乙酸的制备方法
乙酸的制备可以通过人工合成和细菌发酵两种方法。生物合成法,即利用细菌发酵,仅占整个世界产量的10%,但是仍然是生产乙酸,尤其是醋的最重要的方法,因为很多国家的食品安全法规规定食物中的醋必须是通过生物法制备,而发酵法又分为有氧发酵法和无氧发酵法。 在氧气充足的情况下,醋杆菌属细菌能够从含有酒精的食物中生产出乙酸。通常使用的是苹果酒或葡萄酒混合谷物、麦芽、米或马铃薯捣碎后发酵。由这些细菌发酵反应的化学方程式为:
C₂H5OH + O₂ →CH₃COOH + H₂O
具体做法是将醋菌属的细菌接种于稀释后的酒精溶液并保持一定温度,放置于一个通风的位置,在几个月内就能够经过发酵,最后生成醋。工业生产醋的方法通过提供充足的氧气使得反应过程加快,此方法已经被商业化生产采用,也被称为“快速方法”或“德国方法”,因为首次在德国1823年应用成功而因此得名。此方法中,发酵是在一个塞满了木屑或木炭的塔中进行。含有酒精的原料从塔的上方滴入,新鲜空气从下方自然进入或强制对流。强化的空气量使得此过程能够在几个星期内完成,大大缩短了制醋的时间。
Otto Hromatka和Heinrich Ebner在1949年首次提通过液态的细菌培养基制备醋。在此方法中,酒精在持续的搅拌中发酵为乙酸,空气通过气泡的形式被充入溶液。通过这个方法,含乙酸15%的醋能够在两至三天制备完成。 部分厌氧细菌,包括梭菌属的部分成员,能够将糖类直接转化为乙酸而不需要乙醇作为中间体。总体反应方程式如下:
C6H12O6==3 CH3COOH
此外,许多细菌能够从仅含单碳的化合物中生产乙酸,例如甲醇,一氧化碳或二氧化碳与氢气的混和物。
2 CO2 + 4 H2 →CH3COOH + 2 H2O
2 CO + 2 H2 →CH3COOH
梭菌属因为有能够反应糖类的能力,减少了成本,这意味着这些细菌有比醋菌属细菌的乙醇氧化法生产乙酸更有效率的潜力。然而,梭菌属细菌的耐酸性不及醋菌属细菌。耐酸性最大的梭菌属细菌也只能生产不到10%的乙酸,而有的醋酸菌能够生产20%的乙酸。使用醋酸属细菌制醋仍然比使用梭菌属细菌制备后浓缩更经济。所以,尽管梭菌属的细菌早在1940年就已经被发现,但它的工业应用范围较窄。
除了上述生物法外,工业用乙酸多采用如下方法合成: 大部分乙酸是通过甲基羰基化合成的。此反应中,甲醇和一氧化碳反应生成乙酸,方程式如下
CH3OH + CO →CH3COOH
这个过程是以碘代甲烷为中间体,分三个步骤完成,并且需要多金属成分的催化剂(第二步中)
⑴ CH₃OH + HI →CH₃I + H₂O
⑵ CH₃I + CO →CH₃COI
⑶ CH₃COI + H₂O →CH₃COOH + HI
通过控制反应条件,也可以通过同样的反应生成乙酸酐。因为一氧化碳和甲醇均是常用的化工原料,所以甲基羰基化一直以来备受青睐。早在1925年,英国塞拉尼斯公司就开发出第一个甲基羰基化制乙酸的试点装置。然而,由于缺少能耐高压(200atm或更高)和耐腐蚀的容器,此方法的应用一直受到限制。1963年,德国巴斯夫化学公司用钴作催化剂,开发出第一个适合工业生产乙酸的工艺。1968年,铑催化剂的大大降低了反应难度。采用铑的羰基化合物和碘化物组成的催化剂体系,使甲醇和一氧化碳在水-乙酸的介质中在175℃和低于3兆帕的压力条件下反应,即可得到乙酸产品。因为催化剂的活性和选择性都比较高,所以反应的副产物很少。甲醇低压羰基化法制乙酸,具有原料价廉,操作条件缓和,乙酸产率高,产品质量好和工艺流程简单等优势,但反应介质有严重的腐蚀性,需要使用耐腐蚀的特殊材质。1970年,美国孟山都公司建造了采用此工艺的装置,因此铑催化甲基羰基化制乙酸逐渐成为支配性的孟山都法。90年代后期,英国石油成功的将Cativa催化法商业化,此方法采用钌催化剂,使用([Ir(CO)₂I₂]),它比孟山都法更加绿色也有更高的效率。 在孟山都法商业生产之前,大部分的乙酸是由乙醛氧化制得。尽管不能与甲基羰基化相比,此法仍然是第二种工业制乙酸的方法,反应方程式如下:
2CH₃CHO+O₂→2CH₃COOH
乙醛可以通过氧化丁烷或轻石脑油制得,也可以通过乙烯水合后生成。 采用正丁烷为原料,以乙酸为溶剂,在170℃-180℃,5.5兆帕和乙酸钴催化剂存在下,用空气为氧化剂进行氧化。同时此方法也可采用液化石油气或轻质油为原料。此方法原料成本低,但工艺流程较长,腐蚀严重,乙酸收率不高,仅限于廉价异丁烷或液化石油气原料来源易得的地区采用。
2 C₄H₁₀ + 5 O₂ →4 CH₃COOH + 2 H₂O
此反应可以在能使丁烷保持液态的最高温度和压力下进行,副产物包括丁酮,乙酸乙酯,甲酸和丙酸。因为部分副产物也有经济价值,所以可以调整反应条件使得副产物更多的生成,不过分离乙酸和副产物使得反应的成本增加。
在类似条件下,使用上述催化剂,乙醛能被空气中的氧气氧化生成乙酸:
2 CH₃CHO + O₂ →2 CH₃COOH
也能被 氢氧化铜悬浊液氧化:
2Cu(OH)₂+CH₃CHO→CH₃COOH+Cu₂O↓+2H₂O
使用新式催化剂,此反应能获得95%以上的乙酸产率。主要的副产物为乙酸乙酯,甲酸和甲醛。因为副产物的沸点都比乙酸低,所以很容易通过蒸馏除去。 塞拉尼斯公司也是世界上最大的醋酸生产商之一。1978年,赫斯特-塞拉尼斯公司(现塞拉尼斯公司)在美国得州克莱尔湖工业化投运了孟山都法醋酸装置。1980年,塞拉尼斯公司推出AOPlus法(酸优化法)技术专利,大大改进了孟山都工艺。
AOPlus工艺通过加入高浓度无机碘(主要是碘化锂)以提高铑催化剂的稳定性,加入碘化锂和碘甲烷后,反应器中水浓度降低至4%~5%,但羰基化反应速率仍保持很高水平,从而极大地降低了装置的分离费用。催化剂组成的改变使反应器在低水浓度(4%~5%)下运行,提高了羰基化反应产率和分离提纯能力。 乙酸是大宗化工产品,是最重要的有机酸之一。主要可用于生产乙酸乙烯、乙酐、乙酸酯和乙酸纤维素等。聚乙酸乙烯酯可用来制备薄膜和粘合剂,也是合成纤维维纶的原料。乙酸纤维苏可制造人造丝和电影胶片。乙酸酯是优良的溶剂,广泛用于尤其工业。乙酸还可用来合成乙酐、丙二酸二乙酯、乙酰乙酸乙酯、卤代乙酸等,也可制造药物如阿司匹林、还可以用于生产乙酸盐等。在农药、医药和染料、照相药品制造、织物印染和橡胶工业中都有广泛应用。
在食品工业中,乙酸用作酸化剂,增香剂和香料。制造食醋时,用水将乙酸稀释至4~5%浓度,添加各种调味剂而得食用醋。作为酸味剂,使用时适当稀释,可用于调饮料、罐头等,如制作蕃茄、芦笋、婴儿食品、沙丁鱼、鱿鱼等罐头,可制作软饮料,冷饮、糖果、焙烤食品、布丁类、胶媒糖、调味品等。
乙酸具有防腐剂的作用。1.5%就有明显的抑菌作作用。在3%范围以内,可避免霉斑引起的肉色变绿变黑。
目前世界上工业乙酸乙酯主要制备方法有乙酸酯化法、乙醛缩合法、乙烯加成法和乙醇脱氢法等。传统的乙酸酯化法工艺在国外被逐步淘汰,而大规模生产装置主要是乙醛缩合法和乙醇脱氢法,在乙醛原料较丰富的地区万吨级以上的乙醛缩合法装置得到了广泛的应用。乙醇脱氢法是近年开发的新工艺,在乙醇丰富且低成本的地区得到了推广。最新的乙酸乙酯生产方法是乙烯加成法,1998年在印度尼西亚迈拉库地区采用日本昭和电工专利技术建成了50
kt/a生产装置。
(1)乙酸酯化法
乙酸酯化法是传统的乙酸乙酯生产方法,在催化剂存在下,由乙酸和乙醇发生酯化反应而得。
CH3CH2OH+CH3COOH=CH3COOCH2CH3+H2O
乙醇
乙酸
乙酸乙酯
水
反应除去生成水,可得到高收率。该法生产乙酸乙酯的主要缺点是成本高、设备腐蚀性强,在国际上是属于被淘汰的工艺路线。
(2)
乙醛缩合法
在催化剂乙醇铝的存在下,两个分子的乙醛自动氧化和缩合,重排形成一分子的乙酸乙酯。
2CH3CHO→CH3COOCH2CH3
乙醛
乙酸乙酯
该方法20世纪70年代在欧美、日本等地已形成了大规模的生产装置,在生产成本和环境保护等方面都有着明显的优势。
(3)乙醇脱氢法
采用铜基催化剂使乙醇脱氢生成粗乙酸乙酯,经高低压蒸馏除去共沸物,得到纯度为99.8%以上乙酸乙酯。
2C2H5OH→CH3COOCH2CH3+H2
乙醇
乙酸乙酯
氢
(4)
乙烯加成法
在以附载在二氧化硅等载体上的杂多酸金属盐或杂多酸为催化剂的存在下,乙烯气相水合后与气化乙酸直接酯化生成乙酸乙酯。
CH2CH2+CH3COOH=CH3COOCH2CH3
乙烯
乙酸
乙酸乙酯
该反应乙酸的单程转化率为66%,以乙烯计乙酸乙酯的选择性为94%。Rhone-Poulenc
、昭和电工和BP等跨国公司都开发了该生产工艺。
葡萄糖分子量:180
乙酸分子量:60
产生的乙酸为(1/180*60*2)g,2/3g
乙酸乙酯的比重是0.90, 分子量:88.11.
1) 乙酸的摩尔数:
1.9x1.05/70.05= 29.56mmol.
2) 乙酸乙酯的摩尔数:
3.1x0.9/88.12 = 31.66mmol.
3). 产率:
31.66/29.56=106.8%
显然, 你的产物中不够纯净。
(因为产率不可以超出100%)。
将蜜糖浆加入乙醇发酵釜发酵,转化生成乙醇,含乙醇量约为9.5%。利用其它原料,如木薯,谷物等原料也是可行的。预澄清后,通过过滤薄膜将乙醇和水从含醇原料中分离出来。
在乙醇水溶液中,加入葡萄糖和水,然后加入醋酸发酵罐,通入空气将乙醇氧化成醋酸,发酵醋酸液含醋酸大于7 %,经分离后加入萃取塔,用有机溶剂将醋酸从水相中分离出来。有机相蒸馏分离出醋酸和溶剂。最终产品醋酸符合通用的国际质量标准,纯度达到99.7 %。
CH3OH + CO → CH3COOH
这个过程是以碘代甲烷为中间体,分三个步骤完成,并且需要一个一般由多种金属构成的催化剂(第二部中)
(1) CH3OH + HI → CH3I + H2O(2) CH3I + CO → CH3COI(3) CH3COI + H2O → CH3COOH + HI
通过控制反应条件,也可以通过同样的反应生成乙酸酐。因为一氧化碳和甲醇均是常用的化工原料,所以甲基羰基化一直以来备受青睐。当然,还有很多方法,比如乙醇氧化法、乙醛氧化法、乙烯氧化法和丁烷氧化法!
冰醋酸及乙酸,又称醋酸,广泛存在于自然界,它是一种有机化合物,是烃的重要含氧衍生物,是典型的脂肪酸。食醋的主要成分是乙酸。普通食醋中含有3%~5%的乙酸。乙酸被公认为食醋内酸味及刺激性气味的来源。在家庭中,乙酸稀溶液常被用作除垢剂。食品工业方面,在食品添加剂列表E260中,乙酸是规定的一种酸度调节剂。
乙酸的制备可以通过人工合成和细菌发酵两种方法。现在,生物合成法,即利用细菌发酵,仅占整个世界产量的10%,但是仍然是生产醋的最重要的方法,因为很多国家的食品安全法规规定食物中的醋必须是由生物制备的。75%的工业用乙酸是通过甲醇的羰基化制备。
有氧发酵
在人类历史中,以醋的形式存在的乙酸,一直是用醋杆菌属细菌制备。在氧气充足的情况下,这些细菌能够从含有酒精的食物中生产出乙酸。通常使用的是苹果酒或葡萄酒混合谷物、麦芽、米或马铃薯捣碎后发酵。有这些细菌达到的化学方程式为:
C2H5OH + O2 →CH3COOH + H2O
做法是将醋菌属的细菌接种于稀释后的酒精溶液并保持一定温度,放置于一个通风的位置,在几个月内就能够变为醋。工业生产醋的方法通过提供氧气使得此过程加快。是现在商业化生产所用方法其中之一,被称为“快速方法”或“德国方法”,因为首次成功是在1823年的德国。此方法中,发酵是在一个塞满了木屑或木炭的塔中进行。含有酒精的原料从塔的上方滴入,新鲜空气从他的下方自然进入或强制对流。改进后的空气供应使得此过程能够在几个星期内完成,大大缩短了制醋的时间。
现在的大部分醋是通过液态的细菌培养基制备的,由Otto Hromatka和Heinrich Ebner在1949年首次提出。在此方法中,酒精在持续的搅拌中发酵为乙酸,空气通过气泡的形式被充入溶液。通过这个方法,含乙酸15%的醋能够在两至三天制备完成。
无氧发酵
部分厌氧细菌,包括梭菌属的部分成员,能够将糖类直接转化为乙酸而不需要乙醇作为中间体。总体反应方程式如下:
C6H12O6 →3 CH3COOH
更令工业化学感兴趣的是,许多细菌能够从仅含单碳的化合物中生产乙酸,例如甲醇,一氧化碳或二氧化碳与氢气的混和物。
2 CO2 + 4 H2 →CH3COOH + 2 H2O
2 CO + 2 H2 →CH3COOH
梭菌属因为有能够直接使用糖类的能力,减少了成本,这意味着这些细菌有比醋菌属细菌的乙醇氧化法生产乙酸更有效率的潜力。然而,梭菌属细菌的耐酸性不及醋菌属细菌。耐酸性最大的梭菌属细菌也只能生产不到10%的乙酸,而有的醋酸菌能够生产20%的乙酸。到现在为止,使用醋酸属细菌制醋仍然比使用梭菌属细菌制备后浓缩更经济。所以,尽管梭菌属的细菌早在1940年就已经被发现,但它的工业应用仍然被限制在一个狭小的范围。
甲醇羰基化法
大部分乙酸是通过甲基羰基化合成的。此反应中,甲醇和一氧化碳反应生成乙酸,方程式如下
CH3OH + CO →CH3COOH
这个过程是以碘代甲烷为中间体,分三个步骤完成,并且需要一个一般由多种金属构成的催化剂(第二步中)
⑴ CH3OH + HI →CH3I + H2O⑵ CH3I + CO →CH3COI⑶ CH3COI + H2O →CH3COOH + HI
通过控制反应条件,也可以通过同样的反应生成乙酸酐。因为一氧化碳和甲醇均是常用的化工原料,所以甲基羰基化一直以来备受青睐。早在1925年,英国塞拉尼斯公司的Henry Drefyus已经开发出第一个甲基羰基化制乙酸的试点装置。然而,由于缺少能耐高压(200atm或更高)和耐腐蚀的容器,此法一度受到抑制。直到1963年,德国巴斯夫化学公司用钴作催化剂,开发出第一个适合工业生产的办法。到了1968年,以铑为基础的催化剂的(cis?[Rh(CO)2I2])被发现,使得反映所需压力减到一个较低的水平并且几乎没有副产物。1970年,美国孟山都公司建造了首个使用此催化剂的设备,此后,铑催化甲基羰基化制乙酸逐渐成为支配性的孟山都法。90年代后期,英国石油成功的将Cativa催化法商业化,此法是基于钌,使用([Ir(CO)2I2]),它比孟山都法更加绿色也有更高的效率,很大程度上排挤了孟山都法。
乙醇氧化法
由乙醇在有催化剂的条件下和氧气发生氧化反应制得。
C2H5OH + O2=CH3COOH + H2O
乙醛氧化法
在孟山都法商业生产之前,大部分的乙酸是由乙醛氧化制得。尽管不能与甲基羰基化相比,此法仍然是第二种工业制乙酸的方法。
2CH3CHO+O2→2CH3COOH
乙醛可以通过氧化丁烷或轻石脑油制得,也可以通过乙烯水合后生成。当丁烷或轻石脑油在空气中加热,并有多种金属离子包括镁,钴,铬以及过氧根离子催化,会分解出乙酸。化学方程式如下:
2 C4H10 + 5 O2 →4 CH3COOH + 2 H2O
此反应可以在能使丁烷保持液态的最高温度和压力下进行,一般的反应条件是150℃和55atm。副产物包括丁酮,乙酸乙酯,甲酸和丙酸。因为部分副产物也有经济价值,所以可以调整反应条件使得副产物更多的生成,不过分离乙酸和副产物使得反应的成本增加。
在类似条件下,使用上述催化剂,乙醛能被空气中的氧气氧化生成乙酸:
2 CH3CHO + O2 →2 CH3COOH
也能被 氢氧化铜悬浊液氧化:
2Cu(OH)2+CH3CHO→CH3COOH+Cu2O↓+2H2O
使用新式催化剂,此反应能获得95%以上的乙酸产率。主要的副产物为乙酸乙酯,甲酸和甲醛。因为副产物的沸点都比乙酸低,所以很容易通过蒸馏除去。
乙烯氧化法
由乙烯在催化剂(所用催化剂为氯化钯:PdCl2、氯化铜:CuCl2和乙酸锰:(CH3COO)2Mn)存在的条件下,与氧气发生反应生成。此反应可以看作先将乙烯氧化成乙醛,再通过乙醛氧化法制得。
丁烷氧化法
丁烷氧化法又称为直接氧化法,这是用丁烷为主要原料,通过空气氧化而制得乙酸的一种方法,也是主要的乙酸合成方法。
2CH3CH2CH2CH3 + 5O2=4CH3COOH + 2H2O
托普索法(合成气法)
低压甲醇羰基化法以甲醇,co是由天然气或水煤气获得,甲醇是重要化工原料其货源和价格波动较大。托普索法以单一天然气或煤为原料。第一步:合成气在催化剂下生成甲醇和二甲醚;第二部:甲醇和二甲醚(两者不需提纯)和co羰基化生成醋酸。也叫两步法。
如果想得到纯醋酸,就要用硫酸镁等中性干燥剂进行脱水处理
化学工业得到非食品醋酸的方法是氧化乙醇
而食品工业得到食用醋酸的方法是发酵
高生产率和高细胞密度发酵生物技术研究者追求的两个主要目标,一是新型生物产品的开发,另一就是为传统的或新生生物产品,寻求更经济的生产方式。近十年来,利用遗传工程技术来生产一些重要的生物药物,是生物技术领域中迅速发展的一个重要方向。在这一研究领域里,如何创造更经济、更有效的方法,来提高生产过程的经济性和产品的市场竞争力,已经成为生物技术领域的科学家们所关注的焦点问题。
利用重组DNA技术生产重要的生物药物,在人类文明史上具有划时代的意义。由于生产成本和生产率的高低直接影响公司的生存,重组生物药物生产过程的优化已经成为一个重要问题。它包括以下六个方面∶(1)适宜宿主的选择;(2)重组蛋白积累位点(如可溶的胞内积累、胞内聚合积累、周质积累或胞外积累)的确定;(3)重组基因最大表达的分子策略;(4)细胞生长和生产环境的优化;(5)发酵条件的优化;(6)后处理过程的优化。只有这六个方面都以实现高生产率为目标,整个生产过程的最优化才能实现。
(一)细胞生长环境的优化策略
要提高细胞密度和生产率,首先需要对微生物生长的物理和化学环境进行优化,包括生长培养基的组成,培养物理参数(pH、温度和搅拌)及产物诱导条件。优化这些参数的目的在于保证细胞生长处于最适的环境条件之下,避免营养物过量或不足、防止产物降解以及减少有毒产物的形成。
1.培养基组成的优化
培养基中通常含有碳(能)源、氮源,以及微营养物如维生素和微量元素,这些营养物的浓度与比例,对实现生产重组微生物的高密度发酵是很重要的。例如,过量的Fe2+和CaCO3与相对低浓度的磷酸盐可促进黄曲霉生产L-苹果酸;链霉菌在60~80 mmol/L CO32-存在下,其丝氨酸蛋白酶生产能力可提高10倍之多;在重组微生物达到高细胞密度后,限制磷酸盐浓度可使抗生素和异源白介素1的产率显著提高。此外还发现,限制精氨酸的浓度虽然会抑制细胞的生长,但比起精氨酸充足时细胞生长优良的情况,其重组-淀粉酶的产量可提高2倍。
培养基中复合氮源的种类对重组大肠杆菌的高密度发酵也非常重要。一般地,当流加培养基中含有酵母膏时,重组蛋白不稳定;而当流加培养基中含有蛋白胨时,大肠杆菌不能再利用其所产生的乙酸。将酵母膏和蛋白胨都加入流加培养基中,不但所生产的重组蛋白非常稳定,细胞还能再利用代谢合成的乙酸,这是一种非常有趣的代谢机制。
恒化技术可用于优化精氨酸营养缺陷型大肠杆菌X90的生长培养基。使该菌株以0.4 h-1的比生长速率在含精氨酸的基本培养基上生长,待培养达到稳定状态后,在恒化器内分别加入氨基酸、维生素和微量元素来考察这些物质对菌体生长和精氨酸合成的影响。结果表明,由于氨基酸生物合成途径的末端产物抑制作用,加入某些氨基酸后,细胞生长反而受到抑制。加入NH4Cl后细胞量则出现了戏剧性的增长。而添加维生素对菌体生长基本上没有任何影响。通过计算生物量对每种基质的产率,最终可以确定高密度发酵培养基的组成,在此优化培养基上,大肠杆菌X90细胞密度可达到92 g/L,同时形成56 mg/L的胞外重组蛋白酶。
2.特殊营养物的添加
在某些情况下,向培养基中添加一些营养物质能提高生产率。这些营养物的作用有可能是作为产物的前体,也有可能是阻止产物的降解,例如,在培养重组大肠杆菌生产氯霉素乙酰转移酶(一种由许多芳香族氨基酸组成的蛋白)时添加苯丙氨酸,可将酶的比活力提高大约2倍;在培养重组枯草芽孢杆菌生产-内酰胺酶的培养基中添加60 g/L的葡萄糖和100 mmol/L的磷酸钾能使重组蛋白的稳定性显著提高。其原因可能是由于宿主细胞产生的多种胞外蛋白酶的活性被抑制,从而防止了重组蛋白的降解。
在生长培养基中添加特殊物质有时还能以一种未知的机制提高生产率。例如,在摇瓶培养Micromonospora cbersina时添加碘化钠可使dynemicin A的产量提高35倍,但在小型反应器中却无法重复这一结果。
3.限制代谢副产物的积累
培养条件的控制对代谢副产物的形成影响甚大。在分批或流加培养中,某些营养物的浓度过高均会导致Crabtree效应的产生。在这种效应下,酿酒酵母会产生乙醇,大肠杆菌则会产生过量乙酸,一旦生成乙酸,细胞生长及重组蛋白的生产均会受到抑制。大肠杆菌形成乙酸的速度依赖于细胞的生长速度和培养基的组成。业已确证,如果在培养基中添加复合营养物(如大豆水解物),则会增加乙酸的积累量。针对如何减轻由于乙酸积累而产生的负面影响,众多研究者进行了大量工作,如利用循环发酵技术来限制乙酸在重组大肠杆菌高密度培养中的积累。近来也有研究表明,添加某些氨基酸能减轻乙酸的抑制作用。如在培养基中添加10 mg/L的甘氨酸能显著促进大肠杆菌合成重组-淀粉酶和-内酰胺酶,并能刺激酶从周质向培养基中释放,但此时仍有乙酸伴随生成。