铝离子的测定
是定量测定,还是定性测定?
定性的话,在碱性条件下可以先加入醋酸-醋酸钠缓冲溶液,调ph至5到5.5,。加入茜素磺酸钠。
由于亚铁、三价铬、二价锰、铜离子都会干扰这个反应,可以采用纸上点滴的方法。先取一滴酸化样液滴在纸上,再在纸上滴一滴K4[Fe(CN)6]沉淀干扰离子。最后在扩散的清水区加入茜素磺酸钠。
如果呈红色则证明有铝离子。
定量的话,用醋酸-醋酸钠缓冲溶液酸化样液,除去干扰离子。
按原酸性条件下用EDTA滴定。
68.2.4.1 碱熔-电感耦合等离子体光谱法测定铬尖晶石中主、次量元素
取样20~50mg用偏硼酸锂熔融,以熔融流动状态倒入稀酸,在超声波水浴下快速溶解后,直接用ICP-AES测定铬铁矿中主要成分TFe2O3、Cr2O3、SiO2、Al2O3、CaO、MgO、K2O、Na2O、MnO、TiO2、P2O5、Sr、Ba、Zr等14项。详见第16章硅酸盐岩石分析16.38.2.1偏硼酸锂熔融-电感耦合等离子体发射光谱法分析主、次量元素。操作时根据矿石铁、铬的含量将偏硼酸锂与试样的比例增加至(10+1)。可采用铬铁矿标准物质与试样同时处理,作为校准标准或监控样。
68.2.4.2 四酸分解-电感耦合等离子体光谱法测定铬尖晶石中主、次痕量元素
取样50~100mg,用盐酸-硝酸-氢氟酸-高氯酸分解铬被氧化为高价,趁热滴加浓盐酸,使铬以氯化铬酰(CrO2Cl2)形式挥发。用ICP-AES测定TFe、Ti、V、Al、Cu、Pb、Zn、Ca、Mg、K、Na、Sb、Mn、Li、Be、Cd、Co、Ni、Sr、Mo等元素。详见第21章硫铁矿、自然硫分析中21.22.2四酸分解-电感耦合等离子体光谱法测定硫化铁等矿物中22种元素。
68.2.4.3 碱熔-阳离子树脂交换-电感耦合等离子体质谱法测定铬尖晶石中痕量稀土元素
方法提要
试样用过氧化钠熔融,三乙醇胺提取,阳离子树脂交换,盐酸、高氯酸加热以除去铬和铁,用电感耦合等离子体质谱法测定La、Ce、Pr、Nd、Sm、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等13个稀土元素。
仪器
等离子体质谱仪。
试剂
三乙醇胺溶液(1+1)。
强酸型1×8聚苯乙烯-二乙烯苯磺酸型阳离子交换树脂100~200目,H+型,分别用4mol/LNaOH溶液和4mol/LHCl将树脂浸泡过夜并洗至中性,再用乙醇浸泡过夜并洗至无乙醇味,装入"0.8×11cm玻璃交换柱中,用前加酸平衡。
稀土元素标准溶液用相应的光谱纯稀土氧化物配成各含1.00mg/mL单个稀土储备液,酸度为!(HNO3)=2%。
将稀土标准储备溶液逐级稀释为1.00μg/mL浓度,介质为!(HNO3)=2%。按表68.1配成4组混合标准溶液。
表68.1 混合标准溶液浓度 (ρB:ng·L-1)
铼内标储备溶液ρ(Re)=1.00mg/mL称取1.4406g高纯铼酸铵(NH4ReO4)置于烧杯内,溶于水中,移入1000mL容量瓶内,用水稀释至刻度,摇匀。
铼内标工作溶液ρ(Re)=10.0ng/mL由铼内标储备溶液稀释配制,在仪器校准和试样溶液测定的全过程中,通过三通在线引入ICP。
分析步骤
称取0.5g(精确至0.0001g)试样,置于高铝坩埚中,加5gNa2O2,搅匀,上面再覆盖一层Na2O2,在700℃高温炉中熔融25min。用含有1mL三乙醇胺溶液的100mL水提取,沉淀用中速定性滤纸过滤。以10g/LNaOH溶液洗涤烧杯和沉淀6~7次,水洗1~2次,滤液弃去。用热的20mL2mol/LHCl溶解沉淀于100mL烧杯中,再用40mL30g/L酒石酸热溶液分次洗涤滤纸。于溶液中加入少量抗坏血酸,搅匀。溶液通过事先已用0.6mol/LHCl平衡过的离子交换柱,用50mL1.25mol/LHNO3洗涤液(内含1g/L抗坏血酸溶液,20g/L酒石酸溶液)淋洗,再用20mL1.25mol/LHCl淋洗,弃去流出液。用50mL1.25mol/LHNO3洗脱稀土元素。将洗脱后的稀土溶液置于低温电热板上加热,加入HClO4和HCl反复使铬以氯化铬酰形式挥发,待铬除尽后蒸至近干,用!(HNO3)=2%将盐类溶解,移入10mL比色管中,用!(HNO3)=2%稀释至刻度,摇匀。用ICP-MS测定。
ICP-MS工作参数:ICP功率1250W冷却气流量13.0L/min辅助气流量0.7L/min雾化气流量0.85L/min扫描次数100次跳峰3点/峰停留时间10ms/点测量时间50s。
68.2.4.4 高压封闭分解-电感耦合等离子体质谱法测定铬尖晶石中痕量元素
取样10~50mg,用氢氟酸-硝酸-高氯酸在高压封闭溶样器中分解铬铁矿试样,ICP-MS测定Li、Be、Sc、Ti、Co、Ni、Cu、Zn、Ga、As、Sb、Rb、Y、Mo、Ag、Cd、In、Sn、Cs、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Tl、W、Pb、Bi、Th和U等元素。参考第21章硫铁矿、自然硫分析中21.22.8高压封闭分解-电感耦合等离子体质谱法测定金属硫化矿石中43个元素。
为更有效地分解铬铁矿试样,溶样时加入0.5mLHClO4中间开盖赶氢氟酸时,可滴加浓盐酸使铬以氯化铬酰(CrO2Cl2)形式挥发分离复溶时可用5mL(1+1)HCl,对稀土等元素的提取更有利。氯根对As的干扰可在线扣除。
残余Cr形成的50Cr16O和52Cr16O可能干扰66Zn和68Zn,可用丰度较低的67Zn测定Zn,或选用64Zn测定(扣除64Ni的干扰)。
2)我们用的氯甲烷大多来源于农药敌百虫的付产物。因此,在氯甲烷中往往含有不少低沸点和高沸点的杂质。杂质含量不稳定直接影响了有机硅单体的质量。为了稳定生产保证生产产品的质量。弄清氯甲烷中的杂质及其含量很有必要的。因此,要求建立一个快速准确的分析方法,以检验氯甲烷中的杂质的含量。
关于氯甲烷的分析测试方法。在农药厂由于它是副产物因而对组份含量没有多大的要求。分析是极为粗糙的。吉林院曾有过报道。他们只是对回收氯甲烷的测试。其组份与原料氯甲烷中的组份有很大的差别,其他单位据说有不同的测试方法。但未曾见到报道。
我们采用气相色谱法直接测定氯甲烷及其杂质。选择了两种固定液并分别在FID和TCD检测器上进行了定性和定量分析等工作。
试验表明氯甲烷及其杂质采用气相色谱法是可行的方法。简便、快速、准确。
一、实验部分
1、仪器
国产102G型气相层析仪。XWC-100型,0~5mv记录仪,使用FID检测器做定性分析,TCD检测器做定量分析。
2、色谱分离条件
(1)、色谱柱:
a、内径4mm、柱长4m不锈钢,内装30%癸二酸二异辛酯,釉化6201(60~80目)涂1%三乙醇胺做去尾剂(简称癸柱)。
b、内径4mm、柱长3.2m不锈钢,内装GDX-01。
(2)、分离条件:
a、FID检测器:载气为氮气
癸柱:
氮气:32ml/min 柱温:79℃
空气:420 ml/min 汽化温度:86℃(见图1)
氢气:32 ml/min 氢焰温度:100℃
GDX-01:
氮气:55ml/min 柱温:79℃
空气:440 ml/min 汽化温度:86℃(见图2)
氢气:30 ml/min 氢焰温度:100度
癸柱:
柱温:78℃ 空气氢气:60 ml/min
汽化温度:100℃ 热导电流:220mA
进样量:2ml (见图3)
3、定性分析:
a、选柱:
氯甲烷及其杂质在常温下大多是气态物质。氯甲烷沸点为-24℃,分子量50.5,为中等极性。我们曾选用SE-30氟油、2-2二丙腈、2-2亚胺二丙腈、三乙醇胺、磷酸三甲酯、邻苯二甲酸二乙酯、、GDX-01癸二酸二异辛酯等,其中以癸二酸二异辛酯和GDX-01有较好的分离效果。即选定这两根柱作双柱定性。
氯甲烷及其杂质在中等极性的癸二酸二异辛酯上基本按沸点顺序分离。在GDX-01柱上除氢键型化合物外。基本也按沸点顺序分离。在癸柱上醇峰出现拖尾现象,故先涂1%三乙醇胺做去尾剂,再涂固定液,这样做改善醇峰拖尾,又可把甲醇提前,有利于分离。
b、定性:
Ⅰ、癸柱上定性:(分离情况见图1)
在色谱图上各峰的定性。我们采用注射反应法(1)。比较反应前后色谱图的变化。初步判断各杂质的官能团。结合化学合成与有机化合物的特征反应做了综合验证。基本解决了各峰的定性问题。
图1、30%癸二酸二异辛酯,用FID检测器测定图
1、甲醚2、氯甲烷3、甲乙醚4、氯乙烷5、甲醇 6、乙醚7、乙醇
图2、GDX-01柱用FID检测器测定图1、氯甲烷2、甲醛 3、甲醇4、溴甲烷5、氯乙烷6、甲乙醚
7、乙醇8、乙醚 图3、30%癸二酸二异辛酯柱用TCD检测器测定图1、甲醚2、氯甲烷3、氯乙烷4、甲醇
5、乙醚6、乙醇
我们先做了(1)汞盐脱烯烃 (2)盐酸羟胺除醛酮 (3)品红亚硫酸试剂除醛。色谱结果对照说明,氯甲烷中可能不存在烯、醛、酮。
(1)峰1:
根据车间反应和原料的来源估计样品中含有醚类。为证实醚类的存在我们做了下面的试验。
a、醚能溶于浓盐酸与浓硫酸形成锌盐(1)。我们在吸收管中放入浓盐酸缓慢通入氯甲烷进行色谱对照。结果峰1明显变小,峰3消失,峰6也变也。推断1.3.6均可能为醚。
b、峰1紧靠氯甲烷,说明峰1的沸点与氯甲烷相近。醚类中甲醚的沸点为-23.6℃,它有与氯甲烷相近。
由于我们没有纯甲醚。为验证峰1,我们把甲醇与脱水剂硫酸在室温下作用合成甲醚(2)。将生成物进行色谱对照分析。合成甲醚与峰1的保留时间相同。故判断峰1为甲醚。
(2)峰3:
由上述盐酸溶解实验证明。峰3也可能为醚。峰3在氯甲烷之后,但也比较靠近,因而其沸点估计也不会高。比甲醚沸点高的醚类为甲乙醚(沸点7.6℃),为证实峰3,仍采用化学合成法将甲醇、乙醇与脱水剂硫酸煮沸脱水生成甲乙醚(2)。
将生成物进行色谱对照分析,合成甲乙醚与峰3作对照测定,保留时间相同,故判断峰3为甲乙醚。
(3)峰4:
实验证实峰4为稳定组份。因而推断可能是氯代烷烃,而沸点次于氯甲烷的氯代乙烷为氯乙烷(沸点为12.2度)。
仍采用化学合成氯乙烷。将乙醇与盐酸在强脱水剂(无水氯化锌)存在下加热生成氯乙烷。将生成物进行色谱对照反应生成的氯乙烷与峰4的保留时间重合。故将峰4判断为氯乙烷。
(4)峰5、7:
峰5、7在未涂三乙醇胺的癸柱上拖尾,即有羟基存在的可能。且敌百虫原料中有甲醇,所以估计峰5、7为甲醇与乙醇。我们采用纯样甲醇与乙醇作定性对照,结果表明峰5为甲醇、峰7为乙醇。
(5)峰6:
在盐酸溶解试验中表明峰6可能为醚类,但它还存有烯烃的两个特征反(Br加成反应、KmnO4的氧化反应)。因而我们试用102G型色谱仪上制备收集了峰纯组份送晨光化工研究作质谱分析。
质谱分析指出,质荷比为74的为分子峰。再根据碎片形成并参考乙醚的质谱数据即断定峰6为乙醚。
Ⅱ、GDX-01柱做双柱定性一(分离情况见图2)
用FID检测器做双柱定性,试验方法同前。
在GDX-01柱上进一步证实了氯甲烷中的杂质为甲醚、乙醚、甲乙醚、甲醇、乙醇、氯乙烷。另外还多了一个未知峰。即图2中的峰4。经大量定性试验证实峰4也较稳定。也可能是烷烃,峰4出在氯乙烷前,其沸点为较低的组份。
敌百虫另一原料是氯气。在氯气可能存在溴。反应后会生成溴甲烷(沸点3.5度)为证实峰4。我们合成溴甲烷(KBr中加入浓硫酸、甲醇共热)色谱对照结果表明峰4为溴甲烷。
Ⅲ、自79年以来原料氯甲烷中出X0、X1、X2峰(见图4)
X0峰与天然气中一小组份相同,约为低级烷烃
X1峰含量很低,出现几率很小,故未给定性
X2峰出现机会多,有时含量也较高。我们依保留时间定性一。
图4 30%癸二酸二异辛酯柱/釉化6201(60~80目)涂1%三乙醇胺
1、X02、X1 3、甲醚 4、氯甲烷 5、氯乙烷 6、甲醇
7、乙醚8、乙醇9、X10、氯仿
结果证实X2峰为氯仿
4、定量分析
氯甲烷及其杂质的定量分析是利用TCD检测器,在癸柱上进行(见图3)。
氯甲烷及其杂质的重量校正因子,是依据经验公式计算(列于表一),采用峰面积乘以重量校正因子,归一化法进行定量。
表一、氯甲烷及其杂质的重量校正因子
组份 f f相
CH3Cl 0.64 1
C2H5Cl 0.72 1.12
CH3OCH3 0.54 0.84
C2H5OC2H5 0.68 1.06
CH3OH 0.58 0.91
C2H5OH 0.63 0.98
CH3Br 1.10 1.72
CH3OC2H5 0.62 0.97
为了考察本法的准确度,取不同批次的氯甲烷样品进行色谱法测定,定量结果列于表二。
(1)、定量数据表明,本法的最小检测量为200ppm。
(2)、氯甲烷中主组份相对偏差为0.03%,低含量组份(《0.05%),相对偏差为10%以下精确度良好。
(3)、由于缺少纯样品和经验数据不全,校正因子是利用经验公式计算的(其中甲醇校正因子计算不出引用经验数据),对定量看来一定的误差。
61.3.1.1 草酸盐分离-重量法
方法提要
试样经碱熔分解,热水提取(含铁高的试样用!=5%三乙醇胺提取),沉淀过滤后再用盐酸溶解,在pH1~3的微酸性溶液中,用草酸沉淀稀土元素,钍、钙同时被沉淀以及较大量的钛、锆可能被带下外,可与大多数杂质分离。用六次甲基四胺沉淀钍。对钛、锆、铌、钽较高的试样,可用氟化物沉淀分离。最后将稀土沉淀成氢氧化物再转化为草酸盐,于850℃灼烧成稀土氧化物称量。
试剂
过氧化钠。
抗坏血酸。
盐酸羟胺。
氟化铵。
盐酸。
硝酸。
氢氟酸。
高氯酸。
过氧化氢。
氢氧化铵。
盐酸。
三乙醇胺。
氢氟酸-盐酸洗液2mLHF加2mLHCl,用水稀释至100mL。
氢氧化钠溶液(10g/L)。
草酸丙酮溶液(400g/L)。
草酸溶液(10g/L)调节至pH1.5~2.5。
苯甲酸溶液(10g/L,2g/L)。
六次甲基四胺(200g/L)。
六次甲基四胺-氯化铵洗液(10g/L)称取1g六次甲基四胺、1gNH4Cl溶于水中,稀释至100mL,用稀盐酸调节至pH4.4~5.0。
氯化铵-氢氧化铵溶液称取2gNH4Cl溶于100mL氢氧化铵,pH8.6~9.0。
麝香草酚蓝指示剂(1g/L)。
甲基橙指示剂(0.1g/L)。
酚酞指示剂(4g/L)。
分析步骤
称取0.2~0.5g(精确至0.0001g)试样,置于高铝坩埚中,加4gNa2O2,搅匀后再覆盖一层,加盖,置于高温炉中于650~700℃熔融5~15min,取出冷却,置于300mL烧杯中,加约50mL热水提取[含铁高的试样用(5+95)三乙醇胺提取],洗出坩埚及盖,将烧杯加盖表面皿,置于控温电热板上加热煮沸,取下冷却,洗去表面皿,用中速滤纸过滤,用氢氧化钠溶液洗涤6~8次。将沉淀连同滤纸置于原烧杯中,加入2mLHCl、20mL水,用玻璃棒将滤纸捣碎,加热溶解沉淀,加入20~25mL草酸丙酮溶液加热至近沸,加入1滴麝香草酚蓝指示剂,用(1+4)NH4OH调节溶液变橙色(pH1.5~2.5),加水稀释至80mL,保温1h以上,取下冷却,用致密滤纸过滤。将沉淀全部转移到滤纸上,用草酸溶液洗涤7~8次,将沉淀连同滤纸置于瓷坩埚中低温灰化,于高温炉中650~700℃灼烧0.5h,取出冷却,将灼烧物移入250mL烧杯中,加入15mLHCl及0.5~1mLH2O2,加盖表面皿,加热溶解。用下列方法之一分离钍。
苯甲酸沉淀分离法。于上述盐酸溶液中,加2滴麝香草酚蓝指示剂,用(1+1)NH4OH中和至橙红色,加入0.1~0.3gNH2OH·HCl还原Ce4+,再加(1+1)NH4OH至橙红色(pH2.0~2.2),加热煮沸,加入100mL10g/L苯甲酸溶液,微沸片刻,趁热过滤,以2g/L苯甲酸溶液洗涤8次,滤液收集于烧杯中,将沉淀连同滤纸置于瓷坩埚中低温灰化后,于850℃灼烧0.5h,即得氧化钍。
六次甲基四胺分离法。于上述盐酸溶液中,用水调整体积为50~60mL,加入0.1g~0.2g抗坏血酸还原四价铈,加2滴甲基橙指示剂,用(1+1)NH4OH中和至刚变橙色[如有浑浊,滴加(1+1)HCl至溶液清亮]。加热至近沸,在搅拌下加入六次甲基四胺溶液至甲基橙刚变黄色(pH4.4~5.0),补加抗坏血酸少许,冷至室温过滤,以六次甲基四胺-氯化铵洗液(pH4.4~5.0)洗涤8~10次,滤液收集于烧杯中,沉淀连同滤纸置于瓷坩埚中低温灰化,置于高温炉中850℃灼烧0.5h,即得氧化钍。
将分离钍后的滤液,加几滴酚酞指示剂用氢氧化铵中和至红色并过量10mL,加热至近沸,使沉淀凝聚,取下冷却,过滤,以NH4Cl-NH4OH溶液(pH8.6~9.0)洗涤6~8次,将沉淀连同滤纸移入原烧杯中,加15mL草酸丙酮溶液和85mL水,充分搅拌。加2滴麝香草酚蓝指示剂,用(1+1)NH4OH中和至橙红色(pH1.5~2.5),加热保温1h以上,过滤,用草酸溶液洗涤8~10次,将沉淀连同滤纸置于已恒量的瓷坩埚中低温灰化,置于高温炉中于850℃灼烧0.5h,取出冷却,迅速称量,灼烧至恒量即得稀土氧化物总量。
试样中含铌、钽或锆、钛较高时,可用氟化物沉淀稀土,分离除去:将沉淀连同滤纸置于塑料烧杯中,加5mLHCl,将滤纸捣碎,再加10mLHF、2gNH4F、90mL热水,置于80~90℃水浴中保温1h,取下冷却,用塑料漏斗或涂蜡的玻璃漏斗以中速滤纸过滤,用HF-HCl洗液洗涤6~8次,滤液弃去。将沉淀连同滤纸置于原烧杯中,加20mLHNO3浸透滤纸,加入3~5mLHClO4,用玻璃棒将滤纸捣碎,加盖表面皿,置于电热板上加热至冒白烟20min,取下,冷却后,加入20mLHCl和50mL水,加热溶解盐类(如有白色不溶物,即是二氧化硅。如测定钍,应过滤除去)。然后按前述方法之一分离钍,并以草酸沉淀法测定稀土氧化物总量。
按下式计算稀土氧化物总量的含量:
岩石矿物分析第三分册有色、稀有、分散、稀土、贵金属矿石及铀钍矿石分析
式中:w[RE2O3(T)]为稀土氧化物总量的质量分数,%m1为试样溶液中稀土氧化物的质量,gm0为试样空白溶液中稀土氧化物的质量,gm为称取试样质量,g。
注意事项
1)草酸稀土的定量沉淀,必须严格控制酸度,并尽量避免引入碱金属离子否则将增加草酸稀土的溶解度,使结果偏低。特别是钇组稀土的定量沉淀,损失更为显著。
2)氢氧化铵必须不含碳酸根,否则钙分离不完全。不含二氧化碳氢氧化铵的处理方法如下:用两个塑料杯分别装入浓氢氧化铵及水各半杯,同时放入密闭容器内,一天后水吸收氨,即成为无二氧化碳氢氧化铵。
61.3.1.2 PMBP-苯萃取分离-偶氮胂Ⅲ光度法
方法提要
在pH2.4~2.8缓冲溶液中,偶氮胂Ⅲ与稀土元素生成蓝绿色配合物,可用作光度法测定。铁、钍、铀,锆、铪,钙、铅、铜、铋、钨和钼等元素干扰测定,必须预先分离除去。
试样经碱熔,三乙醇胺提取,滤去硅、铝、铁、钨和钼等杂质。沉淀用盐酸溶解,在pH5.5的乙酸-乙酸钠缓冲溶液中,PMBP与稀土金属离子生成的配合物为苯所萃取。同时被萃取的还有钍、铀、钪、铋、铁(Ⅲ)、铌,钽、铅、铝和少量钙、锶、钡、锰,以及部分钛、锆的水解物(调节pH前加入磺基水杨酸可掩蔽钛、锆)。用甲酸-8-羟基喹啉溶液反萃取,除稀土元素和部分铅转入水相外,其他元素仍留在有机相中被分离。
仪器
分光光度计。
试剂
过氧化钠。
三乙醇胺。
盐酸。
氢氧化铵。
1-苯基-3-甲基-苯基酰吡唑酮(PMBP)-苯溶液(0.01mol/L)称取2.78gPMBP溶于1000mL苯中。
乙酸-乙酸钠缓冲溶液(pH5.5)称取164g无水乙酸钠(或272g结晶乙酸钠),溶解后过滤,加入16mL冰乙酸,用水稀释至1000mL。以精密pH试纸检查,必要时用(5+95)HCl或氢氧化钠溶液调节。
甲酸-8-羟羟基喹啉反萃取液(pH2.4~2.8)称取0.15g8-羟基喹啉,溶于1000mL(1+99)甲酸中。用精密pH试纸检查。
偶氮胂Ⅲ溶液(1g/L)过滤后使用。
抗坏血酸溶液(50g/L)。
磺基水杨酸溶液(400g/L)。
六次甲基四胺溶液(200g/L)。
稀土氧化物标准储备溶液ρ[RE2O3(T)]=200.0μg/mL称取于0.1g从本矿区提纯的稀土氧化物或按矿区稀土元素比例配制的铈、镧、钇氧化物(850℃灼烧1h),加5mLHCl及数滴H2O2,加热溶解,冷却后,移入500mL容量瓶中,用水稀释至刻度,混匀。
稀土氧化物标准溶液ρ[RE2O3(T)]=5.0μg/mL用稀土氧化物标准储备溶液稀释制得。
混合指示剂溶液取0.15g溴甲酚绿和0.05g甲基红,溶于30mL乙醇中,再加70mL水,混匀。
强碱性阴离子树脂水洗至中性,用(1+9)HCl浸泡2h,再水洗至中性,用150g/LNH4Ac溶液浸泡过夜,水洗至中性备用。树脂再生处理相同。
校准曲线
移取0mL、1.00mL、2.00mL、4.00mL、6.00mL、8.00mL、10.00mL稀土氧化物标准溶液,分别置于一组分液漏斗中,用水补足体积至10mL,加入1mL抗坏血酸溶液、1mL磺基水杨酸溶液及2滴混合指示剂,混匀。用(1+4)NH4OH调节至溶液刚变绿色(有铁存在时是橙紫色),再用(5+95)HCl调至紫色,此时应约pH5(必要时可用精密pH试纸检查)。加入3mL乙酸-乙酸钠缓冲溶液,15mLPMBP-苯溶液,萃取1min,放置分层后,弃去水相。再加入3mL缓冲溶液,稍摇动洗涤一次,水相弃去,用水洗分液漏斗颈。于有机相中,准确加入15mL甲酸-8-羟基喹啉反萃取液,萃取1min,分层后,水相放入干燥的25mL比色管中。有机相可收集回收使用。于比色管中准确加入1mL偶氮胂Ⅲ溶液,混匀。用3cm比色皿,以试剂空白溶液作参比,于分光光度计波长660nm处测量其吸光度,绘制校准曲线。
分析步骤
称取0.1~0.5g(精确至0.0001g)试样,置于刚玉坩埚(或铁坩埚)内,加3~4gNa2O2,拌匀,再覆盖一薄层。在700℃熔融5~10min,冷却,放入预先盛80mL(5+95)三乙醇胺溶液的烧杯中,用水洗出坩埚(如氢氧化物沉淀太少,加入约含10mgMg的MgCl2溶液作载体),加热煮沸10min以逐去过氧化氢。用水稀释至120mL,搅匀。冷后用中速定性滤纸过滤,用10g/LNaOH溶液洗涤烧杯及沉淀6~8次。以数毫升热的(1+1)HCl溶解沉淀,用50mL容量瓶承接,用水洗涤并稀释至刻度,混匀。
分取10.0mL试液,置于分液漏斗中,以下按校准曲线进行测定。
按下式计算稀土氧化物总量的含量:
岩石矿物分析第三分册有色、稀有、分散、稀土、贵金属矿石及铀钍矿石分析
式中:w[RE2O(T)]为稀土氧化物总量的质量分数,%m1为从校准曲线上查得分取试样溶液中稀土氧化物的质量,μgm0为从校准曲线上查得分取试样空白溶液中稀土氧化物的质量,μgV1为分取试样溶液体积,mLV为试样溶液总体积,mLm为称取试样的质量,g。
注意事项
1)稀土元素在矿物中一般以铈、镧、钇为主,在不同的矿物中,相互间的比例也各不相同。由于钇的相对原子质量最小,故其摩尔吸光系数最大。因此,配制混合稀土标准溶液时,必须与被测试液中稀土元素的组分,特别是铈和钇的比例大致相似。目前,稀土氧化物标准大多是选择所分析的矿区中具有代表性的矿石,从中提取纯稀土氧化物而配制。
2)PMBP-苯萃取稀土适宜的酸度为pH5.5。稀土元素由于“镧系收缩”,离子半径从镧到镥逐渐变小,故镧系元素的碱性由镧到镥逐渐减弱。当pH<5,铈组稀土萃取不完全,而钇组稀土可完全萃取如pH>5,铈组能萃取完全,而钇组有所偏低。增加PMBP浓度有利于提高稀土元素的萃取率。浓度太大,反萃取时大量PMBP被带下来,给以后操作增加困难。
3)稀土氧化物能吸收空气中的二氧化碳和水分,氧化钕和氧化镧吸收作用最强。铈及钇组氧化物吸收作用最弱,氧化钇能吸收氨,故必须于850℃灼烧1h逐去上述杂质,并在干燥器中冷却后称取。
4)硫化矿需预先在高温炉中灼烧将硫除去。如试样中含铁量不高,又能用酸分解时可用王水或高氯酸分解,含硅高的可滴加少量氢氟酸。
5)磷酸根的存在能抑制稀土-PMBP配合物的形成,使萃取不完全,0.5~1mg五氧化二磷即有干扰,可在萃取前用强碱性阴离子树脂将磷静态吸附除去,处理后60mg以下磷酸根不干扰(将稀土沉淀为草酸盐或氟化物也可使磷酸根分离)。除磷酸根操作:于原烧杯中加入一小片刚果红试纸,用(1+1)NH4OH调节至刚变为红紫色,加2mL冰乙酸、2~3g强碱性阴离子树脂。混匀后,加入15mL六次甲基四胺溶液,过滤入50mL容量瓶中,用水洗净并稀释至刻度,混匀。
6)铅与偶氮胂Ⅲ生成有色配合物,少量存在便干扰稀土测定,使结果偏高。可在萃取前加入2mL20g/L铜试剂溶液使之与铅配位,以消除铅的影响。在反萃取稀土后的有机相中,再用(1+1)盐酸将钍反萃取,利用此性质还可以连续测定钍。
61.3.1.3 阳离子交换树脂分离-重量法
方法提要
在盐酸溶液中稀土元素在阳离子交换树脂上的分配系数与锆、铪和钪相近,小于钍,稍大于钡,比其他元素均大很多,可以用不同浓度的HCl洗提分离,在交换和淋洗液中加入少量酒石酸可有效的除去锆、铪、铌和钽等。在2mol/LHCl中加入乙醇能有效地淋洗铁、铝、钛、铀及大部分钙等,并可防止重稀土的损失。用3mol/LHCl-(1+4)乙醇洗提稀土元素,并用氢氧化铵沉淀稀土元素而与残留的钙和钡分离,最后灼烧为氧化物称量。
试剂
碳酸钠。
过氧化钠。
酒石酸。
氢氧化钠。
盐酸。
酒石酸溶液
盐酸-酒石酸淋洗液(0.2mol/LHCl-20g/L酒石酸)称取20g酒石酸溶于水中,加入16.7mLHCl,用水稀释至1000mL。
盐酸-酒石酸洗涤液[(5+95)HCl-20g/L酒石酸]。
盐酸-乙醇淋洗液A[2mol/LHCl-(1+4)乙醇]取300mLHCl,加360mL无水乙醇,用水稀释至1800mL(用时配制)。
盐酸-乙醇淋洗液B[3mol/LHCl-(1+4)乙醇]取500mLHCl,加400mL无水乙醇,用水稀释至2000mL(用时配制)。
离子交换色谱柱20cm×1.13cm,树脂Zerolit225H型,60~100目。
树脂的处理:先用水浸透,再用6mol/LHCl浸泡过夜,水洗至中性,装入交换柱中。先用200mL盐酸-乙醇淋洗液B淋洗,继用2.3mol/LH2SO4淋洗,最后用150~200mL水分两次淋洗至中性备用。
分析步骤
称取0.2~0.5g(精确至0.0001g)试样,置于刚玉坩埚中,加入1~2gNa2CO3和2~3gNa2O2,置于高温炉中于650~700℃熔融5~10min。冷却后,置于250mL烧杯中,用热水提取。洗出坩埚,用水稀释至约100mL,加热煮沸数分钟,冷却。用致密滤纸过滤,以20g/LNaOH溶液洗涤沉淀5~6次,用热的(1+1)HCl溶解沉淀于原烧杯中,用热水洗至无氯离子,在电热板上蒸干除硅。然后加3mLHCl润湿残渣,加入2g酒石酸、30mL水,加热溶解盐类。用致密滤纸过滤于150mL烧杯中,以热的(5+95)HCl洗涤烧杯及滤纸至70mL体积,再用热水洗至l00mL,混匀。将溶液全部移入离子交换柱的储液瓶中,用30mLHCl-酒石酸洗涤液洗涤烧杯,以0.5~0.8mL/min的速度进行交换。待溶液流完后继续用300mL盐酸-酒石酸淋洗液以同样流速淋洗磷酸根、锆、铌和钽。溶液流完后用100mL水淋洗,再用盐酸-乙醇淋洗液A淋洗铁、铝、钛、锰、铀、钙和镁等,用450mL盐酸-乙醇淋洗液B淋洗稀土元素。将稀土元素洗出液加热蒸发至约15mL,用水稀释至100mL,煮沸。加浓氢氧化铵至出现稀土沉淀,再过量溶液体积的10%,冷却。用中速滤纸过滤,以(5+95)NH4OH洗涤烧杯和沉淀6~7次。将沉淀连同滤纸一起移入已恒量的瓷坩埚中,低温灰化,在高温炉中850℃灼烧至恒量,即得稀土氧化物总量。
稀土氧化物总量含量的计算参见式(61.1)。
注意事项
1)如试样中含有锶、钡较高,将用盐酸溶解沉淀的溶液中,加氢氧化铵沉淀稀土元素,并过量10%氢氧化铵,以分离锶、钡。氢氧化物沉淀再用热(1+1)HCl溶解,然后蒸干除硅。
2)若要测定钍,可在淋洗稀土后用2.8mol/LH2SO4溶液淋洗钍。
61.3.1.4 阳离子交换树脂分离-偶氮胂Ⅲ光度法
方法提要
在1~2mol/LHCl中稀土元素在强酸性阳离子交换树脂上的分配系数很大,但随稀土元素的原子序数增加而减小,铈组稀土元素的分配系数大于钇组稀土元素。在0.5~1.0mol/LHCl中稀土元素、锆和钍被阳离子交换树脂强烈吸附,钛、U6+、Fe2+、锰、镁、Fe3+、钙及铝等也部分或全部被吸附,可用1.25mol/LHCl将上述元素淋洗下来,而稀土元素、锆和钍仍留在柱上。
在H2SO4溶液中,锆的分配系数变得很小,而稀土元素的分配系数反而增大。因此试样中含微量锆时,可在(1+99)H2SO4或(2+98)H2SO4中进行交换,以除去锆,而钍仍留在柱上。或在1.25mol/LHCl淋洗后,继续用0.36mol/LH2SO4溶液洗除锆,最后用3mol/LHCl淋洗稀土元素,用偶氮胂Ⅲ光度法进行测定。
仪器
分光光度计。
试剂
过氧化钠。
盐酸。
硫酸。
抗坏血酸溶液(10g/L)。
氢氧化钠溶液(0.1mol/L)。
氯化钠溶液(20g/L)。
苯二甲酸氢钾溶液(0.2mol/L)。
偶氮胂III溶液(1g/L)。
酚酞指示剂(10g/L)。
阳离子树脂交换色谱柱Zerolit225树脂,H+型,50~100目柱1.5cm×10cm流速为1~1.5mL/min。树脂再生:用50mL水洗去柱中残留盐酸,用50mL200g/LNH4Cl溶液使树脂转变为铵型,50mL水洗去残留的NH4Cl,再以240mL40g/L草酸溶液淋洗钍,50mL水洗去残留在柱中的草酸铵溶液,以100mL4mo1/LHCl使之变为氢型,最后加入50mL(1+99)H2SO4流过交换柱,作下次使用。
稀土氧化物标准溶液ρ[RE2O3(T)]=10.0μg/mL配制方法参见61.3.1.2PMBP-苯萃取分离-偶氮胂Ⅲ光度法。
校准曲线
移取0mL、0.50mL、1.00mL、2.00mL、3.00mL、4.00mL、5.00mL稀土氧化物标准溶液,分别置于一组25mL容量瓶中,加水至10mL左右,加入0.5mL新配制的抗坏血酸溶液及1滴酚酞指示剂,用氢氧化钠溶液中和至红色出现,再用0.1mol/LHCl溶液中和至红色褪去。加入2.8mL0.2mol/LHCl溶液及3.0mL0.2mol/L苯二甲酸氢钾溶液,混匀,加入1mL1g/L偶氮胂III溶液,以水稀释至刻度,混匀。在分光光度计上660nm波长处,用1cm比色皿,以水作参比测量吸光度,绘制校准曲线。
分析步骤
称取0.1~0.5g(精确至0.0001g)试样,置于刚玉坩埚中,加入4~6gNa2O2,搅匀,再覆盖一层,置于已升温至650~700℃的高温炉中,保持此温度至刚全熔。取出冷却,放入已盛有60mL水的250mL烧杯中,盖上表面皿,待剧烈作用停止后,用水洗出坩埚。置于电炉上加热煮沸15~20min,使溶液体积浓缩至40mL以下。取下,加水稀释至200mL左右,放置澄清后,用中速定性滤纸过滤,以20g/LNaCl溶液洗涤烧杯及滤纸共8~10次,滤液弃去。用50mL热的(8+92)H2SO4溶液将沉淀溶解于原烧杯中,用水洗涤滤纸6~8次。将烧杯置于电热板上加热,并蒸发至冒三氧化硫白烟片刻。取下冷却,加水至100mL(若含有锆则加入1gNa2HPO4),加热煮沸。取下冷却后,用慢速定性滤纸过滤(除去二氧化硅及锆),以(1+99)H2SO4溶液洗涤烧杯及滤纸共8~10次,滤液及洗液用400mL烧杯收集,并用水稀释至250~300mL。将上述溶液倾入已再生好的阳离子交换色谱柱中,以1~1.5mL/min的速度流过,依次用150mL(1+99)H2SO4、500mL1.25mol/LHCl洗提除去铁、镁、锰、铀、铁、铝等元素,流出液均弃去。然后用300mL3mol/LHCl淋洗稀土元素,以400mL烧杯承接,置于电热板上加热浓缩至约5mL,用水移入50mL容量瓶中并稀释至刻度,混匀。
分取部分试液(约含40μg的稀土元素)于25mL容量瓶中,以下按校准曲线进行测定。
稀土氧化物总量含量的计算参见式(61.2)。
2.3 CaCO3含量的测定
2.3.1分析步骤
取样品烘干后,称取CaCO3 0.6克左右(精确至0.001克),烘干至恒重置于烧杯中,加少量水润湿,盖好表面皿,而后缓慢加入10毫升盐酸溶液(1:1),使之完全溶解。加热煮沸,通过中速定性滤纸过滤,滤液与洗液一并收集于250毫升容量瓶中,加水稀释至刻度,充分摇匀。
准确移取25毫升溶液于250毫升锥形瓶中,同时加入5毫升三乙醇胺溶液(1:3)、3毫升氢氧化钠溶液(100克/升)、10毫克钙指示剂、25毫升蒸馏水,摇匀后,用EDTA标准溶液滴定,滴至溶液由酒红色变为纯蓝色,并且保持30S不变色为止,记录消耗的EDTA标准溶液的体积V。
2.3.2 计算方法:
C×V×100.1
X = ———————— ×100℅
m×1000×25/250
X — 碳酸钙的含量(℅)
C —乙二胺四乙酸二钠标准溶液C(EDTA)的浓度(mol/l)
V —滴定中消耗乙二胺四乙酸二钠标准溶液的体积(ml)
m — 碳酸钙的绝干重量(g)
100.1 — 碳酸钙的摩尔质量(g/mol)
凡是能满足上述要求的反应都可以应用于直接滴定法中,即用标准溶液直接滴定被测物质。直接滴定法是滴定分析中最常用和最基本的滴定方法。
例如,以HCI滴定氢氧化钠和以KMnO4标准溶液滴定Fe^2+等,都属于直接滴定法。当标准溶液与被测物质的反应不完全符合上述要求时,无法直接滴定,此时可采用下述几种方式进行滴定。
2.返滴定法
有些物质不能用KMnO4溶液直接滴定,可以采用返滴定的方式。例如在强碱性中过量的KMnO4能定量氧化甘油、甲醇、甲醛、甲酸、苯酚和葡萄糖等有机化合物。测甲酸的反应如下: MnO4-+ HCOO - + 3OH-= CO3 - + MnO42-+ 2H2O 反应完毕将溶液酸化,用亚铁盐还原剂标准溶液滴定剩余的MnO4 - 。根据已知过量的KMnO4和还原剂标准溶液的浓度和消耗的体积,即可计算出甲酸的含量。3 置换滴定:例: 在Ag+试液中加入过量Ni(CN)42-,发生置换反应: Ag+ + Ni(CN)42- = 2Ag(CN)2-+ Ni2+用EDTA滴定被置换出的Ni2+,便可求得Ag+的含量。4 间接滴定PO43 -的测定;例: PO4 3-的测定可利用过量Bi3+与其反应生成BiPO4沉淀,用EDTA滴定过量的Bi3+ ,可计算出PO43 -的含量。按照所利用的化学反应的异同,滴定分析法一般可分成下列四类:
(一)酸碱滴定法(又称中和法)
这是以质子传递反应为基础的一种滴定分析法,可用来测定酸、碱。1.混合碱的测定(双指示剂法) NaOH ,Na2CO3 ,NaHCO3 , 判断由哪两种组成(定性/定量计算)。Na2CO3能否直接滴定, 有几个突跃? H2CO3 = H+ + HCO3 - pKa1=6.38HCO3 - = H+ + CO3 2- pKa2=10.25V1>V2 : NaOH(V1 – V2) ,Na2CO3 (V2) V1=V2 : Na2CO3 V1<V2 : Na2CO3 (V1),NaHCO3 (V2 –V1) V1=0 : NaHCO3 V2=0 : NaOH (二)氧化还原滴定法
这是以氧化还原反应为基础的一种滴定分析法,可用以对具有氧化还原性质的物质及某些不具有氧化还原性质的物质进行测定。 1高锰酸钾法 在强酸性溶液中氧化性最强E=1.51V,产物为Mn2+; 在弱酸性至弱碱性中E=0.58V,产物为MnO2; 在强碱性中E=0.56V,产物为MnO4-。可直接或间接测定许多无机物和有机物。2.重铬酸钾法3.碘量法 (三)沉淀滴定法(又称容量沉淀法)
这是以沉淀反应为基础的一种滴定分析法。如用标准AgNO3溶液滴定氯化物试液(常称银量法),其反应式是:
Ag++CI-=AgCI↓.1 摩尔(Mohr)法 a. 用AgNO3标准溶液滴定氯化物,以K2CrO4为指示剂 Ag+ + Cl-= AgCl�0�4 终点时: [Ag+]=(KspAgCl )1/2=1.25×10-5 CrO42-+2 Ag+ = Ag2CrO4�0�4(砖红色) 此时指示剂浓度应为: [CrO42-]=KspAg2CrO4 /[Ag+]2=5.8× 10-2 mol/L实际上由于CrO42-本身有颜色,指示剂浓度保持在 0.002~0.005 mol / L较合适。b.测定的pH应在中性弱碱性(6.5~10.5)范围 酸性太强,[CrO42-]浓度减小, 碱性过高,会生成Ag2O沉淀,c.不能用返滴定法2. 佛尔哈德(Volhard)法 (四)络合滴定法(配位滴定法)
这是以络合反应为基础的一种滴定分析法。可用以对金属离子进行测定,如用EDTA作络合剂,有如下反应:
M2++Y4-=MY2-
式中:M2+表示二价金属离子;Y4-表示EDTA阴离子例: 在Ag+试液中加入过量Ni(CN)42-,发生置换反应: Ag+ + Ni(CN)42- = 2Ag(CN)2-+ Ni2+用EDTA滴定被置换出的Ni2+,便可求得Ag+的含量。5预处理的方法:预先氧化:预氧化剂预先还原:预还原剂预处理时所用的氧化剂或还原剂必须符合下列条件:
(1) 反应速度快。
(2) 必须将欲测组分定量的氧化或还原,即:反应完全。
(3) 反应应具有一定选择性。
(4) 过量的氧化剂或还原剂易于除去。除去办法: 6 基准物质满足的条件:(1)物质的组成与化学式相符。若有结晶水,其含量也应与化学式严格相符。如:草酸 H2C2O4.2H2O 化学式带有结晶水是2个,实际的结晶水的个数也必须是两个。这样才具备条件。(2)纯度高,杂质含量应低于滴定分析法所允许的误差限度,一般情况下试剂的纯度应在99.9%以上。(3)稳定。(不分解,不吸收空气中的水分,不被空气氧化)邻苯二甲酸氢钾 从称量误差考虑7 1.1直接配制法用分析天平准确地称取一定量的物质,溶于适量水后定量转入容量瓶中,稀释至标线,定容并摇匀。根据溶质的质量和容量瓶的体积计算该溶液的准确浓度。1.2 间接配制法(标定法)需要用来配制标准溶液的许多试剂不能完全符合上述基准物质必备的条件,例如:NaOH极易吸收空气中的二氧化碳和水分,纯度不高;市售盐酸中HCl的准确含量难以确定,且易挥发;KMnO4和Na2S2O3等均不易提纯,且见光分解,在空气中不稳定等。因此这类试剂不能用直接法配制标准溶液,只能用间接法配制,即先配制成接近于所需浓度的溶液,然后用基准物质(或另一种物质的标准溶液)来测定其准确浓度。这种确定其准确浓度的操作称为标定。间接配制法:KMnO4 、Na2S2O3、HCl、NaCl、H2SO4直接配制法:K2Cr2O7 、AgNO3、NaOH8 指每毫升标准溶液相当于的待测组分的质量。 T=n*M/V9如果溶液中含有Fe3+、Al3+时,加入三乙醇胺可将这些干扰离子掩蔽起来,使其不干扰滴定,便于终点的观察。若有Cu2+、Pb2+、Zn2+等 , 可用Na2S或KCN掩蔽。在配位滴定中,随着滴定剂EDTA的加入,溶液的pH会发生改变,也就改变了酸效应系数从而影响配合物的稳定常数,为了保持pH不变,所以要加入缓冲溶液。为了调节pH=12,使其中的镁离子沉淀,测定钙的离子含量。要加入2ml 10% NaOH
任务描述
在岩石矿物分析工作中,元素及其化合物的掩蔽、分离和测定都是以它们的分析化学性质为基础的。所以,讨论和研究它们的分析化学性质是极其必要的。本任务对铁的化学性质、铁矿石的分解方法、铁的分析方法选用等进行了阐述。通过本任务的学习,知道铁的化学性质,能根据矿石的特性、分析项目的要求及干扰元素的分离等情况选择适当的分解方法,学会基于被测试样中铁含量的高低以及对分析结果准确度的要求不同而选用适当的分析方法,能正确填写样品流转单。
任务分析
一、铁在自然界的存在
铁在自然界(地壳)分布很广,也是最常用的金属,约占地壳质量的5.1%,居元素分布序列中的第四位,仅次于氧、硅和铝。它的最大用途是用于炼钢;也大量用来制造铸铁和煅铁。铁和其化合物还用作磁铁、染料(墨水、蓝晒图纸、胭脂颜料)和磨料(红铁粉)。但由于铁很容易与其他元素化合而成各种铁矿物(化合物)存在,所以地壳中很少有天然纯铁存在。我们所说的铁矿石是指在现代技术条件下能冶炼出铁来而又经济的铁矿物。
铁矿石从主要成分上划分至少可以分为:赤铁矿,主要有效成分Fe2O3;褐铁矿,主要有效成分mFe2O3·nH2O;磁铁矿,主要有效成分Fe3O4;菱(黄)铁矿,主要有效成分FeCO3(Fe2S3);纯铁矿,主要有效成分单质铁;以及上述矿藏的混生矿或与其他黑色金属的伴生矿。铁精矿中铁的含量(品位)大小直接决定着铁的产量,所以生产中特别注重铁矿石的含量。铁精矿中铁含量的大小的主要测定方法有EDTA配位滴定法、重铬酸钾容量法。铁矿石中全铁含量的测定,目前国内外主要采用重铬酸钾容量法。
二、铁的分析化学性质
(一)铁的化学性质简述
铁(Fe),原子序数26,相对原子质量55.847,铁的密度为7.9g/cm3,铁有多种同素异形体,如α铁、β铁、γ铁、σ铁等。铁是比较活泼的金属,在金属活动顺序表里排在氢的前面。常温时,铁在干燥的空气里不易与氧、硫、氯等非金属单质起反应,在高温时,则剧烈反应。铁在氧气中燃烧,生成Fe3O4,炽热的铁和水蒸气起反应也生成Fe3O4。铁易溶于稀的无机酸和浓盐酸中,生成二价铁盐,并放出氢气。在常温下遇浓硫酸或浓硝酸时,表面生成一层氧化物保护膜,使铁“钝化”,故可用铁制品盛装浓硫酸或浓硝酸。铁是一变价元素,常见价态为+2价和+3价。铁与盐酸、稀硫酸等反应时失去两个电子,成为+2价。与Cl2、Br2、硝酸及热浓硫酸反应,则被氧化成Fe3+。铁与氧气或水蒸气反应生成的Fe3O4,可以看成是FeO·Fe2O3,其中有1/3的Fe为+2价,另2/3为+3价。铁的+3价化合物较为稳定。铁的化合物主要有两大类:亚铁Fe(Ⅱ)和正铁Fe(Ⅲ)化合物,亚铁化合物有氧化亚铁(FeO)、氯化亚铁(FeCl2)、硫酸亚铁(FeSO4)、氢氧化亚铁[Fe(OH)2]等;正铁化合物有三氧化二铁(Fe2O3)、三氯化铁(FeCl3)、硫酸铁[Fe2(SO4)3]、氢氧化铁[Fe(OH)3]等。
Fe2+呈淡绿色,在碱性溶液中易被氧化成Fe3+。Fe3+的颜色随水解程度的增大而由黄色经橙色变到棕色。纯净的Fe3+为淡紫色。Fe2+和Fe3+均易与无机或有机配位体形成稳定的配位化合物。
(二)亚铁的氧化还原性质
在碱性溶液中亚铁极易被氧化,空气中的氧就可以将其氧化为Fe3+:
4Fe(OH)2+O2+2H2O→4Fe(OH)3
与此同时,有少量的亚铁还可发生歧化作用而形成Fe3+和Fe0。亚铁盐在中性溶液中被空气中的氧氧化时,其速度远较在酸性溶液中为快,在醇溶液中其氧化速度较在水溶液中为快;在反应过程中,pH、温度及盐类等条件对反应均有影响。反应结果往往有碱式盐生成:
4Fe2++O2+2Cl-→2FeOCl+2Fe3+
在酸性溶液中的亚铁比在碱性或中性溶液中稳定得多。氢离子浓度越大,其氧化反应越不容易进行。因此,要氧化酸性溶液中的亚铁成为Fe3+,必须采用相当强的氧化剂。许多具有强氧化性的含氧酸盐,如高锰酸盐、重铬酸盐、钒酸盐、氯酸盐、高氯酸盐等,均可在酸性环境中氧化亚铁为氧化铁。其中高锰酸盐、重铬酸盐等可配成标准溶液直接滴定亚铁。
(三)三价铁的氧化还原性质
三价铁是铁的最稳定状态。在酸性溶液中,三价铁是缓和的氧化剂,一般情况下只有较强的还原剂才能将它还原。这些还原剂有硫化氢、硫代硫酸钠、亚硫酸钠、氯化亚锡、碘化钾、亚钛盐、亚汞盐、金属锌或铝以及一些有机还原剂如盐酸羟胺、抗坏血酸、硫脲等。其中硫酸亚钛、硝酸亚汞可用来直接滴定三价铁,氯化亚锡在铁的容量法中的应用亦为大家所熟知。
(四)铁的配位性质
1.铁的无机配合物
三价铁和亚铁的硫酸盐都可与硫酸盐或硫酸铵形成复盐。其中最重要的是(NH4)2SO4·FeSO4·6H2O。此复盐的亚铁的稳定性较大,在分析中可用它来配制亚铁的标准溶液。三价铁的复盐中,铁铵钒(NH4Fe(SO4)2·12H2O)也常被用来配制三价铁的标准溶液。
铁离子和亚铁离子可分别与氟离子、氯离子形成配位数不同的多种配合物。分析中常利用[FeF6]3-配离子的形成以掩蔽Fe3+,在盐酸溶液中Fe3+与Cl-形成的配离子为黄色,可借以粗略判定溶液中Fe3+的存在。
铁离子与硫氰酸根离子形成深红色配合物。此反应可用于Fe3+的定性分析和比色法测定。
在过量磷酸根离子存在下,铁离子可形成稳定的无色配离子,在分析中可借此掩蔽Fe3+。此外,在用磷酸分解铁矿石的过程中,也利用了三价铁与磷酸根离子形成稳定配合物的反应。
2.铁的有机配合物
EDTA与三价铁的配位反应应用十分广泛。亚铁的EDTA配合物不如三价铁的EDTA配合物稳定,因此在分析中主要应用三价铁与EDTA的配位反应以掩蔽Fe3+或进行容量法测定。
邻啡罗啉与亚铁离子形成较稳定的红色配合物,反应的灵敏度很高,可用于亚铁的分光光度法测定。
其他的许多配位剂,如铜试剂、三乙醇胺、柠檬酸盐、酒石酸盐等与三价铁离子形成配合物的反应,在分离、掩蔽中都有应用。
三、铁矿石的分解方法
铁矿石的分解,通常采用酸分解和碱性熔剂熔融的方法。酸分解时,常用以下几种方法:
(1)盐酸分解:铁矿石一般能为盐酸加热分解,含铁的硅酸盐难溶于盐酸,可加少许氢氟酸或氟化铵使试样分解完全。磁铁矿溶解的速度很慢,可加几滴氯化亚锡溶液,使分解速度加快。
(2)硫酸-氢氟酸分解:试样在铂坩埚或塑料坩埚中,加1∶1 硫酸10 滴、氢氟酸4~5mL,低温加热,待冒出三氧化硫白烟后,用盐酸提取。
(3)磷酸或硫-磷混合酸分解:溶矿时需加热至水分完全蒸发并出现三氧化硫白烟后,再加热数分钟。但应注意加热时间不能过长,以防止生成焦磷酸盐。
目前采用碱性熔剂熔融分解试样较为普遍。常用的熔剂有碳酸钠、过氧化钠、氢氧化钠和氢氧化钾等在银坩埚、镍坩埚或高铝坩埚中熔融。用碳酸钠直接在铂坩埚中熔融,由于铁矿中含大量铁会损害坩埚,同时铂的存在会影响铁的测定,所以很少采用。
在实际应用中,应根据矿石的特性、分析项目的要求及干扰元素的分离等情况选择适当的分解方法。对于含有硫化物和有机物的铁矿石,应将试样预先在550~600℃温度下灼烧以除去硫及有机物,然后以盐酸分解,并加入少量硝酸,使试样分解完全。
四、铁的分析方法
(一)重铬酸钾容量法
(1)无汞重铬酸钾容量法:试样用硫酸-磷酸混酸溶解,加入盐酸在热沸状态下用氯化亚锡还原大部分三价铁。在冷溶液中以钨酸钠为指示剂,滴加三氯化钛还原剩余三价铁,并稍过量,在二氧化碳气体保护下,用重铬酸钾氧化过量三氯化钛,以二苯胺磺酸钠为指示剂,用重铬酸钾标准溶液滴定到终点。根据消耗的重铬酸钾标准溶液的体积计算试样中全铁百分含量。
(2)有汞重铬酸钾容量法:在酸性溶液中,用氯化亚锡将三价铁还原为二价铁,加入氯化汞以除去过量的氯化亚锡,以二苯胺磺酸钠为指示剂,用重铬酸钾标准溶液滴定至紫色。反应方程式:
岩石矿物分析
岩石矿物分析
岩石矿物分析
经典的重铬酸钾法测定铁时,采用氯化亚锡将溶液中的Fe3+还原为Fe2+。然后用氯化汞除去过量的氯化亚锡,汞盐会造成污染,因此中国在20世纪60年代以来发展了“不用汞盐的测铁法”。
(二)EDTA配位滴定法
铁矿石经浓盐酸溶解,低温加热直至溶解完全后冷却,加水将溶液稀释至一定浓度,再加入硝酸和氨水调节溶液pH=1.8~2,以磺基水杨酸为指示剂,用EDTA标液滴定,终点由紫红色变为亮黄色。
本法与经典法对铁矿石中全铁量测试结果准确度、精密度是一致的,本法可以避免因为加入HgCl2溶液而造成环境污染,有害于人的身体健康的弊病,且本法操作比经典法简便,完全可以采用。
(三)邻啡罗啉比色法
以盐酸羟胺为还原剂,将三价铁还原为二价铁,在pH=2~9的范围内,二价铁与邻啡罗啉反应生成橙红色的配合物[Fe(Cl2H8N2)3]2+,借此进行比色测定。其反应如下:
4FeCl3+2NH2OH·HCl→4FeCl2+N2O+6HCl+H2O
Fe2++3Cl2H8N2→[Fe(Cl2H8N2)3]2+(橙红色)
这种反应对Fe2+很灵敏,形成的颜色至少可以保持15天不变。当溶液中有大量钙和磷时,反应酸度应大些,以防CaHPO4·2 H2O沉淀的形成。在显色溶液中铁的含量在0.1~6mg/mL时符合Beer定律,波长530 nm。
(四)原子吸收光谱法
利用铁空心阴极灯发出的铁的特征谱线的辐射,通过含铁试样所产生的原子蒸汽时,被蒸汽中铁元素的基态原子所吸收,由辐射特征谱线光被减弱的程度来测定试样中铁元素的含量。铁的最灵敏吸收线波长为248.3nm,测定下限可达0.01mg/mL(Fe),最佳测定浓度范围为2~20mg/mL(Fe)。
(五)X射线荧光分析法
X射线荧光光谱分析法具有分析速度快、试样加工相对简单、偶然误差小及分析精度高的特点,已广泛应用于各种原材料的分析中,并逐步应用于铁矿石的分析中。但由于铁矿石成分非常复杂,主成分含量较高,变化范围大,使基体变化大,对X射线荧光分析造成不利影响,致使在用通常压片法进行铁矿石分析时,其准确度不如化学法高。采用玻璃熔片法对样品进行熔融稀释处理,可以有效地消除荧光分析中的基体效应,提高荧光分析的准确度。
X射线荧光分析法的优点之一是各元素的特征谱线数量少。测定铁通常选用的是Kα线,其波长为1.93Å(1Å=0.1nm)。
五、铁矿石的分析任务及其分析方法的选择
基于被测试样中铁含量的高低不同以及对分析结果准确度的要求不同,可采用的测定方法有很多。目前,岩石矿物试样中高含量铁的测定主要采用容量分析法。其中重铬酸钾容量法应用最广泛。此外,以氧化还原反应为基础的测定铁的容量法还有高锰酸钾法、铈量法、碘量法、硝酸亚汞法以及钛量法等。以配位反应为基础的容量法中较常采用的是EDTA法。试样中低含量铁的测定,常用的有磺基水杨酸分光光度法和邻菲罗啉分光光度法以及原子吸收分光光度法。X射线荧光分析法也已用于岩石矿物试样中铁的测定。
氯化亚锡还原-重铬酸钾容量法具有稳定、准确、简易、快速等许多优点,但由于使用了剧毒的氯化汞,严重污染环境,危害人体健康。为了避免使用汞盐,近年来常采用氯化亚锡、三氯化钛联合还原-重铬酸钾容量法。原子吸收法操作简单、快速,结果的精密度、准确度高,但铁的光谱线较复杂,例如,在铁线248.3 nm附近还有248.8 nm线;为克服光谱干扰,应选择最小的狭缝或光谱带。
邻菲罗啉能与某些金属离子形成有色配合物而干扰测定。但在乙酸-乙酸铵的缓冲溶液中,不大于铁浓度10倍的铜、锌、钴、铬及小于2mg/L的镍,不干扰测定,当浓度再高时,可加入过量显色剂予以消除。
技能训练
实战训练
1.实训时按每小组5~8人分成几个小组。
2.每个小组进行角色扮演,利用所学知识并上网查询相关资料,完成铁矿石委托样品从样品验收到派发样品检验单工作。
3.填写附录一中表格1和表格2。
定性检测锌离子的方法是:待测液用2摩尔每升醋酸溶液酸化,再加入等体积的硫氰酸汞铵。摩擦试管壁,生成白色沉淀证明存在锌离子
锌对人体的免疫功能起着调节作用,锌能维持男性的正常生理机能,促进儿童的正常发育,促进溃疡的愈合。常用于厌食、营养不良、生长缓慢的儿童,还可治疗脱发、皮疹、口腔溃疡、胃炎等。
锌摄入过多,会痿味、口渴、胸部紧束感、干咳、头痛、头晕、高热、寒战等。粉尘对眼有刺激性。口服刺激胃肠道。长期反复接触对皮肤有刺激性
自然条件下的锌离子是不会对人产生影响的,除非是厂矿企业的原料或废弃物
Zn
锌是一种蓝白色金属。密度为7.14克/立方厘米,熔点为419.5℃。在室温下,性较脆;100~150℃时,变软;超过200℃后,又变脆。
体积弹性模量:GPa
70
原子化焓:kJ /mol @25℃
129.7
热容:J /(mol· K)
25.390
导电性:10^6/(cm ·Ω )
0.166
导热系数:W/(m·K)
116
熔化热:(千焦/摩尔)
7.322
汽化热:(千焦/摩尔)
115.30
元素在宇宙中的含量:(ppm)
0.3
锌的化学性质活泼,在常温下的空气中,表面生成一层薄而致密的碱式碳酸锌膜,可阻止进一步氧化。当温度达到225℃后,锌氧化激烈。燃烧时,发出蓝绿色火焰。锌易溶于酸,也易从溶液中置换金、银、铜等。
锌的用途
由于锌在常温下表面易生成一层保护膜,所以锌最大的用途是用于镀锌工业。锌能和许多有色金属形成合金,其中锌与铝、铜等组成的合金,广泛用于压铸件。锌与铜、锡、铅组成的黄铜,用于机械制造业。含少量铅镉等元素的锌板可制成锌锰干电池负极、印花锌板、有粉腐蚀照相制板和胶印印刷板等。锌与酸或强碱都能发生反应,放出氢气。锌肥(硫酸锌、氯化锌)有促进植物细胞呼吸、碳水化合物的代谢等作用。锌粉、锌钡白、锌铬黄可作颜料。氧化锌还可用于医药、橡胶、油漆等工业。
自然界中,锌多以硫化物状态存在。主要含锌矿物是闪锌矿。也有少量氧化矿,如菱锌矿和异锌矿。
元素名称:锌
元素原子量:65.39
元素类型:金属
发现人:发现年代:
发现过程:
元素描述:
纯锌呈蓝白色,有光泽。硬度2.5(莫氏硬度)。具有延展性。密度7.14克/厘米3。熔点419.58℃,沸点907℃。化合价2。已知锌有十五个同位素。是很好的导热体和导电体。电离能9.394电子伏特。休学性质比较活泼,但在空气中较稳定,与酸和碱作用会放出氢气。
元素来源:
主要矿石是铁闪锌矿或闪锌矿ZnS。将矿石在空气中煅烧成氧化锌,然后用炭还原即得;或用硫酸浸出成硫酸锌后,再用电解法将锌沉积出来。
元素用途:
锌的最重要的用途是制造锌合金和作为其他金属的保护层,如电镀锌,以及制造黄铜、锰青铜、白铁和干电池。锌粉是有机合成工业的重要还原剂。
元素辅助资料:
锌和铜的合金——黄铜,早被古人利用,黄铜的生产可能是冶金学上最早的偶然发现之一。但是人们取得锌比较晚,碳和锌矿共热时,温度很快高达1000℃,而锌在923℃沸腾,在此温度下成蒸汽状态,随烟散失,不易为古代人们察觉,只有当人们掌握了冷凝气体的方法后,单质锌才有可能被取得。因此,锌登上历史舞台的时间要比铜、锡、铁、铅晚的多。
据国外学者们考证,我国古代劳动人民首先生产出锌。我国制取锌的方法讲述最清楚的出现在明朝末年宋应星著述的《天工开物》中。西方认为最早讲到锌的是德国贵族政治学家龙涅斯在1617年发表的著述,他叙述在熔铅的炉壁上出现白色的金属,工人们称它为 zinck或conterfeht,这种白色金属像是锡,但比较硬,缺乏延展性,没有太大用途。锌的拉丁名称 zincum和元素符号Zn由此而来。
1737年和1746年德国矿物学家亨克尔和化学家马格拉夫先后将菱锌矿与木炭共置陶制密闭容器中烧,得到金属锌。拉瓦锡在1789年发表的元素表中,首先将锌列为元素。
元素符号: Zn 英文名: Zinc 中文名: 锌
相对原子质量: 65.38 常见化合价: +2 电负性: 1.65
外围电子排布: 3d10 4s2 核外电子排布: 2,8,18,2
同位素及放射线: Zn-62[9.26h] Zn-63[38.5m] *Zn-64 Zn-65[243.8d] Zn-66 Zn-67 Zn-68 Zn-70 Zn-72[46.5h]
电子亲合和能: 9 KJ·mol-1
第一电离能: 906 KJ·mol-1 第二电离能?1733 KJ·mol-1 第三电离能: 3833 KJ·mol-1
单质密度: 7.133 g/cm3 单质熔点: 419.58 ℃ 单质沸点: 907.0 ℃
原子半径: 1.53 埃 离子半径: 0.74(+2) 埃 共价半径: 1.25 埃
常见化合物: ZnO Zn(OH)2 ZnSO4
发现人: 远古就被发现 时间: 0 地点: 德国
名称由来:
德语:zink(在德语中意为“锡”)。
元素描述:
有延展性,带淡蓝光泽的银白色金属。
元素来源:
见于闪锌矿(ZnS)、异极矿、锌铁矿、菱锌矿(ZnCO3)、硅锌矿和红锌矿中。
元素用途:
用于覆盖在其他金属表面(电镀),保护其不受腐蚀。也应用于黄铜、青铜、镍合金中。还能用来焊接、制造化妆品和颜料。
锌 (Zine)
硫酸锌 (Zine Sulfate)
葡萄糖酸锌 (Zine Gluconate)
作用与应用:锌对人体的免疫功能起着调节作用,锌能维持男性的正常生理机能,促进儿童的正常发育,促进溃疡的愈合。常用于厌食、营养不良、生长缓慢的儿童,还可治疗脱发、皮疹、口腔溃疡、胃炎等。
用法用量:口服硫酸锌片每日量一般为200~300mg,分2~3次服,或者每日200mg,连服4天。
口服葡萄糖酸锌在体内解离为锌离子和葡萄糖,口服吸收效果比硫酸锌好,日用量是硫酸锌的三分之一。
成人口服每次3~6片,每日2次。
小儿服用每公斤体重3.5~14mg,每日2~3次。
【副作用】
常见为消化道反应,恶心、呕吐、腹泻等。
【注意事项】
不宜空腹或与牛奶同服,长期服用要定期测血锌,以防服用过量而影响铜、铁离子的代谢。
EDTA
EDTA
品名:乙二胺四乙酸(Ethylene Diamine Tetraacetic Acid)
别名:EDTA
分子量:292.25(按1989年国际相对原子质量)
分子式:C10H16N2O8
理化性质:
白色无臭无味、无色结晶性粉末,熔点240℃(分解)。不溶于冷水、醇及一般有机溶剂,微溶于热水,溶于氢氧化钠,碳酸钠及氨的溶液中,能溶于160份100℃沸水。其碱金属盐能溶于水。
用途:
是一种重要的络合剂。EDTA用途很广,可用作彩色感光材料冲洗加工的漂白定影液,染色助剂,纤维处理助剂,化妆品添加剂,血液抗凝剂,洗涤剂,稳定剂,合成橡胶聚合引发剂,EDTA是螯合剂的代表性物质。能和碱金属、稀土元素和过渡金属等形成稳定的水溶性络合物。除钠盐外,还有铵盐及铁、镁、钙、铜、锰、锌、钴、铝等各种盐,这些盐各有不同的用途。此外EDTA也可用来使有害放射性金属从人体中迅速排泄起到解毒作用。也是水的处理剂。
EDTA的制备:
由乙二胺与一氯乙酸在碱性溶液中缩和或由乙二胺、氰化钠和甲醛水溶液作用而得。
实验室制法:
称取一氯乙酸94.5g(1.0mol)于1000mL圆底烧瓶中,慢慢加入50%碳酸钠溶液,直至二氧化碳气泡发生为止。加入15.6g(0.2mol)乙二胺,摇匀,放置片刻,加入40%NaOH溶液100mL,加水至总体积为600mL左右,装上空气冷却回流装置,于50℃水浴上保温2h,再于沸水浴上保温回流4h。取下烧瓶,冷却后倒入烧怀中,用浓HCl调节pH至1.2,则有白色沉淀生成,抽滤,得EDTA粗品。精制后得纯品。
生产原理:
由乙二胺与氯乙酸钠反应后,经酸化制得:
也可由乙二胺与甲醛、氰化钠反应得到四钠盐,然后用硫酸酸化得到:
工艺流程
原料配比(kg/t)
氯乙酸(95%) 2000 烧碱(工业品) 880
乙二胺(70%) 290 盐酸(35%)2500
〔若用硫酸代替盐酸,则用硫酸(98%)1200kg〕
主要设备
成盐锅 缩合反应罐 酸化锅 水洗锅 离心机 贮槽 干燥箱
操作工艺
在800L不锈钢缩合反应罐中,加入100kg氯乙酸、100kg冰及135kg 30%的氢氧化钠溶液,在搅拌下再加入18kg 83%~84%的乙二胺。在15℃保温1h后,以每次10L分批加入30%氢氧化钠溶液,每次加入后待酚酞指示剂不显碱性后再加入下一批,最后反应物呈碱性。在室温保持12h后,加热至90℃,加活性炭,过滤,滤渣用水洗,最后溶液总体积约600L。加浓盐酸至pH不3,析出结晶。过滤,水洗至无氯根反应。烘干,得EDTA64kg。收率95%。也可以在较高温度条件下进行。例如,采用如下摩尔配比:乙二胺:氯乙酸:氢氧化钠=1∶4.8∶4.8,反应温度为50℃,反应6h,再煮沸2h,反应产物用盐酸酸化即可得到EDTA结晶,收率82%~90%。
质量指标
含量 ≥90% 铁(Fe) ≤0.01%
灼烧残渣 ≤0.15% 重金属(Pb2+) ≤0.001%
在Na2CO3中溶解度 合格
质量检验
(1)含量测定
采用配位滴定法。先将乙二胺四乙酸用KOH配制成pH为12.0~13.0的试样液。以酸性铬蓝K和萘酚绿作混合指示剂,用试样液滴定于120℃干燥过的分析纯CaCO3,当溶液由紫红色变为蓝绿色即为终点。
(2)灼烧残渣测定
按常规方法进行。
安全措施
(1)生产中使用氯乙酸、乙二胺等有毒或腐蚀性物品,生产设备应密闭,操作人员应穿戴劳保用品,车间保持良好通风状态。
(2)产品密封包装,贮于通风、干燥处,注意防潮、防晒,不宜与碱性化学物品混贮。
CAS No.: 60-00-4
EDTA在水质监测中的应用举例
EDTA多用于水质监测中的络合滴定分析法。由于本身可以形成多种络合物,所以可以滴定很多金属。元素周期表里的Ⅱ,Ⅲ,镧系,锕系金属都可以用EDTA滴定。但是最常用的是用来测定水的碱度。以镁离子举例如下
镁的检测可以用EDTA滴定法分析。由于镁比铝轻,因此可以作为合金在航空、航天上使用。另外利用镁易于氧化的性质,可用于制造许多纯金属的还原剂。也可用于闪光灯、吸气器等。
测定水的总硬度就是测定水中钙、镁离子的总含量,可用EDTA配位滴定法测定:
滴定前: M + EBT M-EBT
(红色)
主反应: M + Y MY
终点时: M-EBT + Y MY + EBT
(红色) (蓝色)
滴定至溶液由红色变为蓝色时,即为终点。
滴定时,Fe3+、Al3+等干扰离子可用三乙醇胺予以掩蔽;Cu2+、Pb2+、Zn2+等重属离子,可用KCN、Na2S或巯基乙酸予以掩蔽。
水的硬度有多种表示方法,本实验要求以每升水中所含Ca2+、Mg2+总量(折算成CaO的质量)表示,单位mg·L-1。
器材和药品
1.器材 天平(0.1g、0.1mg),容量瓶(100mL),移液管(20mL),酸式滴定管(50mL),锥形瓶(250mL)等。
2.药品 HC1(1∶1),乙二胺四乙酸二钠(Na2H2Y·2H2O,A.R.),碱式碳酸镁[Mg(OH)2·4MgCO3·6H2O,基准试剂],NH3-NH4Cl缓冲溶液(pH=10.0),三乙醇胺(1∶1),铬黑T指示剂(0.2%氨性乙醇溶液)等。
实验方法
一、Mg2+标准溶液的配制(约0.02mol·L-1)
准确称取碱式碳酸镁基准试剂0.2~0.25g,置于100mL烧杯中,用少量水润湿,盖上表面皿,慢慢滴加1∶1 HC1使其溶解(约需3~4mL)。加少量水将它稀释,定量地转移至100mL容量瓶中,用水稀释至刻度,摇匀。
其浓度计算:
二、EDTA标准溶液的配制与标定
1.EDTA标准溶液的配制(约0.02mol·L-1)
称取2.0g乙二胺四乙酸二钠(Na2H2Y·2H2O)溶于250mL蒸馏水中,转入聚乙烯塑料瓶中保存。
2.EDTA标准溶液浓度的标定
用20mL移液管移取Mg2+标准溶液于250mL锥形瓶中,加入10mL氨性缓冲溶液和3~4滴EBT指示剂,用0.02mol·L-1EDTA标准溶液滴定,至溶液由紫红色变为蓝色即为终点。平行标定3次。
EDTA浓度计算: ,取三次测定的平均值。
三、水的总硬度测定
用20mL移液管移取水样于250mL锥形瓶中,加氨性缓冲溶液6mL,1∶1三乙醇胺溶液3mL,EBT指示剂3~4滴,用EDTA标准溶液滴定,至溶液由紫红色变为蓝色即为终点。平行测定3次。
水的总硬度计算: ,取三次测定的平均值。 24487希望对你有帮助!