铝材挤压成型过程中模具为什么会失效磨损?
任何的机器只要有生产,就会有相应的磨损,那么挤压机中的模具也会有不同程度的磨损或失效,一般是由于在使用过程中的磨损,或者模具强度不够而开裂造成。其中,有些磨损是可以提前预防并解决的,有效办法就是是在使用过程中,要对积压件和模具加强润滑,减小对模具的磨损,加强模具的设计结构强度,以延长模具的使用寿命。
没有注重平时保养钳工在装配是没有操作规范运输模具,板件途中遭遇磕碰合模时高度没有调整好,导致模面受损合模时模具表面有异物冲孔模具可能落料孔内有废料堵塞,会挤压模具以致开裂模具的设计强度不足,冲压的材料强度过高,制作模具的材料强度不足,冲裁间隙不合适,操作人员误操作等,都可能造成模具的损坏。选用制造注塑模具零件的材料不适应工作条件要求,造成 模具工作一段时间后变形、腐蚀或严重磨损。一般安装、拆卸注塑模具中零件的时候,用手锤敲击零件, 会造成模具零件变形或者光洁面被破坏与工作面有撞击伤痕。如分流锥角过大,对熔料流动阻力大,会造成分流锥支架筋折断。口模、芯棒的工作面硬度低,使光洁面磨损严重,会造成 表面粗糙冲压工艺 冲压零件的原材料。 实际生产中,由于外压零件的原材料厚度公差超差、材料性能波动、表面质量较差(如锈迹)或不干净(如油污)等,会造成模具工作零件磨损加剧、易崩刃等不良后果。为此,应当注意:尽可能采用冲压工艺性好的原材料,以减少冲压变形力冲压前应严格检查原材料的牌号、厚度及表面质量等,并将原材料擦拭干净,必要时应清除表面氧化物和锈迹;根据冲压工序和原材料种类,必要时可安排软化处理和表面处理,以及选择合适的润滑剂和润滑工序。 (排样与搭边。 不合理的往复送料排样法以及过小的搭边值往往会造成模具急剧磨损或凸、凹模啃伤。因此,在考虑提高材判利用毕的同时,必须根据零件的加工批量、质量要求和模具配合间隙,合理选择排样方法和搭边值,以提高模具寿命。
引起压铸模具失效的原因主要如下几个方面:
一、碎裂失效:在压射力的作用下,模具会在最薄弱处萌生裂纹,尤其是模具成型面上的划线痕迹或电加工痕迹未被打磨光,或是成型的清角处均会最先出现细微裂纹,当晶界存在脆性相或晶粒粗大时,即容易断裂。而脆性断裂时裂纹的扩展很快,这对模具的碎裂失效是很危险的因素。为此,一方面凡模具面上的划痕、电加工痕迹等必须打磨光,即使它在浇注系统部位,也必须打光。另外要求所使用的模具材料的强度高、塑性好、冲击韧性和断裂韧性均好。
二、热疲劳龟裂损坏失效:压铸生产时,模具反复受激冷激热的作用,成型表面与其内部产生变形,相互牵扯而出现反复循环的热应力,导致组织结构二损伤和丧失韧性,引发微裂纹的出现,并继续扩展,中山华氏抚顺特钢表示一旦裂纹扩大,还有熔融的金属液挤入,加上反复的机械应力都使裂纹加速扩展。为此,一方面压铸起始时模具必须充分预热。另外,在压铸生产过程中模具必须保持在一定的工作温度范围中,以免出现早期龟裂失效。同时,要确保模具投产前和制造中的内因不发生问题。因实际生产中,多数的模具失效是热疲劳龟裂失效。
三、溶蚀失效:常用的压铸模具有锌合金、铝合金、镁合金和铜合金,也有纯铝压铸的,Zn、Al、Mg是较活泼的金属元素,它们与模具材料有较好的亲和力,特别是Al易咬模。当模具硬度较高时,则抗蚀性较好,而成型表面若有软点,则对抗蚀性不利。
1、模具开裂有以下主要原因
1.1根据要求合理选择材料,这是最关建的第一步。
1.2当材质决定后,金相组织是决定性能的关建。
1.3为了保证良好的金相组织,应从以下几个方面加强控制:
1.3.1制定合理的锻造工艺。
1.3.2锻后热处理工艺要符合实际要求,将金相组织控制到最佳状态。
1.3.3成品热处理工艺的制定,除淬火回火外,还有化学热处理及冰冷处理等。
1.4模具研磨平面度及粗糙度不合格。
1.5模具的设计强度要充分满足使用要求。
1.6模具结构要合理。
1.7对线切割的模具,要采取有效的处理措施。
1.8脱料不顺生产前无退磁处理,无退料屑等。
1.9落料不顺组装模时无漏屑或滚屑而堵。
1.10生产:叠片冲压,定位不好等。
2、设备
冲压设备的精度与刚性对冲模寿命的影响极为重要。冲压设备的精度高、刚性好,冲模寿命大为提高。例如:复杂硅钢片冲模材料为Crl2MoV,在普通开式压力机上使用,平均复磨寿命为1~3万次,而新式精密压力机上使用,冲模的复磨寿命可达6~12万次。尤其是小间隙冲模、硬质合金冲模及精密冲模必须选择精度高、刚性好的设备,否则,将会降低模具寿命,严重者还会损坏模具。
3、模具设计
3.1模具的导向机构精度
准确和可靠的导向,对于减少模具工件的磨损,避免凸、凹模压伤影响极大,尤其是小间隙冲裁模、复合模和多工位级进模则更为有效。为提高模具寿命,必须根据工序性质和零件精度等要求,正确选择导向形式和确定导向机构的精度。一般情况下,导向机构的精度应高于凸、凹模配合精度。
3.2模具(凸、凹模)刃口几何参数
形状、配合间隙和圆角半径不仅对冲压件成形有较大的影响,而且对于模具的磨损及寿命也影响很大。如模具的配合间隙直接影响冲裁件质量和模具寿命。精度要求较高的,宜选较小的间隙值;反之则可适当加大间隙,以提高模具寿命。
4、冲压工艺
4.1冲压零件的原材料。
实际生产中,由于外压零件的原材料厚度公差超标、材料性能波动较大、表面质量较差或洁净度差等,都会造成模具磨损加剧、易崩刃等不良后果。
4.1.1尽可能采用冲压工艺性好的原材料,以减少冲压变形力;
4.1.2冲压前应严格检查原材料的牌号、厚度及表面质量等,并将原材料擦拭干净,必要时应清除表面氧化物和锈迹;
4.1.3根据冲压工序和原材料种类,必要时可安排软化处理和表面处理,以及选择合适的润滑剂和润滑工序。
4.2排样与搭边。
不合理的往复送料排样法以及过小的搭边值往往会造成模具急剧磨损或凸、凹模压伤。因此,在考虑提高材料利用率的同时,必须根据零件的加工批量、质量要求和模具配合间隙,合理选择排样方法和搭边值,以提高模具寿命。
5、模具材料
正确选材是提高模具寿命的关键。如:化学成分、金相组织、硬度和冶金质量等。不同材质的模具寿命往往不同,为此,对于冲模材料应严格控制以下两点。
5.1材料的使用性能应具有高硬度和高强度,并具有高的耐磨性和足够的韧性,热处理变形小,有一定的热硬性;
5.2工艺性能良好。冲模在加工制造过程一般较为复杂.因而必须具有对各种加工工艺的适应性,如可锻造性、切削加工性、淬硬性、淬透性、低的淬火裂纹敏感性和良好的磨削加工性等。通常根据冲压件的材料特性、生产批量、精度要求等,选择性能优良的模具材料,同时兼顾其工艺性和经济性。
6、热加工工艺
实践证明.模具的热加工质量对模具的性能与使用寿命影响甚大。从模具失效原因的分析统计可知,因热处理不当所引发模具失效“事故”约占45%以上。模具的淬火变形与开裂,使用过程的早期断裂,多与摸具的热加工工艺有关。
6.1锻造工艺。这是模具制造过程中的重要环节。对于高合金工具钢的模具,通常对材料碳化物分布等金相组织提出要求。此外,还应严格控制锻造温度范围,制定正确的加热规范,采用正确的锻造方法,以及锻后缓冷或及时退火等。
6.2预先热处理。视模具的材料和要求的不同分别采用退火、调质等预备热处理工艺,以改善组织,消除锻造、毛坯的组织缺陷,改善加工性。高碳合金模具钢经过适当的预先热处理可消除网状碳化物,使碳化物球化、细化,促进碳化物分布均匀性。这样有利于保证淬火、回火质量,提高模具寿命。
6.3淬火与回火。这是模具热处理中的关键环节。若淬火加热时产生过热,不仅会使工件造成较大的脆性,而且在冷却时容易引起变形和开裂,严重影响模具寿命。冲模淬火加热时特别应注意防止氧化和脱碳,应严格控制热处理工艺规范,在条件允许的情况下,可采用真空热处理。淬火后应及时回火,并根据技术要求采用不同的回火工艺。
6.4消除应力退火。模具在粗加工后应进行消除应力退火处理,目的是消除粗加工所造成的内应力,以免淬火产生过大的变形或裂纹。对于精度要求高的模具,在磨削或电加工后还需经过消除应力回火处理,有利于稳定模具精度,提高使用寿命。
7、加工表面质量
模具表面质量的优劣对于模具的使用寿命有着十分密切的关系。尤其是表面粗糙度对模具寿命影响很大,若表面粗糙度过大,在工作时会产生应力集中现象,并容易在其微细尖角处产生裂纹,影响冲模的耐用性,还会影响工件表面的耐蚀性,直接影响冲模的使用寿命和精度。
7.1模具在加工过程中必须防止磨削过热退火现象,应严格控制磨削工艺条件和工艺方法(如砂轮硬度、粒度、冷却液、进给量等参数);
7.2加工过程中应防止模具表面留有刀痕,夹层、裂纹、撞击伤痕等宏观缺陷。这些缺陷的存在会引起应力集中,成为断裂的根源,造成模具早期失效;
7.3采用磨削、研磨和抛光等精加工和精细加工,提高表面粗糙度,提高模具使用寿命。
8、表面强化处理
为提高模具性能和使用寿命,模具表面强化处理应用越来越广。常用的表而强化处理方法有:氮碳共渗、渗氮、渗硼、渗钒、BRN处理以及化学气相沉积法(CVD)、物理气相沉积法(PVD)和表面浸镀碳化物法(TD)等。提高其耐疲劳强度,有利于模具寿命的提高。
9、线切割变质层的控制
冲模刃口多采用线切割加工。由于线切割加工的热效应和电解作用,使模具加工表面产生一定厚度的变质层,造成表面硬度降低,出现显微裂纹等,致使线切割加工的冲模易发生早期磨损,直接影响模具冲裁间隙的保持及刃口容易崩刃,缩短模具使用寿命。因此,在线切割加工中应选择合理的技术参数,尽量减少变质层深度,去掉变质层。
10、正确使用和合理维护
为了保护正常生产,提高冲压件质量,降低成本,延长冲模寿命,必须正确使用和合理维护模具,严格执行冲模“三检查”制度(使用前检查,使用过程中检查与使用后检查),并做好冲模与维护检修工作。其主要工作包括模具的正确安装与调试;严格控制凸模进入凹模深度;控制校正弯曲、冷挤、整形等;及时复磨、研光其刃口;注意保持模具的清洁和合理的润滑等。模具的正确使用和合理维护,对于提高摸具寿命事关重大。
总之,提高模具寿命应在设计、制造、使用和维护全过程中,应用先进制造技术和实行全面质量管理,是提高模具寿命的有效保证,并且致力于发展专业化生产,加强模具标准化工作,除零件标准化外,还有设计参数标准化、组合形式标准化、加工方法标准化等,不断提高模具设计和制造水平,有利于提高模具寿命。
模具刃口所受作用力的大小和板料的力学性能、厚度等因素有关。考虑到板料厚度对模具冲裁负荷的影响,通常可以将冲裁按板料的厚度分为薄板冲裁
(t
≤
1.5mm)
和厚板冲裁
(t
>
1.5mm)
。
对于薄板冲裁模,由于模具受到的冲击载荷不大,在正常的使用过程中,模具因摩擦产生的刃口磨损是主要的失效形式。磨损过程可分为初期磨损,正常磨损和急剧磨损三个阶段。对应于三个阶段,刃口的损伤过程如图
11-3
所示。
a
)局部塑变
b
)
摩擦磨损
c
)
疲劳损坏
(初期磨损阶段)
(正常磨损阶段)
(急剧磨损阶段)
图
11.1.1
冲裁时刃口的损伤过程
(1)
初期磨损阶段
模具刃口与板料相碰时接触面积很小,刃口的单位压力很大,造成了刃口端面的塑性变形,一般称为塌陷磨损。其磨损速度较快(见图
11.1.1a
)。
(2)
正常磨损阶段
当初期磨损达到一定程度后,刃口部位的单位压力逐渐减轻,同时刃口表面因应力集中产生应变硬化,(见图
11.1.1b
)。这时,刃口和被加工坯料之间的摩擦磨损成为主要磨损形式。磨损进展较缓慢,进入长期稳定的正常磨损阶段,该阶段时间越长,说明其耐磨性能越好。
(3)
急剧磨损阶段
刃口经长期工作以后,经受了频繁冲压会产生疲劳磨损,表面出现了损坏剥落(见图
11.1.1c
)。此时进入了急剧磨损阶段,磨损加剧,刃口呈现疲劳破坏,模具已无法正常工作。模具使用时,必须控制在正常磨损阶段以内,出现急剧磨损时,要立即
刃
磨修复。
随着刃口的磨损,工件的毛刺高度会不断增加,因此实际生产中,可以通过观测毛刺高度的大小来推断模具刃口的磨损量,在冲裁件达到质量允许的毛刺极限值时即进行刃
磨。
从磨损机理上分析,凸
、凹模的磨损主要是粘附磨损和磨粒磨损。粘附磨损是在模具刃口在与板料的相对摩擦运动过程中,由于高压产生了局部的相互粘着和咬合现象当接触面相对滑动时,粘附部分便发生剪切引起磨损。磨粒磨损是指模具工作时表面剥落的碎屑嵌入工作部件表面,成为磨料,使其逐渐磨损的过程。冲裁硬度较高的金属材料(如高碳钢、硅钢)时,
因材料
的硬粒或碳化物剥离而产生磨粒磨损。当冲压高韧性材料(如奥氏体不锈钢)时,易产生粘附磨损。
一般情况下,凸模的磨损要快于凹模,这是因为凸模刃口处的承力面积小于凹模,在同一冲裁力的作用下,凸模刃口处单位面积承受的压应力要比凹模刃口处更大一些同时,在每一次冲裁过程中,
凸模都
要切入并退出板料,前后经历两次摩擦,而凹模和板料的分离部分仅发生一次摩擦。
而且,凹模的淬火硬度通常高于凸模,这一切使得凸模的磨损要比凹模更快。
此外,
凸模退出板料时,需要有一定的卸料力将板料从
凸模上
卸下,卸料力与作用在凸模上的其它压应力不同,是唯一的拉应力,使凸模在反复拉、压应力的作用下产生疲劳磨损,这也是致使凸模崩刃的原因之一。
对于厚板冲裁模,由于凸
、凹模受到的作用力增大,在过大应力的作用下,不仅会产生磨损,而且可能造成刃口变形、疲劳崩刃等现象。当冲裁
凸模较
细长时,
还会引起弯曲变形或折断
1、冲压设备
冲压设备(如压力机)的精度与刚性对冲模寿命的影响极为重要。冲压设备的精度高、刚性好,冲模寿命大为提高。例如:复杂硅钢片冲模材料为Crl2MoV,在普通开式压力机上使用,平均复磨寿命为1-3万次,而新式精密压力机上使用,冲模的复磨寿命可达6~12万次。尤其足小间隙或无间隙冲模、硬质合金冲模及精密冲模必须选择精度高、刚性好的压力机,否则,将会降低模具寿命,严重者还会损坏棋具。
2、模具设计
(1)模具的导向机构精度。准确和可靠的导向,对于减少模具工作零件的磨损,避免凸、凹模啃伤影响极大,尤其是无间隙和小间隙冲裁模、复合模和多工位级进模则更为有效。为提高模具寿命,必须根据工序性质和零件精度等要求,正确选择导向形式和确定导向机构的精度。一般情况下,导向机构的精度应高于凸、凹模配合梢度。
(2)模具(凸、凹模)刃口几何参数。凸、凹模的形状、配合间隙和圆角半径不仅对冲压件成形有较大的影响,而且对于模具的磨损及寿命也影响很大。如模具的配合间隙直接影响冲裁件质量和模具寿命。精度要求较高的,宜选较小的间隙值;反之则可适当加大间隙,以提高模具寿命。
3、冲压工艺
(1)冲压零件的原材料。
实际生产中,由于外压零件的原材料厚度公差超差、材料性能波动、表面质量较差(如锈迹)或不干净(如油污)等,会造成模具工作零件磨损加剧、易崩刃等不良后果。为此,应当注意:①尽可能采用冲压工艺性好的原材料,以减少冲压变形力;②冲压前应严格检查原材料的牌号、厚度及表面质量等,并将原材料擦拭干净,必要时应清除表面氧化物和锈迹;③根据冲压工序和原材料种类,必要时可安排软化处理和表面处理,以及选择合适的润滑剂和润滑工序。
(2)排样与搭边。
不合理的往复送料排样法以及过小的搭边值往往会造成模具急剧磨损或凸、凹模啃伤。因此,在考虑提高材判利用毕的同时,必须根据零件的加工批量、质量要求和模具配合间隙,合理选择排样方法和搭边值,以提高模具寿命。
4、模具材料
模具材料对模具寿命的影响是材料种类、化学成分、组织结构、硬度和冶金质量等诸冈索的综合反映。不同材质的模具寿命往往不同。为此,对于冲模工作零件材料提出两项基本要求:①材料的使用性能应具有高硬度(58~64HRC)和高强度,并具有高的耐磨性和足够的韧性,热处理变形小,有一定的热硬性;②工艺性能良好。冲模工作零件加工制造过程一般较为复杂。因而必须具有对各种加工工艺的适应性,如可锻性、可切削加工性、淬硬性、淬透性、淬火裂纹敏感性和磨削加工性等。通常根据冲压件的材料特性、生产批量、精度要求等,选择性能优良的模具材料,同时兼顾其工艺性和经济性。
5、热加工工艺
实践证明。模具的热加工质量对模具的性能与使用寿命影响甚大。从模具失效原因的分析统计可知,因热处理不当所引发模具失效"事故"约占40%以上。模具工作零件的淬火变形与开裂,使用过程的早期断裂,均与摸具的热加工工艺有关。
(1)锻造工艺,这是模具工作零件制造过程中的重要环节。对于高合金工具钢的模具,通常对材料碳化物分布等金相组织提出技术要求。此外,还应严格控制锻造温度范围,制定正确的加热规范,采用正确的锻造力法,以及锻后缓冷或及时退火等。
(2)预备热处理。应视模具工作零件的材料和要求的不同分别采用退火、正火或调质等预备热处理工艺,以改善组织,消除锻造毛坯的组织缺陷,改善加工工艺性。高碳合金模具钢经过适当的预备热处理可消除网状二次渗碳体或链状碳化物,使碳化物球化、细化,促进碳化物分布均匀性。这样有利于保证淬火、回火质量,提高模具寿命。
(3)淬火与回火。这是模具热处理中的关键环节。若淬火加热时产生过热,不仅会使工件造成较大的脆性,而且在冷却时容易引起变形和开裂,严重影响模具寿命。冲模淬火加热时特别应注意防止氧化和脱碳,应严格控制热处理工艺规范,在条件允许的情况下,可采用真空热处理。淬火后应及时回火,并根据技术要求采用不同的回火工艺。
(4)消应力退火。模具工作零件在粗加工后应进行消应力退火处理,具目的是消除粗加工所造成的内应力,以免淬火叫产生过大的变形和裂纹。对于精度要求高的模具,在磨削或电加工后还需经过消应力回火处理,有利于稳定模具精度,提高使用寿命。
6、加工表面质量
模具工作零件加上表面质量的优劣对于模具的耐磨性、抗断裂能力及抗粘着能力等有着十分密切的关系,直接影响模具的使用寿命。尤其是表面粗糙度值对模具寿命影响很大,若表面粗糙度值过大,在工作时会产生应力集中现象,并在其峰、谷间容易产生裂纹,影响冲模的耐用度,还会影响工件表面的耐蚀性,直接影响冲模的使用寿命和精度,为此,应注意以下事项:
①模具工作零件加工过程中必须防止磨削烧伤零件表面现象,应严格控制磨削工艺条件和工艺方法(如砂轮硬度、粒度、冷却液、进给量等参数);
②加工过程中应防止模具工作零件表面留有刀痕。夹层、裂纹、撞击伤痕等宏观缺陷。
冷热模具在服役中失效的基本形式可分为:塑性变形;磨损;疲劳;断裂。
(1)塑性变形。
塑性变形即承受负荷大于屈服强度而产生的变形。如凹模出现型腔塌陷、型孔扩大、棱角倒塌陷以及凸模出现镦粗、纵向弯曲等。尤其热作模具,其工作表面与高温材料接触,使型腔表面温度往往超过热作模具钢的回火温度,型槽内壁由于软化而被压塌或压堆。低淬透性的钢种用作冷镦模时,模具在淬火加热后,对内孔进行喷水冷却产生一个硬化层。模具在使用时,如冷镦力过大,硬化层下面的基底抗压屈服强度不高,模具孔腔便被压塌。模具钢的屈服强度一般随碳(c)的含量从某些合金元素的增多而升高,在硬度相同的情况下,不同化学成分的钢具有的抗压强度不同,当钢硬度为63HRC时,下列4种钢的抗屈服强度由高到低依次顺序为:W18Cr4V>Cr12>Cr6WV>5CrNiW。
(2)磨损失效。
磨损失效是指刃门钝化、棱角变圆、平面下陷、表面沟痕、剥落粘膜(在摩擦中模具工作表而粘了些坯料金属)。另外,凸模在工作中,由于润滑剂燃烧后转化为高压气体,对凸模表面进行剧烈冲刷,形成气蚀。
冷冲时,如果负荷不大,磨损类型主要为氧化,磨损也可为某种程度的咬合磨损,当刃口部分变钝或冲压负荷较大时,咬合磨损的情况会变得严重,而使磨损加快,模具钢的耐磨性不仅取决于其硬度,还决定于碳化物的性质、大小、分布和数量,在模具钢中,目前高速钢和高铬钢的耐磨性较高。但在钢中存在有严重的碳化物偏析或大颗粒的碳化物情况下,这些碳化物易剥落,而引起磨粒磨损,使磨损加快。较轻冷作模具钢(薄板冲裁、拉伸、弯曲等)的冲击,载荷不大,主要为静磨损。在静磨损条件下,模具钢的含碳量多,耐磨性就大。在冲击磨损条件下(如冷镦、冷挤、热锻等),模具钢中过多的碳化物无助于提高耐磨性,反而因冲击磨粒磨损,而降低耐磨性。
研究表明,在冲击磨粒磨损条件下,模具钢含碳量以O.6%为上限,冷镦模在冲击载荷条件下工作,如模具钢中碳化物过多,容易固冲击磨损而山现表面剥落。这些剥落的硬粒子将成为磨粒,加快磨损速度。热作模具的型腔表面,由于高温软化而使耐磨性降低,此外,氧化铁皮也起到磨料的作用,同时还有高温氧化腐蚀作用。
(3)疲劳失效。
疲劳失效的特征:模具某些部位经过一定的服役期,萌生了细小的裂纹,并逐渐向纵深扩展,扩展到一定尺寸时,严重削弱模具的承载能力而引起断裂。疲劳裂纹萌生于应力较大部位,特别是应力集中部位(尺寸过渡、缺口、刀痕、磨损裂纹等处),疲劳断裂时断门分两部分,一部分为疲劳裂纹发展形成的疲劳处破裂断面,呈现贝壳状,疲劳源位于贝壳顶点。另一部分为突然断裂,呈现不平整粗糙断面。
使模具发生疲劳损伤的根本原因为特环载荷,凡可促使表面拉应力增大的因素均能加速疲劳裂纹的萌生。
冷作模具在高硬状态下工作时,模具钢具有很高的屈服强度和很低的断裂韧性。高的屈服强度有利于推迟疲劳裂纹的产生,但低的断裂韧性使疲劳裂纹的扩展速率加快和临界长度减小,使疲劳裂纹扩展循环数大大缩短,因此,冷作模具疲劳寿命主要取决于疲劳裂纹萌生时间。
热作模具一般在中等或较低的硬度状态下服役,模具断裂韧性比冷作模具高得多,因此,在热作模具中,疲劳裂纹的扩展速度低于冷作模具,临界长度大于冷作模,热作模具疲劳裂纹的亚临界扩展周期较冷作模长得多,但热作模具表面受急冷,急热很易萌生冷热疲劳裂纹,热作模具的疲劳裂纹萌生时间比冷作模短得多,因此,许多热作模其疲劳断裂寿命主要取决于疲劳裂纹扩展的时间。
(4)断裂失效。
断裂失效常见形式有:崩刃、脶齿、劈裂、折断、胀裂等,不同模具断裂的驱动力不同。冷作模具、所受的主要为机械作用力(冲压力)。热作模所受除机械力外,还有热应力和组织应力,有许多热作模具的工作温度较高,又采用强制冷却,其内应力可远远超过机械应力,因此,许多热作模的断裂主要与内应力过大有关。
模具断裂过程有两种:一次性断裂和疲劳断裂。一次性断裂为模具有时在冲压时突然断裂,裂纹一旦萌生,后即失稳、扩展。它的主要原因为严重超载或模具材料严重脆化(如过热、回火不足、严重应力集十及严重的冶金缺陷等)。
3
模具失效原因及预防措施
(1)结构设计不合理引起失效。
尖锐转角(此处应力集中高于平均应力十倍以上)和过大的截面变化造成应力集中,常常成为许多模具早期失效的根源。并且在热处理淬火过程中,尖锐转角引起残余拉应力,缩短模具寿命。
预防措施:凸模各部的过渡应平缓圆滑,任何役小的刀痕都会引起强烈的应力集中,其直径与长度应符合—定要求。
(2)模具材料质量差引起的失效。
模具材料内部缺陷,如疏松、缩孔、夹杂成份偏析、碳化物分布不均、原表面缺陷(如氧化、脱碳、折叠、疤痕等)影响钢材性能,
a.夹杂物过多引起失效。
钢中存在夹杂物足模具内部产生裂纹的根源,尤其是脆性氧化物和硅酸盐等,在热压力加工中不发生塑性变形,只会引起脆性的破裂而形成微裂纹。在以后的热处理和使用中访裂纹进一步扩展,而引起模具的开裂。此外,在磨削中,由于大颗粒夹杂物剥落造成表面孔洞。
b.表面脱碳引起失效。
模具钢在热压力加工和退火时,常常由于加热温度过高,保温时间过长,而造成钢材表面脱碳,严重脱碳的钢材在机械加工后,有时仍残留有脱碳层,这样在淬火时,由于内外层组织的不同(表面脱碳层为铁索体,内部为珠光体)造成组织转变不一致,而产生裂纹。
c.碳化物分布不匀,引起失效。
Crl2、Cr112MoV等模具钢含碳量和合金元素较高,形成了许多共晶碳化物,这些碳化物在锻造比较小时,易呈现带状和网状偏析,导致淬火时常出现沿带状碳化物分布的裂纹,模具在使用中裂纹进一步扩展,而造成模具开裂失效。
预防措施:钢在缎轧时,模具应反复多方向锻造,从而钢中的共晶碳化物击碎得更细小均匀,保证钢碳化物不均匀度级别要求。
(3)模具的机加上不当。
a
切削中的刀痕:模具的型腔部位或凸模的圆角部位在机加工中,常常因进刀太探而使局部留下刀痕,造成严重应力集中,当进行淬火处理时,应山集中部位极易产生微裂纹。
预防措施:在零件粗加工的最后一道切削中,应尽量减少进刀量,提高模具表面光洁度。
b
电加工引起失效。模具在进行电加工时,由于放电产生大量的热,将使模具被加工部位加热到很高温度,使组织发生变化,形成所谓的电加工异常层,在异常层表面由于高温发生熔融,然后很快地凝固,该层在显微镜下呈白色,内部有许多微细的裂纹,白色层下的区域发生淬火,叫淬火层,再往里由于热影响减弱,温度不高,只发生回火,称回火层。测定断面硬度分布:熔融再凝固层,硬度很高,达610~740HRC,厚度为30μm,淬火层硬度400~500HRC,厚为20μm。回火属高温回火,组织较软,硬度为380—400HRC,厚为10μm。
预防措施:①用机械方法去除开常层中的再凝固层,尤其是微观裂纹;②在电加工后进行一次低温回火,使异常层稳定化,以防微裂纹扩展。
c磨削加工造成失效。模具型腔面进行磨削加工时,由于磨削速度过大,砂轮粒度过细或冷却条件差等因素影响,均会导致磨削表曲过热或引起表面软化,硬度降低,使模具在使用中因磨损严重,或热应力而产生
磨削裂纹,导致早期失效。
预防措施:①采用切削力强的粗砂轮或粘结性差的砂轮;②减少工件进给量;③选用合适的冷却剂;④磨削加工后采用250~350℃回火,以除磨削应力。
(4)模具热处理工艺不合适。
加热温度的高低、保温时间长短、冷却速度快慢等热处理工艺参数选择不当,都将成为模具失效因素。
a.加热速度:模具钢中含有较多的碳和合命元素,导热性差,因此,加热速度不能太快,应缓慢进行,防止模具发生变形和开裂。在空气炉中加热淬火时,为防止氧化和脱碳,采用装箱保护加热,此时升温速度不宜过快,而透热也应较慢。这样,不会产生大的热应力,比较安全。若模具加热速度快,透热快,模具内外产生很大的热应力。如果控制不当,很容易产生变形或裂纹,必须采用预热或减慢升温加速度来预防。
b.氧化和脱碳的影响。模具淬火是在高温度下进行的,如不严格控制,表曲很易氧化和脱碳。另外,模具表面脱碳后,由于内外层组织差异、冷却中出现较大的组织应力、导致淬火裂纹。
预防措施:可采用装箱保护处理,箱内填充防氧化和脱碳的填充材料。
(1)冷却条件的影响。
不同模具材料,据所要求的组织状态、冷却速度是不同的。对高合金钢,由于含较多合金元素,淬透性较高,可以采用油冷、空冷甚至等温淬火和等级淬火等热处理工艺。