掉,经代谢作用后形成的产物,属于酸性物质,可导致人体内酸碱度失去平衡,吃得过多还会中毒。
而且草酸在人体内如果遇上钙和锌便生成草酸钙和草酸锌,不易吸收而排出体外。
儿童生长发育需要大量的钙和锌,如果体内缺乏钙和锌,不仅可导致骨骼、牙齿发育不良,而且还会影响智力发育。
草酸可除锈
到卖化学试剂的店里买一瓶草酸,取一些,用温水配成的溶液在锈渍上擦.卖草酸的店里,一般还卖些医药器械,玻璃仪器.草酸可以除锈,但有一定毒性.溶于水和酒精,使用时,不要吃或喝就行了. 草酸是弱酸,皮肤接触了没什么问题的,不要害怕,及时用清水洗了就是了,比醋酸还弱,你说你的手接触到了醋,你会怕吗.
然后用金相砂纸擦,最后喷涂油漆.
合成氨的工艺流程
(1)原料气制备 将煤和天然气等原料制成含氢和氮的粗原料气。对于固体原料煤和焦炭,通常采用气化的方法制取合成气;渣油可采用非催化部分氧化的方法获得合成气;对气态烃类和石脑油,工业中利用二段蒸汽转化法制取合成气。
(2)净化 对粗原料气进行净化处理,除去氢气和氮气以外的杂质,主要包括变换过程、脱硫脱碳过程以及气体精制过程。
① 一氧化碳变换过程
在合成氨生产中,各种方法制取的原料气都含有CO,其体积分数一般为12%~40%。合成氨需要的两种组分是H2和N2,因此需要除去合成气中的CO。变换反应如下:
CO+H2OH→2+CO2 =-41.2kJ/mol 0298HΔ
由于CO变换过程是强放热过程,必须分段进行以利于回收反应热,并控制变换段出口残余CO含量。第一步是高温变换,使大部分CO转变为CO2和H2;第二步是低温变换,将CO含量降至0.3%左右。因此,CO变换反应既是原料气制造的继续,又是净化的过程,为后续脱碳过程创造条件。
② 脱硫脱碳过程
各种原料制取的粗原料气,都含有一些硫和碳的氧化物,为了防止合成氨生产过程催化剂的中毒,必须在氨合成工序前加以脱除,以天然气为原料的蒸汽转化法,第一道工序是脱硫,用以保护转化催化剂,以重油和煤为原料的部分氧化法,根据一氧化碳变换是否采用耐硫的催化剂而确定脱硫的位置。工业脱硫方法种类很多,通常是采用物理或化学吸收的方法,常用的有低温甲醇洗法(Rectisol)、聚乙二醇二甲醚法(Selexol)等。
粗原料气经CO变换以后,变换气中除H2外,还有CO2、CO和CH4等组分,其中以CO2含量最多。CO2既是氨合成催化剂的毒物,又是制造尿素、碳酸氢铵等氮肥的重要原料。因此变换气中CO2的脱除必须兼顾这两方面的要求。
一般采用溶液吸收法脱除CO2。根据吸收剂性能的不同,可分为两大类。一类是物理吸收法,如低温甲醇洗法(Rectisol),聚乙二醇二甲醚法(Selexol),碳酸丙烯酯法。一类是化学吸收法,如热钾碱法,低热耗本菲尔法,活化MDEA法,MEA法等。 4
③ 气体精制过程
经CO变换和CO2脱除后的原料气中尚含有少量残余的CO和CO2。为了防止对氨合成催化剂的毒害,规定CO和CO2总含量不得大于10cm3/m3(体积分数)。因此,原料气在进入合成工序前,必须进行原料气的最终净化,即精制过程。
目前在工业生产中,最终净化方法分为深冷分离法和甲烷化法。深冷分离法主要是液氮洗法,是在深度冷冻(<-100℃)条件下用液氮吸收分离少量CO,而且也能脱除甲烷和大部分氩,这样可以获得只含有惰性气体100cm3/m3以下的氢氮混合气,深冷净化法通常与空分以及低温甲醇洗结合。甲烷化法是在催化剂存在下使少量CO、CO2与H2反应生成CH4和H2O的一种净化工艺,要求入口原料气中碳的氧化物含量(体积分数)一般应小于0.7%。甲烷化法可以将气体中碳的氧化物(CO+CO2)含量脱除到10cm3/m3以下,但是需要消耗有效成分H2,并且增加了惰性气体CH4的含量。甲烷化反应如下:
CO+3H2→CH4+H2O =-206.2kJ/mol 0298HΔ
CO2+4H2→CH4+2H2O =-165.1kJ/mol 0298HΔ
(3)氨合成 将纯净的氢、氮混合气压缩到高压,在催化剂的作用下合成氨。氨的合成是提供液氨产品的工序,是整个合成氨生产过程的核心部分。氨合成反应在较高压力和催化剂存在的条件下进行,由于反应后气体中氨含量不高,一般只有10%~20%,故采用未反应氢氮气循环的流程。氨合成反应式如下:
N2+3H2→2NH3(g) =-92.4kJ/mol