cas号是什么意思?
CAS号是什么意思 CAS号(CAS Registry Number或称CAS Number, CAS Rn, CAS ),又称CAS编号,CAS登录号或CAS登记号码,是某种物质(化合物、高分子材料、生物序列(Biological sequences)、混合物或合金)的唯一的数字识别号码。
CAS是Central Authentication Service的缩写,中央认证服务,一种独立开放指令协议。CAS 是 耶鲁大学(Yale University)发起的一个开源项目,旨在为 Web 应用系统提供一种可靠的单点登录方法,CAS 在 2004 年 12 月正式成为 JA-SIG 的一个项目。
特点
1、开源的企业级单点登录解决方案。
2、CAS Server 为需要独立部署的 Web 应用。
3、CAS Client 支持非常多的客户端(这里指单点登录系统中的各个 Web 应用),包括 Java, .Net, PHP, Perl, Apache, uPortal, Ruby 等语言编写的各种web应用。
4、CAS属于Apache 2.0许可证,允许代码修改,再发布(作为开源或商业软件)。
CAS编号(CAS Registry Number,或称CAS Number,CAS Rn,CAS #),又称CAS登录号或CAS登记号码,是某种物质(化合物、高分子材料、生物序列(Biological sequences)、混合物或合金)的唯一的数字识别号码。
美国化学会的下设组织化学文摘社(Chemical Abstracts Service,简称CAS)负责为每一种出现在文献中的物质分配一个CAS编号,其目的是为了避免化学物质有多种名称的麻烦,使数据库的检索更为方便。如今几乎所有的化学数据库都允许用CAS编号检索。
一个CAS编号以连字符“-”分为三部分,第一部分有2到7位数字,第二部分有2位数字,第三部分有1位数字作为校验码。CAS编号以升序排列且没有任何内在含义。
校验码的计算方法如下:CAS顺序号(第一、二部分数字)的最后一位乘以1,最后第二位乘以2,依此类推,然后再把所有的乘积相加,再把和除以10,其余数就是第三部分的校验码。
异构体、酶和混合物
不同的同分异构体分子有不同的CAS编号,比如右旋葡萄糖的CAS编号是50-99-7,左旋葡萄糖是921-60-8,α右旋葡萄糖(α-D-glucose)是26655-34-5。
偶然也有一类分子用一个CAS编号,比如醇脱氢酶其实是一组化合物,它们共用CAS编号9031-72-5。混合物如芥末油的CAS编号是8007-40-7。
可用来代替氢气作为探空气球的稀有气体是氦气。可用来替代氢气作为探空气球的气体必须具有密度小的特点,所该物质中稀有气体只有氦气,且密度也很小;氦气,英文名为Helium,符号为He,无色无味,不可燃气体,空气中的含量约为百万分之5.2。化学性质不活泼,通常状态下不与其它元素或化合物结合。1908年7月10日,荷兰物理学家昂尼斯首次液化了氦气。
中文名氦气英文名Helium化学式He分子量4.003CAS登录号275-187-7熔 点1.0K(0.26MPa)沸 点4.3K(0.1MPa)水溶性难溶于水密 度0.1786g/L(0°C、0.1MPa)外 观无色安全性描述不可燃气体含 量空气中的含量约为百万分之5.2类 型稀有气体单质临界温度5.19K临界压力0.228MPa蒸发热20.4kJ/kg(沸点)。
根据《通用航空飞行管制条例》 第三十三条规定:“进行升放无人驾驶自由气球或者系留气球活动,必须经设区的市级以上气象主管机构会同有关部门批准。具体办法由国务院气象主管机构制定。
第三十四条 升放无人驾驶自由气球,应当在拟升放2天前持本条例第三十三条规定的批准文件向当地飞行管制部门提出升放申请;飞行管制部门应当在拟升放1天前作出批准或者不予批准的决定,并通知申请人。
#),又称CAS登录号,是某种物质(化合物、高分子材料、生物序列(Biological sequences)、混合物或合金)的唯一的数字识别号码。
http://baike.baidu.com/link?url=2-7UnD3po23WywcouxZAfiE1g7qKs7iZXWVl8LnAgBq5KNDw1Ex7WIFFsOaUcJlqRlsby0OaHS_bd9k0l2wREK
氦-3 (He-3)气体 无色,无味,无臭稳定的氦气同位素气体,一般储存于气瓶中的高压气体,天然氦-3含量是1.38x10 -6 。当其含量增加导致氧气含量低于19.5%时有可能引起窒息,需要配备自吸式呼吸面具。 分子量 3.01603 标准体积 6.032 m3/kg 沸点 -452°F(-270°C)。氚衰变可得到氦-3并放出β射线。
基本介绍中文名 :氦-3 英文名 :He-3 分子量 :3.01603 CAS登录号 :14762-55-1 沸点 :3.19K 外观 :无色的气体 套用 :氦-3与氘进行热核反应 未来能源,氦-3的作用,安全性,发现,具体介绍,套用前景,未来新能源,分离方法, 未来能源 氦-3的提取是一个极其复杂的过程。人们首先需要将月球土壤加热到700摄氏度以上,才可以从中提取到氦-3。开发、运送月球上的能源也有很多难题需要解决。比如,需实现月球和地球之间的人、货运输,首先要有足够大推力的运载火箭。另外,要在没有大气包裹的月球表面着陆,主要只能靠反推火箭来缓冲,如何保障安全是一大难题。此外,氦-3提取成功后如何利用呢?这同样是一个技术难题。 因为使用氦-3的热核反应堆中没有中子(氦-3与氘进行热核反应只会产生没有放射性的质子),故使用氦-3作为能源时不会产生辐射,不会为环境带来危害。但是因为地球上的氦-3储量稀少,无法大量用作能源。幸好,根据月球探测的结果,月球上的氦-3含量估计约100万吨以上。 100吨氦-3便能提供全世界使用一年的能源总量。 氦-3的作用 进入到21世纪,新一轮的登月计画再次席卷全球,其中有一个很重要的原因,是为人类社会的持续发展寻找新的能源。在一部非常著名的科幻电影《月球》中,我们看到了月球上的氦-3采集基地。月球上的采集员常驻月球采集氦-3,定期把氦-3送回地球,在那一时期,氦-3已经成了地球重要的能源。月球上氦-3含量丰富,但是月球上的氦-3真的可以为我们所用吗? 月球上氦3分布图 随着世界石油价格的持续飞涨,越来越多的国家和组织开始把目光转向了月球,各国科学家正围绕月球上氦-3的储量、采掘、提纯、运输及月球环境保护等问题悄然开展相关研究。这种在地球上很难得到的特别清洁、安全和高效的核聚变发电燃料,被科学家们称为“完美能源”。也许在未来的某一天,月球将会犹如20世纪中叶的波斯湾。 安全性 安全资料:无毒,会导致窒息。 燃烧性:不燃烧气体 气瓶材质:铁合金,铝 DOT 标签:Green, Nonflammable Gas DOT 危险等级:2.2 UN No.: UN 1046 CAS No. :7440-59-7 发现 1996年,戴维·李(David M. Lee, 1931~ )、道格拉斯·奥谢罗夫(Douglas D. Osheroff, 1945~)和罗伯特·理查森(Richard C. Richardson, 1937~ )因发现了氦-3( 3 He)中的超流动性,共同分享了1996年度的诺贝尔物理学奖。 具体介绍 在自然界,存在着 3 He和 4 He两种同位素。 4 He的原子核有两个质子和两个中子;而 3 He只有一个中子。20世纪30年代末期,卡皮查发现 4 He的超流动性。朗道从理论上解释了这种现象,他认为当温度在绝对温度2.17K时, 4 He原子发生玻色爱因斯坦凝聚,成为超流体,而像 3 He这样的费米子即使在最低能量下也不能发生凝聚,所以不可能发生超流动现象。金属的超导理论(BCS理论)的提出使得人们认为在极低温度下 3 He也可能会形成超流体。但是人们一直未能在实验上发现 3 He的超流动性。20世纪70年代,戴维·李领导的康奈尔低温小组首次发现了 3 He的超流动性,不久,其它的研究小组也证实了他们的发现。 氦气 3 He超流体的发现在天体物理学上有着奇特的套用。人们使用相变产生的 3 He超流体来验证关于在宇宙中如何形成所谓宇宙弦的理论。研究小组用中微子引起的核反应局部快速加热超流体 3 He,当它们重新冷却后,会形成一些涡旋球。这些涡旋球就相当于宇宙弦。这个结果虽然不能作为宇宙弦存在的证据,但是可以认为是对3He流体涡旋形成的理论的验证。 3 He超流体的发现不仅对凝聚态物理的研究起了推动作用,而且在此发现过程中所使用的核磁共振的方法,开创了用核磁共振技术进行断层检验的先河,今天核磁共振断层检验已发展成为医疗诊断的普遍手段。 套用前景 氦-3的巨大套用前景以及登月计画 月球是解决地球能源危机的理想之地,“氦-3”是一种如今已被世界公认的高效、清洁、安全、廉价的核聚变发电燃料。根据科学统计表明,10吨氦-3就能满足我国全国一年所有的能源需求,100吨氦-3便能提供全世界使用一年的能源总量。但氦-3在地球上的蕴藏量很少,人类已知的容易取用的氦-3全球仅有500千克左右。而根据人类已得出的初步探测结果表明,月球地壳的浅层内竟含有上百万吨氦-3。如此丰富的核燃料,足够地球人使用上万年。我国探月工程的一项重要计画,就是对月球氦-3含量和分布进行一次由空间到实地的详细勘察,为人类未来利用月球核能奠定坚实的基础 。 我国的探月计画中,有一件事情是外国从未涉足的:我国计画测量月球的土壤层到底有多厚,这对于我们计算月球氦-3含量意义重大,如果工程顺利,我们估算氦-3的资源含量可能要比前人前进一步。最后,我们将研究地月空间环境,这对于地球环境和人类社会的发展都是至关重要的。 2015年4月,我国科学家利用嫦娥三号“玉兔”月球车的测月雷达数据首次给出了较为可靠的月壤厚度估计,认为前人的估计方法可能普遍低估了月壤厚度和氦-3总储量。 日本报导 日本《外交学者》网站1月7日刊文称,许多国家都在悄悄的为第四代核武器寻找氦-3材料,得到这种无放射性沉降物的材料将成为世界新的霸主,而中国在这场竞争中,获得了胜利。 未来新能源 ① 氦-3是一种清洁、安全和高效率的核融合发电燃料。开发利用月球土壤中的氦-3将是解决人类能源危机的极具潜力的途径之一。 ② 氦-3是氦的同位素,含有两个质子和一个中子。它有许多特殊的性质。根据稀释制冷理论,当氦-3和氦-4以一定的比例相混合后,温度可以降低到无限接近绝对零度。在温度达到2.6mK以下的时候,液体状态的氦-3还会出现“超流”现象,即没有黏滞性,它甚至可以从盛放它的杯子中“爬”出去。然而,当前氦-3最被人重视的特性还是它作为能源的潜力。氦-3可以和氢的同位素发生核聚变反应,但是与一般的核聚变反应不同,氦-3在聚变过程中不产生中子,所以放射性小,而且反应过程易于控制,既环保又安全,但是地球上氦-3的储量总共不超过几百公斤,难以满足人类的需要。科学家发现,虽然地球上氦-3的储量非常少,但是在月球上,它的储量却是非常可观的。 ③ 氦大部分集中在颗粒小于50微米的富含钛铁矿的月壤中。估计整个月球可提供71.5万吨氦-3。这些氦-3所能产生的电能,相当于1985年美国发电量的4万倍,考虑到月壤的开采、排气、同位素分离和运回地球的成本,氦-3的能源偿还比估计可达250。这个偿还比和铀235生产核燃料(偿还比约20)及地球上煤矿开采(偿还比不到16)相比,是相当有利的。此外,从月壤中提取1吨氦-3,还可以得到约6300吨的氢、70吨的氮和1600吨碳。这些副产品对维持月球永久基地来说,也是必要的。俄罗斯科学家加利莫夫认为,每年人类只需发射2到3艘载重100吨的宇宙飞船,从月球上运回的氦-3即可供全人类作为替代能源使用1年,而它的运输费用只相当于如今核能发电的几十分之一。据加利莫夫介绍,如果人类如今就开始着手实施从月球开采氦-3的计画,大约30年到40年后,人类将实现月球氦-3的实地开采并将其运回地面,该计画总似的费用将在2500亿到3000亿美元之间。 分离方法 氦-3等同位素气体的分离主要方法有气体扩散法离子交换法、气体离心法,另外还有蒸馏法、电解法、电磁法、电流法等,其中以气体扩散法最成熟。“浓缩”的使用涉及旨在提高某一元素特定同位素丰度的同位素分离过程,例如从天然铀生产浓缩铀或从普通水生产重水。 气体扩散法——这是商业开发的第一个浓缩方法。该工艺依靠不同质量的同位素在转化为气态时运动速率的差异。在每一个气体扩散级,当高压气体透过在级联中顺序安装的多孔镍膜时,其轻分子气体的气体更快地通过多孔膜壁。这种泵送过程耗电量很大。已通过膜管的气体随后被泵送到下一级,而留在膜管中的气体则返回到较低级进行再循环。在每一级中,浓度比仅略有增加。浓缩到反应堆级的铀-235丰度需要1000级以上。 气体离心法——在这类工艺中,气体被压缩通过一系列高速旋转的圆筒,或离心机。同位素重分子气体比轻分子气体更容易在圆筒的近壁处得到富集。在近轴处富集的气体被导出,并输送到另一台离心机进一步分离。随着气体穿过一系列离心机,其同位素分子被逐渐富集。与气体扩散法相比,气体离心法所需的电能要小很多,因此该法已被大多数新浓缩厂所采用。