太阳能光伏发电技术的相关标准,规范有哪些
您说的太阳能光伏发电技术,范围太大,设计的产业太广,标准也很多!
1、光伏电池片、组件技术标准;
2、控制器标准;
3、逆变器标准;
4、系统设计标准;
5、交、直流配电箱标准;
等等,您可以去CQC官网,TUV官网下载!
简单说首先你需要先注册公司 注册资本金要300W以上,然后你要有光伏设计工程师职称,你的公司要有电力工程施工这个部门,并且做过2个相应工程项目案例,再去申请办理3级以上施工资质,需要砸钱几十万,你还是考虑考虑值不值的了。
1、太阳能电池方阵组合损耗系数1%,太阳能电池组件在组合成方阵的过程中因组件失配而引起的损耗。
2、环境系数为100%。太阳能光伏电源系统要求安装地点无阴影、太阳能电池方阵向正南,无树木及房屋遮挡、发电时期太阳高度无影响。
3、温度系数为89%,太阳能光伏电源的安装地点室外设计温度为-20℃~55。
光生电场除一部分抵消内建电场外,还使p 型层带正电,n 型层带负电,在n 区和p 区之间的薄层产生光生电动势, 这种现象称为光生伏打效应。若分别在p 型层和n 型层焊上金属引线, 接通负载, 在持续光照下,外电路就有电流通过,如此形成一个电池元件, 经过串并联, 就能产生一定的电压和电流,输出电能,从而实现光电转换。
(1) 安装方案
1 新建建筑光伏系统的安装施工方案应纳入建筑设备安装施工组织设计与质量控制程序,并制定相应的安装施工方案与安全技术措施。
2 既有建筑光伏系统的安装施工应编制施工组织设计与质量控制程序,并制定相应的安装施工方案与安全技术措施,必要时应进行可行性论证。
(2) 光伏系统安装前应具备以下条件:
1 设计文件齐备,且已通过论证、审批,并网接入系统已获有关部门批准并备案;
2 施工组织设计与施工方案已经批准;
3 建筑、场地、电源、道路等条件能满足正常施工需要;
4 预留基座、预留孔洞、预埋件、预埋管和相关设施符合设计图样的要求,并已验收合格。
(3)光伏系统安装施工流程与操作方案应选择易于施工、维护的作业方式。
(4) 安装光伏系统时,应对建筑物成品采取保护措施,且安装施工完毕不破坏建筑物成品。
(5) 施工安装人员应采取以下防触电措施:
1 应穿绝缘鞋,带低压绝缘手套,使用绝缘工具;
2 施工场所应有醒目、清晰、易懂的电气安全标识;
3 在雨、雪、大风天气情况下不得进行室外施工作业;
4 在建筑工地安装光伏系统时,安装场所上空的架空电线应有隔离措施;
5 使用手持式电动工具应符合《手持式电动工具的管理、使用、检查和维修安全技术规程》GB3787的要求。
(6)安装施工光伏系统时还应采取以下安全措施:
1 光伏系统各部件在存放、搬运、吊装等过程中不得碰撞受损。光伏组件吊装时,其底部要衬垫木,背面不得受到任何碰撞和重压;
2 光伏组件在安装时表面应铺有效遮光物,防止电击危险;
3 光伏组件的输出电缆不得发生短路;
4 连接无断弧功能的开关时,不得在有负荷或能够形成低阻回路的情况下接通正、负极或断开;
5 连接完成或部分完成的光伏系统,遇有光伏组件破裂的情况应及时设置限制接近的措施,并由专业人员处置;
6 接通光伏组件电路后应注意热斑效应的影响,不得局部遮挡光伏组件;
7 在坡度大于10°的坡屋面上安装施工,应设置专用踏脚板;
8 施工人员进行高空作业时,应佩带安全防护用品,并设置醒目、清晰、易懂的安全标识。
二、基座工程安装
1、 安装光伏组件的支架应设置基座。
2、 既有建筑基座应与建筑主体结构连接牢固,并由光伏系统专业安装人员施工。
3、在屋面结构层上现场砌(浇)筑的基座应进行防水处理,并应符合《屋面工程质量验收规范》 GB50207的要求。
4、 预制基座应放置平稳、整齐,不得破坏屋面的防水层。
5、 钢基座及混凝土基座顶面的预埋件,在支架安装前应涂防腐涂料,并妥善保护。
6、 连接件与基座之间的空隙,应采用细石混凝土填捣密实。
三、支架工程安装
1、 安装光伏组件的支架应按设计要求制作。钢结构支架的安装和焊接应符合《钢结构工程施工质量验收规范》GB50205的要求。
2、支架应按设计位置要求准确安装在主体结构上,并与主体结构可靠固定。
3、 钢结构支架焊接完毕,应按设计要求做防腐处理。防腐施工应符合《建筑防腐蚀工程施工及验收规范》GB50212和《建筑防腐蚀工程质量检验评定标准》GB50224的要求。
4、钢结构支架应与建筑物接地系统可靠连接。
四、光伏组件工程安装
1、光伏组件强度应满足设计强度要求。
2、 光伏组件上应标有带电警告标识。安装于可上人屋面的光伏系统的场所必须要有人员出入管理制度,并加围栏。
3、 光伏组件应按设计间距整排列齐并可靠地固定在支架或连接件上。光伏组件之间的连接件应便于拆卸和更换。
4、 光伏组件与建筑面层之间应留有安装空间和散热间隙,该间隙不得被施工等杂物填塞。
5、 在屋面上安装光伏组件时,其周边的防水连接构造必须严格按设计要求施工,不得渗漏。
6、 光伏幕墙的安装应符合以下要求:
(1)光伏幕墙应满足《玻璃幕墙工程质量检验标准》JGJ/T139的相关规定;安装允许偏差应满足《建筑幕墙》 GB/T21086的相关规定;
(2)光伏幕墙应排列整齐、表面平整、缝宽均匀;
(3)光伏幕墙应与普通幕墙同时施工,共同接受幕墙相关的物理性能检测。
7、 在盐雾、大风、积雪等地区安装光伏组件时,应与产品生产厂家协商制定合理的安装施工方案。
8、 在既有建筑上安装光伏组件,应根据建筑物的建设年代、结构状况,选择可靠的安装方法。
9、光伏组件或方阵安装时还必须严格遵守生产厂家指定的其他条件。
五、 电气系统工程安装
1、电气装置安装应符合《建筑电气工程施工质量验收规范》GB50303的相关要求。
2、电缆线路施工应符合《电气装置安装工程电缆线路施工及验收规范》GB50168的相关要求。
3、电气系统接地应符合《电气装置安装工程接地装置施工及验收规范》GB50169的相关要求。
4、光伏系统直流侧施工时,应标识正、负极性,并宜分别布线。
5、独立光伏系统的蓄电池上方及四周不得堆放杂物。
6、 逆变器、控制器等设备的安装位置周围不宜设置其它无关电气设备或堆放杂物。
7、 穿过屋面或外墙的电线应设防水套管,并有防水密封措施,并布置整齐。
六、 数据监测系统工程安装
1、环境温度传感器应采用防辐射罩或者通风百叶箱。太阳总辐射传感器应与光伏组件的平面平行,偏差不得超过±2°。
2、计量设备安装:
(1)、光伏系统环境温度传感器应安装在光伏组件中心点相同高度的遮阳通风处,距离光伏组件1.5m~10m 范围内。
(2)、组件表面温度传感器应安装在光伏组件背面的中心位置。
(3)、太阳总辐射传感器应牢固安装在专用的台柱上。要保证台柱受到严重冲击振动(如大风等)时,也不改变传感器的状态。
3、数据采集装置安装:
(1) 数据采集装置施工安装应符合《自动化仪表工程施工及验收规范》GB50093 中的规定。
(2) 信号线导体采用屏蔽线;尽量避免与强信号电缆平行走线,必要时使用钢管屏蔽。
(3)信号的标识应保持清楚。
(4)一个模块的多路模拟量输入信号之间的压差不得大于24V。
4、 数据监测系统安装调试详见《可再生能源建筑应用示范项目数据监测系统技术导则》的相关光伏系统的要求。
七、系统工程检测、调试和试运行
1、 光伏组件的布线工程完成后,应确认各组件极性、电压、短路电流等,并确认两极是否都没有接地。
2、光伏系统安装工程检测
(1)独立光伏系统工程检测,依据IEC62124-2004独立光伏系统-设计验证及产品说明书。(2)并网光伏系统的工程检测,依据《光伏系统并网技术要求》GB/T19939和《浙江省电力公司光伏电站接入电网技术应用细则(试行)》的相关规定执行。
3、光伏系统工程安装调试
(1)光伏系统工程安装调试必须按单体调试、分系统调试和整套光伏系统启动调试这三个步骤进行。
(2)调试和检测应符合《光伏系统并网技术要求》GB/T19939、《家用太阳能光伏电源系统技术条件和试验方法》GB/T19064的要求。
4、光伏系统工程安装试运行
在完成了以上分部试运以后,应对逆变器、充电控制器及低压电器分别送电试运行。送电时应核对所送电压等级、相序,特别是低压试运行时应注意空载运行时电压、起动电流及空载电流。在空载不低于1小时以后,检查各部位无不良现象,然后逐步投入各光伏方阵支路实现光伏系统的满负荷试运行,并作好负载试运行电压值、电流值的记录。
5、 在光照充足的情况下,光伏系统经过一个月的试运行,无故障后方可移交管理方正式接入电网运行。
太阳能的直接输出一般都是12VDC、24VDC、48VDC。
太阳能光伏发电是根据光生伏特效应原理,利用太阳电池将太阳光能直接转化为电能。不论是独立使用还是并网发电,光伏发电系统主要由太阳电池板(组件)、控制器和逆变器三大部分组成,它们主要由电子元器件构成,但不涉及机械部件。
所以,太阳能光伏发电设备极为精炼,可靠稳定寿命长、安装维护简便。理论上讲,光伏发电技术可以用于任何需要电源的场合,上至航天器,下至家用电源,大到兆瓦级电站,小到玩具,光伏电源可以无处不在。
扩展资料
太阳能光伏发电系统由太阳能电池组、太阳能控制器、蓄电池(组)组成。如输出电源为交流220V或110V,还需要配置逆变器。各部分的作用为:
1.太阳能电池板:太阳能电池板是太阳能发电系统中的核心部分,也是太阳能发电系统中价值最高的部分。其作用是将太阳的辐射能力转换为电能,或送往蓄电池中存储起来,或推动负载工作。
2.太阳能控制器:太阳能控制器的作用是控制整个系统的工作状态,并对蓄电池起到过充电保护、过放电保护的作用。在温差较大的地方,合格的控制器还应具备温度补偿的功能。其他附加功能如光控开关、时控开关都应当是控制器的可选项;
3.蓄电池:一般为铅酸电池,小微型系统中,也可用镍氢电池、镍镉电池或锂电池。其作用是在有光照时将太阳能电池板所发出的电能储存起来,到需要的时候再释放出来。
4.逆变器:太阳能的直接输出一般都是12VDC、24VDC、48VDC。为能向220VAC的电器提供电能,需要将太阳能发电系统所发出的直流电能转换成交流电能,因此需要使用DC-AC逆变器。
参考资料来源:百度百科-太阳能光伏发电
1.方位角
太阳电池方阵的方位角是方阵的垂直面与正南方向的夹角(向东偏设定为负角度,向西偏设定为正角度)。一般情况下,方阵朝向正南(即方阵垂直面与正南的夹角为0°)时,太阳电池发电量是最大的。在偏离正南(北半球)30°度时,方阵的发电量将减少约10%~15%;在偏离正南(北半球)60°时,方阵的发电量将减少约20%~30%。但是,在晴朗的夏天,太阳辐射能量的最大时刻是在中午稍后,因此方阵的方位稍微向西偏一些时,在午后时刻可获得最大发电功率。在不同的季节,太阳电池方阵的方位稍微向东或西一些都有获得发电量最大的时候。方阵设置场所受到许多条件的制约,例如,在地面上设置时土地的方位角、在屋顶上设置时屋顶的方位角,或者是为了躲避太阳阴影时的方位角,以及布置规划、发电效率、设计规划、建设目的等许多因素都有关系。 如果要将方位角调整到在一天中负荷的峰值时刻与发电峰值时刻一致时,请参考下述的公式。至于并网发电的场合,希望综合考虑以上各方面的情况来选定方位角。 方位角 =(一天中负荷的峰值时刻(24小时制)-12)×15+(经度-116) 10月9日北京的太阳电池方阵处于不同方位角时,日射量与时间推移的关系曲线。在不同的季节,各个方位的日射量峰值产生时刻是不一样的。
2.倾斜角
倾斜角是太阳电池方阵平面与水平地面的夹角,并希望此夹角是方阵一年中发电量为最大时的最佳倾斜角度。 一年中的最佳倾斜角与当地的地理纬度有关,当纬度较高时,相应的倾斜角也大。但是,和方位角一样,在设计中也要考虑到屋顶的倾斜角及积雪滑落的倾斜角(斜率大于50%-60%)等方面的限制条件。对于积雪滑落的倾斜角,即使在积雪期发电量少而年总发电量也存在增加的情况,因此,特别是在并网发电的系统中,并不一定优先考虑积雪的滑落,此外,还要进一步考虑其它因素。 对于正南(方位角为0°度),倾斜角从水平(倾斜角为0°度)开始逐渐向最佳的倾斜角过渡时,其日射量不断增加直到最大值,然后再增加倾斜角其日射量不断减少。特别是在倾斜角大于50°~60°以后,日射量急剧下降,直至到最后的垂直放置时,发电量下降到最小。方阵从垂直放置到10°~20°的倾斜放置都有实际的例子。对于方位角不为0°度的情况,斜面日射量的值普遍偏低,最大日射量的值是在与水平面接近的倾斜角度附近。 以上所述为方位角、倾斜角与发电量之间的关系,对于具体设计某一个方阵的方位角和倾斜角还应综合地进一步同实际情况结合起来考虑。
3.阴影对发电量的影响 一般情况下,我们在计算发电量时,是在方阵面完全没有阴影的前提下得到的。因此,如果太阳电池不能被日光直接照到时,那么只有散射光用来发电,此时的发电量比无阴影的要减少约10%~20%。针对这种情况,我们要对理论计算值进行校正。 通常,在方阵周围有建筑物及山峰等物体时,太阳出来后,建筑物及山的周围会存在阴影,因此在选择敷设方阵的地方时应尽量避开阴影。如果实在无法躲开,也应从太阳电池的接线方法上进行解决,使阴影对发电量的影响降低到最低程度。 另外,如果方阵是前后放置时,后面的方阵与前面的方阵之间距离接近后,前边方阵的阴影会对后边方阵的发电量产生影响。有一个高为L1的竹竿,其南北方向的阴影长度为L2,太阳高度(仰角)为A,在方位角为B时,假设阴影的倍率为R,则:
R = L2/L1 = ctgA×cosB
此式应按冬至那一天进行计算,
因为,那一天的阴影最长。例如方阵的上边缘的高度为h1,下边缘的高度为h2,则:方阵之间的距离a = (h1-h2)×R。当纬度较高时,方阵之间的距离加大,相应地设置场所的面积也会增加。对于有防积雪措施的方阵来说,其倾斜角度大,因此使方阵的高度增大,为避免阴影的影响,相应地也会使方阵之间的距离加大。通常在排布方阵阵列时,应分别选取每一个方阵的构造尺寸,将其高度调整到合适值,从而利用其高度差使方阵之间的距离调整到最小。 具体的太阳电池方阵设计,在合理确定方位角与倾斜角的同时,还应进行全面的考虑,才能使方阵达到最佳状态。
太阳能发电系统原理
光伏系统设计
1 •引言
经过光伏工作者们坚持不懈的努力,太阳能电池的生产技术不断得到提高,并且日益广泛地应用于各个领域。特别是邮电通信方面,由于近年来通信行业的迅猛发展,对通信电源的要求也越来越高,所以稳定可靠的太阳能电源被广泛使用于通信领域。而如何根据各地区太阳能辐射条件,来设计出既经济而又可靠的光伏电源系统,这是众多专家学者研究已久的课题,而且已有许多卓越的研究成果,为我国光伏事业的发展奠定了坚实的基础。笔者在学习各专家的设计方法时发现,这些设计仅考虑了蓄电池的自维持时间(即最长连续阴雨天),而没有考虑到亏电后的蓄电池最短恢复时间(即两组最长连续阴雨天之间的最短间隔天数)。这个问题尤其在我国南方地区应引起高度重视,因为我国南方地区阴雨天既长又多,而对于方便适用的独立光伏电源系统,由于没有应急的其他电源保护备用,所以应该将此问题纳入设计中一起考虑。
本文综合以往各设计方法的优点,结合笔者多年来实际从事光伏电源系统设计工作的经验,引入两组最长连续阴雨天之间的最短间隔天数作为设计的依据之一,并综合考虑了各种影响太阳能辐射条件的因素,提出了太阳能电池、蓄电池容量的计算公式,及相关设计方法。
2•影响设计的诸多因素
太阳照在地面太阳能电池方阵上的辐射光的光谱、光强受到大气层厚度(即大气质量)、地理位置、所在地的气候和气象、地形地物等的影响,其能量在一日、一月和一年内都有很大的变化,甚至各年之间的每年总辐射量也有较大的差别。
太阳能电池方阵的光电转换效率,受到电池本身的温度、太阳光强和蓄电池电压浮动的影响,而这三者在一天内都会发生变化,所以太阳能电池方阵的光电转换效率也是变量。
蓄电池组也是工作在浮充电状态下的,其电压随方阵发电量和负载用电量的变化而变化。蓄电池提供的能量还受环境温度的影响。
太阳能电池充放电控制器由电子元器件制造而成,它本身也需要耗能,而使用的元器件的性能、质量等也关系到耗能的大小,从而影响到充电的效率等。
负载的用电情况,也视用途而定,如通信中继站、无人气象站等,有固定的设备耗电量。而有些设备如灯塔、航标灯、民用照明及生活用电等设备,用电量是经常有变化的。
设计者的任务是:在太阳能电池方阵所处的环境条件下(即现场的地理位置、太阳辐射能、气候、气象、地形和地物等),设计的太阳能电池方阵及蓄电池电源系统既要讲究经济效益,又要保证系统的高可靠性。
某特定地点的太阳辐射能量数据,以气象台提供的资料为依据,供设计太阳能电池方阵用。这些气象数据需取积累几年甚至几十年的平均值。
地球上各地区受太阳光照射及辐射能变化的周期为一天24h。处在某一地区的太阳能电池方阵的发电量也有24h的周期性的变化,其规律与太阳照在该地区辐射的变化规律相同。但是天气的变化将影响方阵的发电量。如果有几天连续阴雨天,方阵就几乎不能发电,只能靠蓄电池来供电,而蓄电池深度放电后又需尽快地将其补充好。设计者多数以气象台提供的太阳每天总的辐射能量或每年的日照时数的平均值作为设计的主要数据。由于一个地区各年的数据不相同,为可靠起见应取近十年内的最小数据。根据负载的耗电情况,在日照和无日照时,均需用蓄电池供电。气象台提供的太阳能总辐射量或总日照时数对决定蓄电池的容量大小是不可缺少的数据。
对太阳能电池方阵而言,负载应包括系统中所有耗电装置(除用电器外还有蓄电池及线路、控制器等)的耗量。
方阵的输出功率与组件串并联的数量有关,串联是为了获得所需要的工作电压,并联是为了获得所需要的工作电流,适当数量的组件经过串并联即组成所需要的太阳能电池方阵。
3•蓄电池组容量设计
太阳能电池电源系统的储能装置主要是蓄电池。与太阳能电池方阵配套的蓄电池通常工作在浮充状态下,其电压随方阵发电量和负载用电量的变化而变化。它的容量比负载所需的电量大得多。蓄电池提供的能量还受环境温度的影响。为了与太阳能电池匹配,要求蓄电池工作寿命长且维护简单。
(1)蓄电池的选用
能够和太阳能电池配套使用的蓄电池种类很多,目前广泛采用的有铅酸免维护蓄电池、普通铅酸蓄电池和碱性镍镉蓄电池三种。国内目前主要使用铅酸免维护蓄电池,因为其固有的“免”维护特性及对环境较少污染的特点,很适合用于性能可靠的太阳能电源系统,特别是无人值守的工作站。普通铅酸蓄电池由于需要经常维护及其环境污染较大,所以主要适于有维护能力或低档场合使用。碱性镍镉蓄电池虽然有较好的低温、过充、过放性能,但由于其价格较高,仅适用于较为特殊的场合。
(2)蓄电池组容量的计算
蓄电池的容量对保证连续供电是很重要的。在一年内,方阵发电量各月份有很大差别。方阵的发电量在不能满足用电需要的月份,要靠蓄电池的电能给以补足;在超过用电需要的月份,是靠蓄电池将多余的电能储存起来。所以方阵发电量的不足和过剩值,是确定蓄电池容量的依据之一。同样,连续阴雨天期间的负载用电也必须从蓄电池取得。所以,这期间的耗电量也是确定蓄电池容量的因素之一。
因此,蓄电池的容量BC计算公式为:
BC=A×QL×NL×TO/CCAh(1)
式中:A为安全系数,取1.1~1.4之间;
QL为负载日平均耗电量,为工作电流乘以日工作小时数;
NL为最长连续阴雨天数;
TO为温度修正系数,一般在0℃以上取1,-10℃以上取1.1,-10℃以下取1.2;
CC为蓄电池放电深度,一般铅酸蓄电池取0.75,碱性镍镉蓄电池取0.85。
4•太阳能电池方阵设计
(1)太阳能电池组件串联数Ns
将太阳能电池组件按一定数目串联起来,就可获得所需要的工作电压,但是,太阳能电池组件的串联数必须适当。串联数太少,串联电压低于蓄电池浮充电压,方阵就不能对蓄电池充电。如果串联数太多使输出电压远高于浮充电压时,充电电流也不会有明显的增加。因此,只有当太阳能电池组件的串联电压等于合适的浮充电压时,才能达到最佳的充电状态。
计算方法如下:
Ns=UR/Uoc=(Uf+UD+Uc)/Uoc(2)
式中:UR为太阳能电池方阵输出最小电压;
Uoc为太阳能电池组件的最佳工作电压;
Uf为蓄电池浮充电压;
UD为二极管压降,一般取0.7V;
UC为其它因数引起的压降。
表1我国主要城市的辐射参数表 :
城市 纬度Φ 日辐射量Ht 最佳倾角Φop 斜面日辐射量 修正系数Kop
哈尔滨 45.68 12703 Φ+3158381.1400
长春43.90 13572Φ+1 17127 1.1548
沈阳41.77 13793Φ+1 16563 1.0671
北京 39.80 15261 Φ+4 18035 1.0976
天津 39.10 14356Φ+5 16722 1.0692
呼和浩特 40.78 16574Φ+3 20075 1.1468
太原 37.78 15061Φ+5 173941.1005
乌鲁木齐 43.78 14464 Φ+12 165941.0092
西宁36.75 16777 Φ+1 19617 1.1360
兰州36.05 14966 Φ+8 15842 0.9489
银川38.48 16553 Φ+2 19615 1.1559
西安34.30 12781 Φ+14 129520.9275
上海 31.17 12760 Φ+3 13691 0.9900
南京 32.00 13099 Φ+5 14207 1.0249
合肥 31.85 12525 Φ+9 13299 0.9988
杭州 30.23 11668 Φ+3 12372 0.9362
南昌 28.67 13094 Φ+2 13714 0.8640
福州 26.08 12001 Φ+4 12451 0.8978
济南 36.68 14043 Φ+6 15994 1.0630
郑州 34.72 13332 Φ+7 14558 1.0476
武汉 30.63 13201 Φ+7 13707 0.9036
长沙 28.20 11377 Φ+6 11589 0.8028
广州 23.13 12110 Φ-7 12702 0.8850
海口 20.03 13835 Φ+12 13510 0.8761
南宁 22.82 12515 Φ+5 12734 0.8231
成都 30.67 10392 Φ+2 10304 0.7553
贵阳 26.58 10327 Φ+8 10235 0.8135
昆明 25.02 14194 Φ-8 15333 0.9216
拉萨 29.70 21301 Φ-8 24151 1.0964
蓄电池的浮充电压和所选的蓄电池参数有关,应等于在最低温度下所选蓄电池单体的最大工作电压乘以串联的电池数。
(2)太阳能电池组件并联数Np
在确定NP之前,我们先确定其相关量的计算方法。
①将太阳能电池方阵安装地点的太阳能日辐射量Ht,转换成在标准光强下的平均日辐射时数H(日辐射量参见表1):
H=Ht×2.778/10000h(3)
式中:2.778/10000(h?m2/kJ)为将日辐射量换算为标准光强(1000W/m2)下的平均日辐射时数的系数。
②太阳能电池组件日发电量Qp
Qp=Ioc×H×Kop×CzAh(4)
式中:Ioc为太阳能电池组件最佳工作电流;
Kop为斜面修正系数(参照表1);
Cz为修正系数,主要为组合、衰减、灰尘、充电效率等的损失,一般取0.8。
③两组最长连续阴雨天之间的最短间隔天数Nw,此数据为本设计之独特之处,主要考虑要在此段时间内将亏损的蓄电池电量补充起来,需补充的蓄电池容量Bcb为:
Bcb=A×QL×NLAh(5)
④太阳能电池组件并联数Np的计算方法为:
Np=(Bcb+Nw×QL)/(Qp×Nw)(6)
式(6)的表达意为:并联的太阳能电池组组数,在两组连续阴雨天之间的最短间隔天数内所发电量,不仅供负载使用,还需补足蓄电池在最长连续阴雨天内所亏损电量。
(3)太阳能电池方阵的功率计算
根据太阳能电池组件的串并联数,即可得出所需太阳能电池方阵的功率P:
P=Po×Ns×NpW(7)
式中:Po为太阳能电池组件的额定功率。
5设计实例
以广州某地面卫星接收站为例,负载电压为12V,功率为25W,每天工作24h,最长连续阴雨天为15d,两最长连续阴雨天最短间隔天数为30d,太阳能电池采用云南半导体器件厂生产的38D975×400型组件,组件标准功率为38W,工作电压17.1V,工作电流2.22A,蓄电池采用铅酸免维护蓄电池,浮充电压为(14±1)V。其水平面太阳辐射数据参照表1,其水平面的年平均日辐射量为12110(kJ/m2),Kop值为0.885,最佳倾角为16.13°,计算太阳能电池方阵功率及蓄电池容量。
(1)蓄电池容量Bc
Bc=A×QL×NL×To/CC
=1.2×(25/12)×24×15×1/0.75
=1200Ah
(2)太阳能电池方阵功率P
因为:
Ns=UR/Uoc=(Uf+UD+UC)/Uoc
=(14+0.7+1)/17.1=0.92≈1
Qp=Ioc×H×Kop×Cz
=2.22×12110×(2.778/10000)×0.885×0.8
≈5.29Ah
Bcb=A×QL×NL
=1.2×(25/12)×24×15=900Ah
QL=(25/12)×24=50Ah
Np=(Bcb+Nw×QL)/(Qp×Nw)
=(900+30×50)/(5.29×30)≈15
故太阳能电池方阵功率为:
P=Po×Ns×Np=38×1×15=570W
(3)计算结果
该地面卫星接收站需太阳能电池方阵功率为570W,蓄电池容量为1200Ah