求,正丁醇、异丁醇、辛醇、苯酚丙酮、聚碳酸酯、双酚A、新戊二醇、三羟基甲烷的分子式和结构式
我刚给同事的朋友做了做了几个题。就有这个。gjq0546@126.com
结构式:CH3-CH2-CH2-CH2-OH(正丁醇) 分子式:C5H10O
结构式:CH3-CH(CH3)-CH2-OH(异丁醇) 分子式:C5H10O
结构式:CH3-CH2-CH2-CH2-CH2-CH2-CH2-CH2-OH(辛醇) 分子式:C8H18O
结构式: (苯酚) 分子式:C6H6O
结构式:CH3-CO-CH3(丙酮)分子式:C3H6O
结构式: (聚碳酸酯)分子式:(C16H14O3)n
结构式: (双酚A) 分子式:C15H16O2
结构式: (新戊二醇)分子式:C5H10O2
结构式: (三羟甲基丙烷)分子式:C6H14O3
基本信息
丙酮对人体没有特殊的毒性,但是吸入后可引起头痛,支气管炎等症状。如果大量吸入,还可能失去意识。日常生活中主要用于脱脂,脱水,固定等等。在血液和尿液中为重要检测对象。有些癌症患者尿样丙酮水平会异常升高。采用低碳水化合物食物疗法减肥的人血液、尿液中的丙酮浓度也异常地高。丙酮以游离状态存在于自然界中,在植物界主要存在于精油中,如茶油、松脂精油、柑橘精油等;人尿和血液及动物尿、海洋动物的组织和体液中都含有少量的丙酮。糖尿病患者的尿中丙酮的含量异常地增多。能溶于水、乙醇、乙醚及其他有机溶剂中。蒸气与空气混合可形成爆炸性混合物,爆炸极限 2.55%~12.8%(体积)。丙酮的羰基能与多种亲核试剂发生加成反应,例如催化氢化生成异丙醇,还原生成频哪醇;与氨衍生物、氢氰酸、炔化物、有机金属化合物反应等。丙酮还能进行α氢的反应,例如与卤素发生取代反应,自身或与其他化合物发生类似羟醛缩合反应等。
理化参数
密度:在25℃时比重0.788
熔点:-94℃
沸点:56.48℃
饱和蒸气压(kPa): 53.32(39.5℃)
折光率1.3588
闪点:-17.78℃(闭杯)
是一种无色透明液体,有特殊的辛辣气味
易溶于水和甲醇、乙醇、乙醚、氯仿、吡啶等有机溶剂
极限参数:自燃点:465℃
爆炸极限:2.6%~12.8%
最大爆炸压力:87.3牛/平方厘米
最易引燃浓度:4.5
产生最大爆炸压力浓度:6.3%
最小引燃能量:1.15毫焦(当4.97%浓度时)
燃烧热值:1792千焦/摩尔(液体,25℃)
蒸气压:53.33千帕(39.5℃)
易燃、易挥发,化学性质较活泼
分子结构
丙酮分子中羰基上的C原子以sp2杂化轨道成键,甲基C原子以sp3杂化轨道成键[1]。
分子式:C3H6O
结构简式:CH3COCH3,
分子量:58.08
[编辑本段]生产方法
主要有异丙醇法、异丙苯法、发酵法、乙炔水合法和丙烯直接氧化法。目前世界上丙酮的工业生产以异丙苯法为主。世界上三分之二的丙酮是制备苯酚的副产品,是异丙苯氧化后的产物之一。该技术目前主要的专利生产商有Kellogg Brown &Root公司、三井化学公司和UOP公司。
Solutia公司开发了一种用氮氧化物氧化苯生产苯酚的技术,但是该公司去年取消了采用该工艺建厂的计划,因为采用该项技术毛利水平太低。日本的研究人员最近还开发了一种采用铕-钛催化剂以苯为原料的一步法生产苯酚和丙酮的生产工艺。
制备方法:丙酮的生产方法较多。古老的方法是用石灰中和木材干馏所得的木醋液,制成乙酸钙,再经热分解制得丙酮。工业上研究过的合成丙酮的方法有:(1)从乙酸得到乙酸钙,然后加热至160摄氏度分解生成丙酮和碳酸钙;(2)乙炔在氧化锌催化剂上与水蒸气反应生成丙酮;(3)乙醇蒸气在铬酸锌催化剂存在下,高温反应生成丙酮;(4)液化天然气或石脑油氧化制丙酮(氧化产物还包括甲醛,乙酸,丁醇等);(5)异丙醇氧化或脱氢制丙酮;(6)异丙醇过氧化氢法制丙酮;(7)异丙醇与丙烯醛合成丙酮;(8)异丙苯法制丙酮,联产苯酚以丙烯和苯为原料,经烃化制得异丙苯,再以空气氧化得到氢过氧化异丙苯,然后以硫酸或树脂分解,同时得到丙酮和苯酚;(9)丙烯直接氧化法制丙酮 工艺路线与乙烯直接氧化制乙醛法相似;(10)对甲基异丙基苯过氧化氢法生产对甲酚,副产丙酮;(11)二异丙苯法生产氢醌,副产丙酮。但工业上实际采用的方法并不很多。目前我国用粮食发酵的生产丙酮仍占较大比重。在合成法中异丙苯法是主要的。由含淀粉的农副产品发酵,制得丙酮,丁醇和乙醇的混合物.三者的比例为丙酮:丁醇=32:56:12至25:70:3(重量比).每生产1t丙酮,约耗用11t淀粉或60-66t废糖蜜。异丙苯法是丙酮生产路线中最经济的方法,同时得到苯酚。两者之比是,苯酚:丙酮=1:0.6(重量)。以苯酚计,10万t级装置每吨苯酚消耗丙烯(90%)590kg。
[编辑本段]主要用途
工业上主要作为溶剂用于炸药、塑料、橡胶、纤维、制革、油脂、喷漆等行业中,也可作为合成烯酮、醋酐、碘仿、聚异戊二烯橡胶、甲基丙烯酸、甲酯、氯仿、环氧树脂等物质的重要原料。在精密铜管制造行业中,丙酮经常被用于擦拭铜管上面的黑色墨水。
[编辑本段]安全防护
毒性
丙酮主要是对中枢神经系统的抑制、麻醉作用,高浓度接触对个别人可能出现肝、肾和胰腺的损害。由于其毒性低,代谢解毒快,生产条件下急性中毒较为少见。急性中毒时可发生呕吐、气急、痉挛甚至昏迷。口服后,口唇、咽喉烧灼感,经数小时的潜伏期后可发生口干、呕吐、昏睡、酸中度和酮症,甚至暂时性意识障碍。丙酮对人体的长期损害,表现为对眼的刺激症状如流泪、畏光和角膜上皮浸润等,还可表现为眩晕、灼热感,咽喉刺激、咳嗽等。
1、吸入:浓度在500ppm以下无影响,500~1000ppm之间会刺激鼻、喉,1000ppm时可致头痛并有头晕出现。2000~10000 ppm时可产生头晕、醉感、倦睡、恶心和呕吐,高浓度导致失去知觉、昏迷和死亡。
2、眼睛接触;浓度在500ppm会产生刺激,1000ppm会有轻度、暂时性刺激。液体会产生中毒刺激。
3、皮肤刺激:液体会有轻度刺激,通过完好的皮肤吸收造成的危险很小。
口服;对喉和胃有刺激作用,服进大量会产生和吸入相同的症状。
4、皮肤接触会导致干燥、红肿和皲裂,每天3小时吸入浓度为1000ppm的蒸气,在7~15年会刺激工人鼻腔,使之眩晕、乏力。高浓度蒸气会影响肾和肝的功能。
人身防护
1、吸入:如蒸气浓度不明或超过暴露极限时,应佩带合适的呼吸器。
2、皮肤:如果需要,应使用手套、工作服和工作鞋,合适的材料是丁基橡胶。在直接工作的场所应备有可用的安全淋浴和眼睛冲洗器具。
3、眼睛:戴化学防溅眼镜,必要时可佩带面罩。
消防
适用灭火剂:化学干粉,酒精泡沫,二氧化碳
灭火时可能遭遇之特殊危害:用水稀释过之丙酮溶液,亦有可能燃烧。
特殊灭火程序:
1.用水灭火是无效的,但可使用喷水以冷却容器。
2.若未泄漏物质尚未着火,使用喷水以分散蒸气。
3.喷水可冲洗外泄区并将外泄物稀释成非可燃性混合物。
4.蒸气可能传播至远处,若与引火源接触会延烧回来。
消防人员之特殊防护设备:灭火时需穿戴经NIOSH认证的自携式呼吸防护具及穿著全身包覆式防护衣。
[编辑本段]急 救
1、吸入:脱离丙酮产生源或将患者移到新鲜空气处,如呼吸停止应进行人工呼吸。
2、眼睛接触:眼睑张开,用微温的缓慢的流水冲洗患眼约10分钟。
3、皮肤接触:用微温的缓慢的流水冲洗患处至少10分钟。
4、口服:用水充分漱口,不可催吐,给患者饮水约250ml。
5、一切患者都应请医生治疗。
储藏与运输
将丙酮储藏于密封的容器内,置于阴凉干燥优良好通风的地方,远离热源、火源和有禁忌的物质。所有容器都应放在地面上。160公斤/桶 或槽车
安全与处理
提供良好的通风设备、防护服装和呼吸器。移去热源和火源。应停止或减少泄露。用黄沙或其他吸收物吸收液体。废料可在被批准的溶剂焚炉中烧掉或在被指定的地方作深埋处理,遵守环境保护法规。
泄漏应急处理
应急行动:消除所有点火源。根据液体流动和蒸气扩散的影响区域划定警戒区,无关人员从侧风、上风向撤离至安全区。建议应急处理人员戴正压自给式呼吸器,穿防静电服。作业时使用的所有设备应接地。禁止接触或跨越泄漏物。尽可能切断泄漏源。防止泄漏物进入水体、下水道、地下室或密闭性空间。小量泄漏:用砂土或其它不燃材料吸收。使用洁净的无火花工具收集吸收材料。大量泄漏:构筑围堤或挖坑收容。用飞尘或石灰粉吸收大量液体。用抗溶性泡沫覆盖,减少蒸发。喷水雾能减少蒸发,但不能降低泄漏物在受限制空间内的易燃性。用防爆泵转移至槽车或专用收集器内。喷雾状水驱散蒸气、稀释液体泄漏物。
操作处置与储存
操作注意事项:密闭操作,全面通风。操作人员必须经过专门培训,严格遵守操作规程。建议操作人员佩戴过滤式防毒面具(半面罩),戴安全防护眼镜,穿防静电工作服,戴橡胶耐油手套。远离火种、热源,工作场所严禁吸烟。使用防爆型的通风系统和设备。防止蒸气泄漏到工作场所空气中。避免与氧化剂、还原剂、碱类接触。灌装时应控制流速,且有接地装置,防止静电积聚。搬运时要轻装轻卸,防止包装及容器损坏。配备相应品种和数量的消防器材及泄漏应急处理设备。倒空的容器可能残留有害物。
储存注意事项:储存于阴凉、通风良好的专用库房内,远离火种、热源。库温不宜超过29℃,保持容器密封。应与氧化剂、还原剂、碱类分开存放,切忌混储。采用防爆型照明、通风设施。禁止使用易产生火花的机械设备和工具。储区应备有泄漏应急处理设备和合适的收容材料。
接触控制/个体防护
接触限值:
MAC(mg/m3): - PC-TWA(mg/m3): 300
PC-STEL(mg/m3): 450 TLV-C(mg/m3): -
TLV-TWA(mg/m3): 500ppm TLV-STEL(mg/m3): 750ppm
监测方法:溶剂解吸-气相色谱法;热解吸-气相色谱法。
工程控制:生产过程密闭,全面通风。
呼吸系统防护:空气中浓度超标时,佩戴过滤式防毒面具(半面罩)。
眼睛防护:一般不需要特殊防护,高浓度接触时可戴安全防护眼镜。
身体防护:穿防静电工作服。
手 防 护:戴橡胶耐油手套。
其他防护:工作现场严禁吸烟。注意个人清洁卫生。避免长期反复接触。
外观与性状: 无色透明易流动液体,有芳香气味,极易挥发。
Melting_point(℃): -94.6
Boiling_point(℃): 56.5
相对Density(水=1): 0.80
相对蒸汽Density(空气=1): 2.00
饱和蒸气压(kPa): 53.32(39.5℃)
燃烧热(kJ/mol): 1788.7
临界温度(℃): 235.5
临界压力(MPa): 4.72
辛醇/水分配系数的对数值: -0.24
flash_point(℃): -20
引燃温度(℃): 465
爆炸上限%(V/V): 2.5
爆炸下限%(V/V): 13.0
溶解性: 与水混溶,可混溶于乙醇、乙醚、氯仿、油类、烃类等多数有机溶剂
产品用途:
是基本的有机原料和低Boiling_point溶剂。是制造醋酐、氯仿、有机玻璃、环氧树脂、聚异戊二烯橡胶等的重要原料,也用作溶剂及提取剂。
与亚硫酸氢钠形成无色结晶的加成物。与氰化氢反应生成丙酮氰醇。在还原剂的作用下生成异丙醇与频哪酮。丙酮对氧化剂比较稳定。
在室温下不会被硝酸氧化。用酸性高锰酸钾强氧化剂做氧化剂时,生成乙酸、二氧化碳和水。在碱存在下发生双分子缩合,生成双丙酮醇。
IUPAC有机物命名法
一般规则
取代基的顺序规则
当主链上有多种取代基时,由顺序规则决定名称中基团的先后顺序。一般的规则是:
取代基的第一个原子质量越大,顺序越高;
如果第一个原子相同,那么比较它们第一个原子上连接的原子的顺序;如有双键或三键,则视为连接了2或3个相同的原子。
以次序最高的官能团作为主要官能团,命名时放在最后。其他官能团,命名时顺序越低名称越靠前。
主链或主环系的选取
以含有主要官能团的最长碳链作为主链,靠近该官能团的一端标为1号碳。
如果化合物的核心是一个环(系),那么该环系看作母体;除苯环以外,各个环系按照自己的规则确定1号碳,但同时要保证取代基的位置号最小。
支链中与主链相连的一个碳原子标为1号碳。
数词
位置号用阿拉伯数字表示。
官能团的数目用汉字数字表示。
碳链上碳原子的数目,10以内用天干表示,10以外用汉字数字表示。
各类化合物的具体规则
烷烃
找出最长的碳链当主链,依碳数命名主链,前十个以天干(甲、乙、丙...)代表碳数,碳数多于十个时,以中文数字命名,如:十一烷。
从最近的取代基位置编号:1、2、3...(使取代基的位置数字越小越好)。以数字代表取代基的位置。数字与中文数字之间以 - 隔开。
有多个取代基时,以取代基数字最小且最长的碳链当主链,并依甲基、乙基、丙基的顺序列出所有取代基。
有两个以上的取代基相同时,在取代基前面加入中文数字:一、二、三...,如:二甲基,其位置以 , 隔开,一起列于取代基前面。
烯烃
命名方式与烷类类似,但以含有双键的最长键当作主链。
以最靠近双键的碳开始编号,分别标示取代基和双键的位置。
若分子中出现二次以上的双键,则以“二烯”或“三烯”命名。
烯类的异构体中常出现顺反异构体,故须注明“顺”或”反”。
炔烃
命名方式与烯类类似,但以含有叁键的最长键当作主链。
以最靠近叁键的碳开始编号,分别标示取代基和叁键的位置。
炔类没有环炔类和顺反异构物。
分子中既有双键又有三键时,名字以烯先炔后,分别标注位置号,碳数写在“烯”前面。
卤代烃·醚
卤代烃命名以相应烃作为母体,卤原子作为取代基。
如有碳链取代基,根据顺序规则碳链要写在卤原子的前面;如有多种卤原子,列出次序为氟、氯、溴、碘。
醚的命名以碳链较长的一端为母体,另一端和氧原子合起来作为取代基,称烃氧基。
醇
醇的命名,以含有醇羟基的最长碳链为主链;
由这条链上的碳数决定叫某醇,编号时让醇羟基的位置号尽量小;
其他基团按取代基处理。
主链上有多个醇羟基时,可以按羟基的数目分别称为二醇、三醇等。
醛
醛的命名,以含有醛基的最长的碳链为主链,其他部分作为取代基;
决定名称的碳数包括醛基的一个碳。
如果有多个醛基,则以含有2个醛基的最长碳链为主链,称二醛。
醛基作取代基时称甲酰基(或氧代)。
酮
以含有酮羰基最长的碳链为主链,按此链上的碳数(包括该羰基)称为“某酮”;并把羰基的位置号标在前面,尽量使位置号最小。
如果主链上有多个羰基,可称为二酮、三酮等。
羰基作取代基时称“氧代”。
羧酸
以含有羧基的最长碳链为主链,依照碳数(包括羧基)称为某酸。
主链上有2个羧基时,称为二酸。
羧酸酐
以形成酸酐的酸的名称称呼酸酐,再加“酐”字。
(如:CH3CO-O-CO-C2H5——乙酸丙酸酐)
若形成酸酐的两分子酸相同,直接称为“某酸酐”。
酯
以形成酯的酸和醇的名称命名,称为某酸某(醇)酯或某醇某酸酯。
若有多个醇或酸分子参与成酯,那么要在相应的醇或酸前面加上数目。
胺类
以与氮原子相连的最长碳链为主链,按照该链上的碳原子数称为“某胺”;
若是亚胺,氮原子上的较短烃基视作取代基,命名时称“N-某基”(N表示取代基连在氮上)
脂环烃类
单脂环烃
环烷烃的命名与烷烃类似,直接在烷类前面加“环”字即可。
环烯烃的命名与烯烃类似,编号由双键先设定为 1 , 2 号碳。
桥环烷烃
桥环烷烃中,多个环公用的碳原子称为桥头碳;
给碳原子编号,从一个桥头碳原子开始,依照环由大到小顺序编完所有的碳原子;
命名时,先称环的个数,然后在中括号里标明各个环上桥头碳之间的碳原子的个数,数字之间用点分隔,数字的个数总比环数多一个;
最后,按照环系上碳原子的个数,称为“某烷”。
如:
称为二环[3.2.0]庚烷。
螺环烷烃
螺环烷烃中,两个环公用的一个四级碳原子称为螺原子;
编号从小环开始,1号碳是紧挨螺原子的一个碳原子;
命名时,先称“螺”字,然后在中括号里标明各个环上非螺原子的个数,数字之间用点分隔;
最后,按照环系上碳原子的个数,称为“某烷”。
如:
称为螺[3.5]壬烷。
多环烯、炔烃
按照多环烷烃的规则命名,编号时尽量使重键的位置号最小,再把“烷”字换成“烯”或“炔”即可。
芳香族化合物
苯环系
苯的卤代物、烷基代物等,先称呼取代基的位置号和名称,再加“苯”字。甲基、乙基等简单烷基的“基”字可以省去。(如:1,2-二甲苯)
苯的烯、炔、醇、醛、酮、羧酸、磺酸、胺基代物等,以取代基的原形作为母体,先称“苯”(表示苯基),再称取代基的原形,编号时以取代基为主链,苯环为支链,与取代基相连的碳为1号碳。(如:苯乙烯)
芳烃的羟基代物称为酚,对于苯来说是苯酚。苯环上直接连有两个羟基时叫苯二酚。
其他环系
各种芳环系都有不同的名字,其取代物的命名方法和苯环类似。但这些环系一般都固定了编号的顺序(而不是像苯环一样只由取代基决定):
萘环系
蒽环系
等等。
杂环化合物
把杂环看作碳环中碳原子被杂原子替换而形成的环,称为“某杂(环的名称)”;(如:氧杂环戊烷)
给杂原子编号,使杂原子的位置号尽量小。
其他官能团视为取代基。
乙醇的物理性质主要与其低碳直链醇的性质有关。分子中的羟基可以形成氢键,因此乙醇黏度很大,也不及相近相对分子质量的有机化合物极性大。室温下,乙醇是无色易燃,且有特殊香味的挥发性液体。 作为溶剂,乙醇易挥发,且可以与水、乙酸、丙酮、苯、四氯化碳、氯仿、乙醚、乙二醇、甘油、硝基甲烷、吡啶和甲苯等溶剂混溶。此外,低碳的脂肪族烃类如戊烷和己烷,氯代脂肪烃如1,1,1-三氯乙烷和四氯乙烯也可与乙醇混溶。随着碳数的增长,高碳醇在水中的溶解度明显下降。 由于存在氢键,乙醇具有潮解性,可以很快从空气中吸收水分。羟基的极性也使得很多离子化合物可溶于乙醇中,如氢氧化钠、氢氧化钾、氯化镁、氯化钙、氯化铵、溴化铵和溴化钠等。氯化钠和氯化钾则微溶于乙醇。此外,其非极性的烃基使得乙醇也可溶解一些非极性的物质,例如大多数香精油和很多增味剂、增色剂和医药试剂。 化学性质 酸性 乙醇分子中含有极化的氧氢键,电离时生成烷氧基负离子和质子。 CH3CH2OH→(可逆)CH3CH2O- + H+ 乙醇的pKa=15.9,与水相近。 乙醇的酸性很弱,但是电离平衡的存在足以使它与重水之间的同位素交换迅速进行。 CH3CH2OH+D2O→(可逆)CH3CH2OD+HOD 因为乙醇可以电离出极少量的氢离子,所以其只能与少量金属(主要是碱金属)反应生成对应的醇金属以及氢气: 2CH3CH2OH + 2Na→2CH3CH2ONa + H2 醇金属遇水则迅速水解生成醇和碱 结论: (1)乙醇可以与金属钠反应,产生氢气,但不如水与金属钠反应剧烈。 (2)活泼金属(钾、钙、钠、镁、铝)可以将乙醇羟基里的氢取代出来。 与乙酸反应
苯酚
苯酚又名石炭酸,分子式C6H6O,无色针状结晶或白色熔块,苯酚密度为1.071 g/cm3,沸点为181.8℃,熔点为40.8℃,易熔于乙醇、氯仿、乙醚、甘油和二硫化碳,熔于水,不熔于石油醚,具特殊气味,有腐蚀性。空气中的氧可将苯酚氧化生成苯醌。纯净的苯酚为白色晶体,有特殊气味,长时间存放,特别是在日光照射下易氧化而呈玫瑰色或深褐色;苯酚易潮解,是弱酸性物质。
乙醛
乙醛物理性质 乙醛密度比1小,熔点是-121摄氏度,沸点为21摄氏度,溶解度为16g/(100g H20),因有氢键,可与水互溶。用作制取醋酸,也是许多反应的合成中间体。乙醛
1.分子结构
〔师〕展示乙醛分子的比例模型,并让学生根据乙醇催化氧化反应的本质,写出乙醛的分子式、结构式、结构简式及官能团。
〔一个学生在黑板上写,其他学生写在练习本上〕
〔学生板演,教师巡视〕
分子式:C2H4O
〔师〕乙醛的结构简式还可以写成CH3CHO,醛基也可以写成—CHO,但不能写成—COH。
〔师〕写出—CHO的电子式。
〔师〕醛基是一个中性基团,本身未失e-,也未得到e-,因此乙的写法正确。甲误以为“—”应表示一对共用电子对。
〔师〕展示乙醛样品,让学生闻其气味,并观察其颜色、状态,结合教材164页相关内容叙述乙醛的重要物理性质。
〔板书〕2.物理性质
〔生〕乙醛是无色、具有刺激性气味的液体,密度比水小,沸点是20.8℃,易挥发,易燃烧,能跟水、乙醇、氯仿等互溶。
〔师〕官能团决定物质的化学性质,乙醛的化学性质是由醛基决定的。请同学们分析醛基的结构,推测其在化学反应中的断裂方式。
〔生〕C==O键和C—H键都有极性,都可能断裂。
〔师〕下面我们通过乙醛的化学性质来验证同学们的推断是否正确。
〔板书〕3.化学性质
〔师〕C==O键和C==C键断键时有类似的地方,说明乙醛可以发生什么类型的反应?
〔生〕加成反应。
〔师〕请同学们根据加成反应的概念写出CH3CHO和H2加成
〔师〕指出:此反应在Ni作催化剂、加热的条件下才能进行。
〔板书〕(1)加成反应
〔师〕说明:①醛基与H2的加成是在分子中引入—OH的一种方法。②工业上并不用此法合成乙醇。
〔设疑〕乙醇在一定条件下被催化氧化为乙醛,实质是脱去两个氢原子,我们称之为氧化反应。而乙醛与H2的加成是乙醇催化氧化的相反过程,与氧化反应相对应,此反应还应属于什么反应类型?
〔生〕还原反应。
〔师〕在有机化学反应中,通常把有机物分子中加入氢原子或失去氧原子的反应,叫做还原反应,如乙醛和H2的加成。把有机物分子中加入氧原子或失去氢原子的反应,叫做氧化反应。如乙醇的催化氧化。
〔师〕说明:有机化学反应中的氧化反应、还原反应是针对有机物划分的。实际上都是氧化还原反应,氧化反应和还原反应总是同时进行,相互依存的,不能独立存在。只不过有机化学反应中的氧化反应是有机物被氧化,无机物被还原;还原反应中是有机物被还原,无机物被氧化罢了。
〔设疑〕乙醛可以被还原为乙醇,能否被氧化呢?请同学们根据乙醛分子式中碳的平均化合价进行分析、讨论。
〔生〕由CH3CHO变为CH3CH2OH,碳的平均化合价从-1价降到-2价,CH3CHO被还原。由于CH3CHO中碳的平均化合价为-1价,而碳的最高价态为+4价,因此乙醛还可以被氧化,发生氧化反应。
〔板书〕(2)氧化反应
〔师〕在一定温度和催化剂存在的条件下,乙醛能被空气中的氧气氧化成乙酸。工业上可以利用此反应制取乙酸。
〔板书〕a.催化氧化
〔师〕根据乙醛的物理性质,说明它还可以燃烧。请同学们写出乙醛完全燃烧的方程式。
〔板书〕b.燃烧
2CH3CHO+5O2 4CO2+4H2O
〔过渡〕乙醛不仅能被氧气氧化,还能被某些氧化剂氧化。
〔板书〕c.被弱氧化剂氧化
〔演示实验6-7〕
第一步:在洁净的试管里加入1 mL 2%的硝酸银溶液,边摇动试管,边逐滴滴入2%的稀氨水。
〔问〕大家看到了什么现象?写出化学方程式。
〔生〕生成白色沉淀。
AgNO3+NH3•H2O AgOH↓+NH4NO3
第二步:继续滴加稀氨水,至最初产生的沉淀刚好溶解为止。
〔讲述〕大家看到沉淀溶解了,这是因为AgOH和氨水反应生成了一种叫氢氧化二氨合银的络合物,该溶液称为银氨溶液,它是一种弱氧化剂。
〔副板书〕AgOH+2NH3•H2O 〔Ag(NH3)2〕OH+2H2O
〔师〕下面我们看一看这种弱氧化剂能否与乙醛发生反应。
〔演示〕第三步:在银氨溶液中滴入3滴乙醛,振荡后放在热水中温热。
现象:试管内壁附上了一层光亮如镜的银。
〔师〕从现象可以看出,反应中化合态银被还原,乙醛被氧化。乙醛被氧化成乙酸,乙酸又和氨反应生成乙酸铵。这个反应叫银镜反应。
〔板书〕Ⅰ.银镜反应
CH3CHO+2〔Ag(NH3)2〕OH CH3COONH4+3NH3+2Ag↓+H2O
〔师〕从反应断键情况来看,还是 中C—H键断裂,相当于在C—H键之间插入1个氧原子。从化合价升降守恒来看,有1 mol 被氧化,就应有2 mol银被还原。因此银镜反应不仅可用于检验醛基的存在,也常用于测定有机物中醛基的数目。
乙醛不仅可被弱氧化剂银氨溶液氧化,还可以被另一种弱氧化剂氧化。
〔板书〕Ⅱ.和Cu(OH)2反应
〔演示〕P165实验6—8。
现象:试管内有红色沉淀产生。
〔师〕这种红色沉淀是Cu2O。请同学们写出该反应涉及到的化学方程式。
〔学生板演〕CuSO4+2NaOH Cu(OH)2↓+Na2SO4
2Cu(OH)2+CH3CHO Cu2O↓+CH3COOH+2H2O
〔师〕由于Cu(OH)2是微溶物,刚制备的Cu(OH)2为悬浊液,放置稍长时间就可生成沉淀。因此实验中所用Cu(OH)2必须是新制的,且NaOH要加得过量一些,因为本实验需在碱性条件下进行。
〔讨论〕乙醛能否使溴水和酸性KMnO4褪色?
〔生〕能。因为溴和酸性KMnO4都是强氧化剂,可以把乙醛氧化。
〔板书〕d.使酸性KMnO4溶液和溴水褪色
〔师〕乙醛的这些重要性质,都有重要用途,下面我们列表总结如下:
〔投影小结〕
乙醛的氧化反应
氧化剂 反应条件 现象 化学反应实质 重要应用
O2 点燃 燃烧有黄色火焰 2CH3CHO+5O2 4CO2+4H2O ——
O2 催化剂,加热 —— —CHO变—COOH
2CH3CHO+O2 2CH3COOH 工业制取乙酸
银氨
溶液 水浴加热 形成银镜 —CHO变—COOH
CH3CHO+2〔Ag(NH3)2〕OH
CH3COONH4+2Ag↓+3NH3+H2O 工业制镜或保温瓶胆,实验室检验醛基
Cu(OH)2 加热至沸腾 产生红色沉淀 —CHO变—COOH
CH3CHO+2Cu(OH)2
CH3COOH
+Cu2O ↓+2H2O 实验室检验醛基、医学上检验尿糖
〔小结〕通过对乙醛化学性质的学习,证明了同学们的推测完全正确,—CHO中的C O键和C—H键都能断裂。在乙醛和氢气的加成反应中,是C O键断裂,在乙醛被氧化的反应中是C—H键断裂。通过乙醛性质的学习,我们也知道了有机反应中加氧或去氢称为氧化反应,加氢或去氧称为还原反应,虽然和无机化学中对氧化还原反应的定义不同,但本质是一样的。课下请同学们根据有机反应中氧化反应和还原反应的定义,总结你学过的化学反应哪些属于氧化反应,哪些属于还原反应。
〔作业〕P166一、1、3 二、3 四
●板书设计
第五节 乙醛 醛类(一)
一、乙醛
1.分子结构
2.物理性质
3.化学性质
(1)加成反应
(2)氧化反应
a.催化氧化
2CH3CHO+O2 2CH3COOH(乙酸)
b.燃烧
2CH3CHO+5O2 4CO2+4H2O
c.被弱氧化剂氧化
Ⅰ.银镜反应
CH3CHO+2〔Ag(NH3)2〕OH CH3COONH4+3NH3+2Ag↓+H2O
Ⅱ.和Cu(OH)2反应
d.使酸性KMnO4溶液和溴水褪色
●教学说明
围绕教学重点、难点,主要采用了启发、对比、设疑、实验相结合的方法。
1.充分利用化学实验这一重要媒体,引导学生观察、分析、推理、抽象概括,从而认识乙醛的重要化学性质——加成反应和氧化反应。
2.通过对比有机化学反应中的氧化反应和还原反应,能使学生从本质上认识它们的区别。
3.教学中适时设疑、层层设疑,有利于重点难点知识的突破与跨越,同时培养学生独立思考的习惯。
●参考练习
1.下列试剂,不能用于检验有机物中含有—CHO的是( )
A.金属钠 B.银氨溶剂 C.新制Cu(OH)2 D.溴水
答案:AD
2.由乙炔、苯、乙醛组成的混合物,经测定其中碳的质量分数为72%,则氧的质量分数为______。
解析:将乙醛的分子式作如下变形:C2H4O C2H2•H2O。该混合物可表示为:
•H2O,假设混合物质量为100 g,则m (C)=100 g×72%=72 g又方框内有n(C)∶n(H)=1∶1,那么方框内总质量应为72 g×(12+1)/12=78 g,则方框外H2O的质量为100 g-78 g=22 g,故求得m (O)=22 g× =19.6 g,所以该混合物中氧的质量分数为 ×100%=19.6%。
答案:19.6%
3.某学生做乙醛还原性的实验,取1 mol•L-1的CuSO4溶液2 mL 和0.4 mol•L-1的NaOH溶液4 mL,在一个试管内混合后加入0.5 mL 40%的乙醛溶液加热至沸,无红色沉淀,实验失败的原因是( )
A.NaOH不够量 B.CuSO4不够量
C.乙醛溶液太少 D.加热时间不够
解析:由于CH3CHO和新制Cu(OH)2的反应必须在碱性条件下进行(即用CuSO4和NaOH反应制备Cu(OH)2时须NaOH过量),所以本实验失败的原因是NaOH不足。
答案:A
4.在实验室里不宜长期放置,应在使用时配制的溶液是( )
①酚酞试剂 ②银氨溶液 ③Na2CO3溶液 ④Cu(OH)2悬浊液 ⑤酸化的FeCl3溶液
⑥硫化氢水溶液
A.只有②④ B.除①之外 C.只有②④⑥ D.全部
解析:①③⑤在空气中可以稳定存在,因此均可长期存放。②银氨溶液必须随配随用,不可久置,否则会生成易爆炸的物质。④氢氧化铜悬浊液在空气中久置,会变为碱式碳酸铜。⑥H2S水溶液在空气中放置,易被空气中的氧气氧化为S和H2O。
答案:C
乙酸
醋酸(乙酸)的化学性质 不稳定 见光,受热易分解 其分解一般需要的条件是 加热 光照 具有弱酸性,酸性弱于碳酸 2 可以和醇发生酯化反应 3 可以燃烧(很多人可能会想当然地认为不行) 受热分解分子式: 2CH3COOOH=2CH3COOH+O2
乙酸是一种弱酸。乙酸能与乙醇起酯化反应。
1、与钠2、消去3、与氢卤酸取代4、氧化成醛5、酯化
环已酮是具有薄荷及丙酮气味的无味的无色透明液体,微溶于水,能溶于乙醚、酒精等多种有机溶剂,易...产品用途:环己酮主要用作生产己内酰胺和己二酸,它们是制造锦纶和尼龙66及其他合成树脂的单体,作为溶剂应用于油漆
主要用途:
适用于工业涂料生产、合成树脂溶解、脱漆济配制,还可作DDT除虫菊酯、青霉素、四环素的生产溶济使用。
特点:
属中沸点溶济,挥发速度为醋酸丁酯的1.6倍。
丙酮对人体没有特殊的毒性,但是吸入后可引起头痛,支气管炎等症状。如果大量吸入,还可能失去意识。日常生活中主要用于脱脂,脱水,固定等等。在血液和尿液中为重要检测对象。有些癌症患者尿样丙酮水平会异常升高。采用低碳水化合物食物疗法减肥的人血液、尿液中的丙酮浓度也异常地高。丙酮以游离状态存在于自然界中,在植物界主要存在于精油中,如茶油、松脂精油、柑橘精油等;人尿和血液及动物尿、海洋动物的组织和体液中都含有少量的丙酮。糖尿病患者的尿中丙酮的含量异常地增多。能溶于水、乙醇、乙醚及其他有机溶剂中。蒸气与空气混合可形成爆炸性混合物,爆炸极限 2.55%~12.8%(体积)。丙酮的羰基能与多种亲核试剂发生加成反应,例如催化氢化生成异丙醇,还原生成频哪醇;与氨衍生物、氢氰酸、炔化物、有机金属化合物反应等。丙酮还能进行α氢的反应,例如与卤素发生取代反应,自身或与其他化合物发生类似羟醛缩合反应等。
理化参数
密度:在25℃时比重0.788
熔点:-94℃
沸点:56.48℃
饱和蒸气压(kPa): 53.32(39.5℃)
折光率1.3588
闪点:-17.78℃(闭杯)
是一种无色透明液体,有特殊的辛辣气味
易溶于水和甲醇、乙醇、乙醚、氯仿、吡啶等有机溶剂
极限参数:自燃点:465℃
爆炸极限:2.6%~12.8%
最大爆炸压力:87.3牛/平方厘米
最易引燃浓度:4.5
产生最大爆炸压力浓度:6.3%
最小引燃能量:1.15毫焦(当4.97%浓度时)
燃烧热值:1792千焦/摩尔(液体,25℃)
蒸气压:53.33千帕(39.5℃)
易燃、易挥发,化学性质较活泼
分子结构
丙酮分子中羰基上的C原子以sp2杂化轨道成键,甲基C原子以sp3杂化轨道成键[1]。
分子式:C3H6O
结构简式:CH3COCH3,
分子量:58.08
生产方法
主要有异丙醇法、异丙苯法、发酵法、乙炔水合法和丙烯直接氧化法。目前世界上丙酮的工业生产以异丙苯法为主。世界上三分之二的丙酮是制备苯酚的副产品,是异丙苯氧化后的产物之一。该技术目前主要的专利生产商有Kellogg Brown &Root公司、三井化学公司和UOP公司。
Solutia公司开发了一种用氮氧化物氧化苯生产苯酚的技术,但是该公司去年取消了采用该工艺建厂的计划,因为采用该项技术毛利水平太低。日本的研究人员最近还开发了一种采用铕-钛催化剂以苯为原料的一步法生产苯酚和丙酮的生产工艺。
制备方法:丙酮的生产方法较多。古老的方法是用石灰中和木材干馏所得的木醋液,制成乙酸钙,再经热分解制得丙酮。工业上研究过的合成丙酮的方法有:(1)从乙酸得到乙酸钙,然后加热至160摄氏度分解生成丙酮和碳酸钙;(2)乙炔在氧化锌催化剂上与水蒸气反应生成丙酮;(3)乙醇蒸气在铬酸锌催化剂存在下,高温反应生成丙酮;(4)液化天然气或石脑油氧化制丙酮(氧化产物还包括甲醛,乙酸,丁醇等);(5)异丙醇氧化或脱氢制丙酮;(6)异丙醇过氧化氢法制丙酮;(7)异丙醇与丙烯醛合成丙酮;(8)异丙苯法制丙酮,联产苯酚以丙烯和苯为原料,经烃化制得异丙苯,再以空气氧化得到氢过氧化异丙苯,然后以硫酸或树脂分解,同时得到丙酮和苯酚;(9)丙烯直接氧化法制丙酮 工艺路线与乙烯直接氧化制乙醛法相似;(10)对甲基异丙基苯过氧化氢法生产对甲酚,副产丙酮;(11)二异丙苯法生产氢醌,副产丙酮。但工业上实际采用的方法并不很多。目前我国用粮食发酵的生产丙酮仍占较大比重。在合成法中异丙苯法是主要的。由含淀粉的农副产品发酵,制得丙酮,丁醇和乙醇的混合物.三者的比例为丙酮:丁醇=32:56:12至25:70:3(重量比).每生产1t丙酮,约耗用11t淀粉或60-66t废糖蜜。异丙苯法是丙酮生产路线中最经济的方法,同时得到苯酚。两者之比是,苯酚:丙酮=1:0.6(重量)。以苯酚计,10万t级装置每吨苯酚消耗丙烯(90%)590kg。
主要用途
工业上主要作为溶剂用于炸药、塑料、橡胶、纤维、制革、油脂、喷漆等行业中,也可作为合成烯酮、醋酐、碘仿、聚异戊二烯橡胶、甲基丙烯酸、甲酯、氯仿、环氧树脂等物质的重要原料。在精密铜管制造行业中,丙酮经常被用于擦拭铜管上面的黑色墨水。
剩下三个分别倾倒入水中,与水分层的是丙酮
剩下两个用银镜反应检验,有银析出的是乙醛(用硫酸铜和氢氧化钠也可)
【英文名称】phenol
【结构或分子式】
所有C原子均以sp2杂化轨道形成σ键,O原子均以sp3杂化轨道形成σ键。
【相对分子量或原子量】94.11
【密度】1.071
【熔点(℃)】42~43
【沸点(℃)】182
【折射率】1.5425(41)
【毒性LD50(mg/kg)】
大鼠经口530。
【性状】
无色或白色晶体,有特殊气味。
【溶解情况】
溶于乙醇、乙醚、氯仿、甘油、二硫化碳等。
【用途】
用于制染料合成树脂、塑料、合成纤维和农药、水杨酸等。作外科消毒剂消毒能力大小的标准(石炭酸系数)。
【制备或来源】
由煤焦油经分馏,由苯磺酸经碱熔。由氯苯经水解,由异丙苯经氧化重排,或由甲苯经侧链氯化和水解而制得。
【其他】
加热能溶于水(在室温下,在水中的溶解度是9.3g,当温度高于65°C时能与水混溶),有毒,具有腐蚀性如不甚滴落到皮肤上应马上用酒精清洗,在空气中易被氧化而变粉红色。在民间有土方用石炭酸来治皮肤顽疾,以毒攻毒,如用来治脚底起泡。
一种重要的苯系中间体。又称石炭酸。低熔点(40.91℃)白色 晶体 ,在空气中放置及光照下变红 ,有臭味,沸点181.84℃。对人有毒,要注意防止触及皮肤。工业上主要由异丙苯制得。苯酚产量大,1984年,世界总生产能力约为5兆吨。苯酚用途广泛。第一次世界大战前,苯酚的唯一来源是从煤焦油中提取。绝大部分是通过合成方法得到。有磺化法、氯苯法、异丙苯法等方法。
分子结构: 苯环上的C原子以sp2杂化轨道成键,O原子以sp3杂化轨道成键。
苯酚主要用于制造酚醛树脂 ,双酚A及己内酰胺。其中生产酚醛树脂是其最大用途 ,占苯酚产量一半以上 。此外,有相当数量的苯酚用于生产卤代酚类。从一氯苯酚到五氯苯酚,它们可用于生产2,4-二氯苯氧乙酸( 2,4-滴 )和 2,4,5-三氯苯氧乙酸(2,4,5-涕 )等除草剂;五氯苯酚是木材防腐剂;其他卤代酚衍生物可作为杀螨剂、皮革防腐剂和杀菌剂 。由苯酚所制得的烷基苯酚是制备烷基酚-甲醛类聚合物的单体,并可作为抗氧剂、非离子表面活性剂、增塑剂、石油产品添加剂。苯酚也是很多医药(如水杨酸、阿司匹林及磺胺药等)、合成香料、染料(如分散红3B)的原料。此外,苯酚的稀水溶液可直接用作防腐剂和消毒剂。
苯酚俗名石炭酸,分子式C6H5OH,比重1.071,熔点42~43℃,沸点182℃,燃点79℃。无色结晶或结晶熔块,具有特殊气味(与浆糊的味道相似)。置露空气中或日光下被氧化逐渐变成粉红色至红色,在潮湿空气中,吸湿后,由结晶变成液体。酸性极弱(弱于H2CO3),有特臭,有毒,有强腐蚀性。室温微溶于水,能溶于苯及碱性溶液,易溶于乙醇、乙醚、氯仿、甘油等有机溶剂中,难溶于石油醚。常用于测定硝酸盐、亚硝酸盐及作有机合成原料等.实验室可用溴(生成白色沉淀2,4,6-三溴苯酚,十分灵敏)及FeCL3 (生成[Fe(C6H5O)6]3-络离子呈紫色)检验.
苯酚工业生产以异丙苯法为主,该法具有产品纯度高、原料和能源消耗低等优点,但其发展受联产物丙酮的制约。近年来,人们开始研究苯直接羟基化(也称氧化)制苯酚的方法,其中有些成果已显示出工业化前景。目前研究的氧化剂类型主要有N2O、H2O2、O2/H2等。
苯酚主要用于生产酚醛树脂、己内酰胺、双酚A、己二酸、苯胺、烷基酚、水杨酸等,此外还可用作溶剂、试剂和消毒剂等,在合成纤维、合成橡胶、塑料、医药、农药、香料、染料以及涂料等方面具有广泛的应用。
世界苯酚生产与消费现状
自1923年世界上采用苯磺化法首次生产苯酚以来,世界苯酚的生产发展很快。2003年世界苯酚的总生产能力约为805.3万吨,2004年增加到约865.6万吨,比2003年增长约7.5%。Ineos苯酚公司是目前世界上最大的苯酚生产厂商,生产能力约占世界苯酚总生产能力的18%。预计2005年世界苯酚的总生产能力将达到955.3万吨。
2003年,世界苯酚的总消费量约为735万吨,2004年总消费量增加到约748万吨,同比增长约1.8%。世界各个地区对苯酚的需求有所不同,其中美国的需求量约占总需求量的26.8%,欧洲的需求量约占总需求量的28.3%,日本的需求量约占总需求量的11%,亚洲(不包括日本)的需求量约占总需求量的20.1%,其他地区的需求量约占总需求量13.7%。
我国苯酚的产量不能满足国内实际生产的需求,每年都得大量进口,且进口量呈不断增加的趋势。2003年进口量达到32.27万吨,比2002年增长48.4%。2004年由于我国对苯酚进口进行了反倾销,进口量减少到28.12万吨。
为了满足日益增长的需求,国内许多苯酚生产厂家都纷纷扩建或新建生产装置。蓝星化工材料公司计划新建两套分别为6.2万吨/年和12.4万吨/年苯酚生产装置,2005年、2006年相继建成投产。香港建滔拟在常州新建一套12.4万吨/年苯酚生产装置。燕山石化拟将现有苯酚生产能力扩大到24.0万吨/年。沈阳化工集团公司拟新建一套12.4万吨/年苯酚生产装置。若这些项目能够按计划完成,预计到2006年,我国苯酚的总生产能力将达到100万吨。
近几年,我国苯酚的需求增长速度较快。2004年我国苯酚的表观消费量为61.96万吨,1999-2004年表观消费量的年均增长率为17.3%。目前,我国苯酚主要用于生产酚醛树脂、双酚A、水杨酸以及壬基酚等。2004年我国苯酚的消费结构为:酚醛树脂对苯酚的消费量占总消费量的29.0%,双酚A占31.1%,水杨酸占10.5%,壬基酚占8.1%,其他方面占21.3%。
预计在今后几年中,双酚A将成为我国苯酚下游产品中重点发展的品种之一,目前有许多公司准备新建或扩建双酚A生产装置。2005年,我国双酚A的需求量达到35万吨,对苯酚的需求量将达到30万吨。
酚醛树脂是目前我国苯酚最主要的消费领域,随着新材料的发展,其部分用途将逐渐被其他材料所取代,因此在今后苯酚消费中所占的比例将会逐渐下降。2005年我国酚醛树脂对苯酚的需求量约为17.5万吨。
水杨酸主要用于生产阿司匹林。目前我国水杨酸的总生产能力约为5万吨/年,2004年对苯酚的需求量约为6.5万吨,2005年对苯酚的需求量将达到约7万吨。预计未来几年我国水杨酸对苯酚的需求量将以年均约11%的速度增长。
壬基酚主要用作非离子表面活性剂,目前我国总生产能力约为3万吨/年,产量约为1.6万吨/年,2004年对苯酚的需求量约为5万吨。随着我国日用化工和合成材料工业等的快速发展,加上国内壬基酚合成技术日益完善以及下游系列产品的不断开发,壬基酚的消费量将保持较高的增长势头,2005年我国壬基酚对苯酚的需求量达到5.5万吨。
苯酚(别名:石炭酸 )
分子式:C6H6O
分子量:94.11
CAS NO.108-95-2
结构式:C6H5OH
CAS 登录号108-95-2
EINECS 登录号203-632-7
物化性质:
性状 无色针状结晶或白色结晶熔块。有特殊的臭味和燃烧味,极稀的溶液具有甜味。
熔点 43℃
沸点 181.7℃
凝固点 41℃
相对密度 1.0576
折射率 1.54178
闪点 79.5℃
溶解性 易溶于乙醇、乙醚、氯仿、甘油、二硫化碳、凡士林、挥发油、固定油、强碱水溶液。几乎不溶于石油醚
储存注意事项:
储存于阴凉、通风的库房。远离火种、热源。避免光照。库温不超过30℃,相对湿度不超过70%。包装密封。应与氧化剂、酸类、碱类、食用化学品分开存放,切忌混储。配备相应品种和数量的消防器材。储区应备有合适的材料收容泄漏物。应严格执行极毒物品“五双”管理制度。
【钠与苯酚反应的实验】
苯酚在通常温度下是固体,与钠不难顺利发生反应,如果采用加热熔化苯酚,再加入金属钠的方法进行实验,苯酚易被氧化,在加热时苯酚颜色发生变化而影响实验效果。本人在教学中采取下面的方法实验,操作简单,取得了满意的实验效果。
在一支试管中加入2~3毫升无水乙醚,取黄豆粒大小的一块金属钠,用滤纸吸干表面的煤油,放入乙醚中,可以看到钠不与乙醚发生反应。然后再向试管中加入少量苯酚,振荡,这时可观察到钠在试管中迅速反应,产生大量气体。这一实验的原理是苯酚溶解在乙醚中,使苯酚与钠的反应得以顺利进行。
分子式为CnH2n +1 OH
酒精
醇
烃分子的一个或几个氢羟基取代的产生一类有机化合物。在芳香族烃环上的氢被取代的羟基化合物产生的醇,这是一种酚类化合物。
存在于自然界中有许多种,乙醇和其他酒精发酵液在同一系列中的。萜烯醇和芳族醇,它们的自由状态中的各种植物精油或酯的形式,缩醛存在。许多醇酯的形式存在,是存在于动物和植物油,油脂,和蜡。
根据所含羟基的多少进行分类,可分为一元,二元,三元或多元醇。一个碳原子,一般不能含有两个羟基,与碳二醇,不稳定容易脱水的羰基化合物形成。的醇,也可以根据与该连接中的羟基的碳原子上的氢的数目,被划分成的醇,仲醇,叔醇。
醚的通式ROR类化合物。醚结构,连接到氧原子与两个烃基,该烃基可以是相同的或不相同的,相同的所谓简单醚相同的称为混合醚。该烃基可以是一个芳族烃基或脂族烃基。两个烃基可以彼此连接形成环醚,如环氧乙烷。分别与连接的碳原子和多个氧原子的环状醚的形成被称为大环醚或冠醚。链分子中含有的结构单元的多个碳 - 氧 - 碳(≡COC≡),它被称为一缩二丙二醇醚,如二甘醇二甲醚(CH3OCH2CH2)2O。
一般醚字命名与氧相连的烃基,例如,C 2 H 5-O-C 2 H 5,所述乙醚,或二乙醚,CH 3-O-C 2 H 5,所述的甲基乙基醚,甲基乙基醚称为。环醚通常使用的通用名称。
醚和烃类是非常相似的,化学性质稳定,在室温下,不反应,可以形成碱金属和碱金属的盐,与一种强酸,如所示,该反应产物进一步与氢卤酸的作用,所产生的的卤代烃和醇,醇也可以是氢卤酸的反应,生成的卤代烃。醚在暗的情况下与氯或溴反应,可以产生的氯化醚或溴醚。以太光催化作用,空气中的氧生成过氧化。
酮:
酮的羰基和两个烃化合物(正式的学名是“一个基地·基酮”)连接。根据烃分子,酮可分为脂肪族酮,脂环酮,芳香酮,不饱和酮类,和不饱和的酮。是直接连接在芳环上的芳族酮羰基,根据可分为1元酮,二元酮和多羟基酮羰基的数目。羰基被嵌入在环中,,称为环酮,如环己酮。一元酮2的烃基,羰基连接到相同的所述单一的酮类,如丙酮(二甲基酮)。相互不同的混合的酮类,如苯乙酮(苯基甲基酮)。酮的分子不能形成氢键,其沸点低于相应的醇,但羰基氧与水分子形成氢键,所以较低的碳原子数的酮(低级酮)溶解在水中。低级酮,是一种液体,具有令人愉快的气味,碳原子数的酮(酮)是一种固体。化学性质活泼,容易亲核加成反应与氢氰酸,格利雅试剂,羟胺,醇,等[1]可还原成醇。的偏振的羰基,α-H的酮卤化反应可以发生发生卤仿反应在碱性条件下,与甲基酮。芳烃酰化和羧酸衍生物制备的仲醇的氧化,与有机金属化合物进行反应。丙酮,环己酮是一种重要的化工原料。
官能团羰基C = O
酮的通式为R-CO-R
苯酚:
酚(苯酚),通过式ArOH,是芳香族烃环上的一个氢被取代的羟基基团(-OH),芳族化合物的一类。最简单的酚是苯酚。的
分类
根据羟基分子的一元酚,二元酚和多酚的数目划分称为的萘酚
羟基萘环上,称为蒽蒽环类。
酸性
普通的醇,由于一个芳香环中的影响,苯酚(酚性羟基基团上的羟基)一种弱酸,酸性除醇羟基。
如苯酚(C6H5OH)在部分电离的水内:
苯酚苯酚,可以产生与强碱,如苯酚钠。
易被氧化
酚很容易氧化成红色或粉红色的醌的空气无色晶体。复杂
苯酚用氯化铁溶液中形成复合物并显示出可识别由氯化铁或酚蓝紫色。反应的酚性羟基
容易发生各种电取代反应的位上的邻居的
酚羟基的烷基化和酰化反应可以发生。
苯酚的制备一般可以得到的芳香磺化碱熔[1]
也可制得苯酚与碱的反应,卤代芳烃的高温和高压下催化
异丙苯氧化可制备苯酚和丙酮
从芳香族烃制成的格利雅试剂与硼酸酯,过氧酸的氧化,水解后可以得到的酚
1,3 ,5 - 三甲基苯,1,2,3,5 - 杜烯与过氧三氟乙酸,制备相应的酚在低的三氟化硼反应,用CH 2 Cl 2
芳烃用三氟乙酸铊反应产物具有高的醋酸铅,三苯基膦连续地反应,使在加盐酸铅,铊离子沉淀加入NaOH水解后得到的酚
芳香伯胺的重氮盐水溶液洗涤也可以制备苯酚。
芳香族醇:分子碳链连接到所谓的芳族醇的苯环醇。如苄醇。这样的物质的醇性羟基的性质,但也具有的性质的苯环
羧酸:
羧酸(RCOOH)是一个最有机酸类重要的。式RCOOH或R(COOH)n,则式化合物,其中R是脂肪族烃基或芳香族烃基,分别称为作为脂肪(家庭)羧酸或芳族酸(家庭)的一类。可分为根据羧基的一元酸,二元酸和多元酸的数目。酸性,与碱成盐。一般的酸氯化物与三氯化磷反应,脱水生成酸酐与五氧化二磷酯形成反应在酸催化下与醇,通过与氨反应形成的酰胺,与四氢化铝锂(LiAlH4还原)还原生成的醇。通过醇,醛,不饱和烃,芳族化合物侧链的氧化,或腈水解,或格利雅试剂与干冰反应的制备方法。皂化来自植物和动物的油或蜡,含6-18个碳原子的酸,可以得到直链脂族(家庭)。
含有羧基-COOH的化合物。通式:其中R可以是氢,链烃基,环烃基或芳族烃基。广泛存在于自然界。脂肪酸,芳香酸,不饱和羧酸和不饱和酸等,根据与羧基相连的烃基,可以被划分。根据分子中羧基的数目,可分为一元羧酸,二元羧酸和多元羧酸。脂肪酸,因为它是一种脂肪的水解产物,因此得名,是一个非常重要的一类化合物。一元饱和脂肪族羧酸的通式:CnH2nO2