溴水能和乙醇反应么,原理
满足一定的条件可以反应,这个一定条件指的的碱性环境。
原理如下:
1、溴水在碱性条件下可以氧化乙醇,当然其实发生反应的是次溴酸钠而不是溴水;
2、在碱性条件下,溴水能和乙醇发生卤仿反应,第一步是次溴酸钠开始氧化,次溴酸钠的氧化性是足够氧化乙醇的;
3、即便不在碱性条件下,也能发生卤仿反应,但非常慢,试验中是看不到变化的,这时候加点碱就快了。
4、乙醇的羟基氧化成醛基,因为此反应是缓慢的,所以试验中看不到乙醇使溴的四氯化碳溶液褪色,造成溴水不与乙醇溶液反应的假象。
扩展资料:
溴水的性质:
溴单质与水的混合物。溴单质微溶于水,80%以上的溴会与水反应生成氢溴酸与次溴酸,但仍然会有少量溴单质溶解在水中,所以溴水呈橙黄色。
新制溴水可以看成是溴的水溶液,进行与溴单质有关的化学反应,但时间较长的溴水中溴分子也会分解,溴水逐渐褪色。久置的溴水中只含有氢溴酸。次溴酸会在光照下分解成氢溴酸和氧气。
参考资料来源:百度百科-溴水
反应。
醇可把伯醇氧化成酸和将仲醇氧化成酮。
由于仲醇氧化有酮生成,所以在碱性条件下还可能可以发生卤仿反应,但必须仲醇的官能团所在的碳原子的左右至少有一个甲基。
苯酚与溴水和纯溴都能反应生成三溴苯酚,但是由于在纯溴中会溶解其中而看不出现象,所以作为实验中学阶段不怎么提到。
溴水中有HBr可以与醇发生取代反应,但是每当有HBr生成就还会有HBrO产生,由于生成HBrO是微量的(歧化能力比HClO更强)可逆的,所以在非碱性条件下不会歧化。
而HBrO(溴水的氧化能力由其提供)是强氧化剂所以使得溴水的化学性质主要显示为强氧化性,所以溴水与醇反应几乎溴只显示其强氧化性,HBr的取代作用是一般显示不出来的(叔醇除外,由于其无法被氧化,所以羟基可以被Br极少量取代)。
扩展资料:
溴水中的溴具有较强的氧化性,遇某些还原剂会因氧化还原反应而使溴水的橙色褪去。如向溴水中通入硫化氢、二氧化硫,或加入镁粉、锌粉、铁粉等都可使溴水褪色。
满足一定的条件溴水和乙醇可以反应,这个一定条件指的的碱性环境。
原理如下:
1、溴水在碱性条件下可以氧化乙醇,当然其实发生反应的是次溴酸钠而不是溴水;
2、在碱性条件下,溴水能和乙醇发生卤仿反应,第一步是次溴酸钠开始氧化,次溴酸钠的氧化性是足够氧化乙醇的;
3、即便不在碱性条件下,也能发生卤仿反应,但非常慢,试验中是看不到变化的,这时候加点碱就快了。
4、乙醇的羟基氧化成醛基,因为此反应是缓慢的,所以试验中看不到乙醇使溴的四氯化碳溶液褪色,造成溴水不与乙醇溶液反应的假象。
参考资料:百度百科-溴水
不反应
和乙醇能反应的有:羧酸、钠钾等活泼金属、和氧气反应,如燃烧.此外,乙醇还可以在浓硫酸作催化剂加热脱水得到乙烯或乙醚。
能和溴反应的,分为两类,
一种是和液溴反应,比如苯及其同系物在铁或无水FeCl3催化下发生溴代反应;
另一种是和溴水或溴的四氯化碳等有机溶剂形成的溶液反应,比如烯烃、炔烃的反应,苯酚等,这种反应一般也能与液溴反应。
乙醇与溴水实际上是能发生反应的,只不过非常缓慢,在中学阶段,就认为乙醇和溴水不能反应。在溴水中有Br2,HBr还有HBrO,HBrO的强氧化性有可能氧化乙醇上的羟基,而使Br2+H2O<=>HBr+HBrO的平衡向右移动,从而促进了溴水和乙醇反应的发生。
乙醇与溴水实际上是能发生反应的,只不过非常缓慢,在中学阶段我们就会认为,乙醇和溴水不能反应。
还有乙醇不会被溴水氧化,但是乙醛会被溴水氧化.不会发生氧化还原反应,根据电化学原理,反映前的电势能比反应后的要低,所以不可能反应.
乙醇的结构简式为ch3ch2oh,俗称酒精,它在常温、常压下是一种易燃、易挥发的无色透明液体,它的水溶液具有特殊的、令人愉快的香味,并略带刺激性.
乙醇的用途很广,可用乙醇来制造醋酸、饮料、香精、染料、燃料等.医疗上也常用体积分数为70%——75%的乙醇作消毒剂等前为化合物,后为混合物.酒精是乙醇的水溶液!乙醇是纯净物。
,这样加入溴水,没有现象只是溶液颜色颜色变浅,
而溴水与苯,ccl4,会发生萃取,但苯的密度小于水
,溶液分层,上层是橙色液体,下层是无色水的是苯,ccl4密度大于水,这样橙色液体分层在下面的是ccl4
缓慢反应,乙醇被氧化为乙醛
之后比较复杂,乙醛甲基上的氢可以发生溴代,醛基也可以被氧化为羧基,同时发生
在溴水中有Br2,HBr还有HBrO,HBrO的强氧化性有可能氧化乙醇上的羟基,而使Br2+H2O<=>HBr+HBrO的平衡向右移动,从而促进了溴水和乙醇反应的发生
溴可以氧化乙醇生成乙醛,之后是乙醛的取代反应为主生成一溴乙醛,二溴乙醛以致三溴乙醛,碱性条件下三溴乙醛进一步发生卤反应(浓溴水中存在HBr 可以和醇中的羟基发生取代反应,生成卤代烃和水)
在光照的条件下,溴可以取代乙醇上的一个氢
4Br2+C2H5OH=CBr3CHO+5HBr常温
类似乙醇与氯的反应(生成三氯乙醛)。
反应中:首先卤素解离为卤阳离子和卤阴离子。乙醇的alpha氢被卤阴离子夺去生成卤化氢。乙醇脱去alpha氢生成碳负离子,与卤阳离子加成。重排后得到三卤乙醛。(卤素=氯,溴)
是本科的知识。
至于解释地更详细一点吗…推荐你找本有机教科书看看,重点是反应机理部分。
我稍微试着解释一下吧:
所谓alpha氢,指的是与官能团附近连接的碳原子(alpha碳)上的氢。【请看下面乙醇的例子】许多官能团的alpha氢,如与羰基C=O相连的alpha氢,很活泼,可以被碱夺取(脱去氢离子),使alpha碳(与官能团相连的叫alpha,与alpha相连的叫beta,再往后还有gamma,delta等。其实是用希腊字母表来命名/表示特定碳原子与官能团的相对位置)带负电荷。这带负电的碳原子成为碳负离子。碳负离子可以与许多试剂发生加成反应。
【乙醇的alpha碳和alpha氢】:
结构式 CH3-CH2-OH, 其中右边的碳与-OH羟基(官能团)相连,左边的碳与其相连,称为alpha碳。alpha碳上的氢成为alpha氢
这个反应中,乙醇分子内与羟基相连的alpha碳上的氢先被溴离子(碱)夺去生成溴化氢和碳负离子。
Br- + C2H5OH= C2H5O- + HBr
生成的碳负离子与溴正离子加成,
C2H5O- + Br+=CH2BrCH2OH
生成的溴代乙醇可以继续发生alpha氢的反应,直到三个氢均被取代,得到CBr3CH2OH 三溴乙醇.
三溴乙醇,象其他醇一样,可以与质子/氢离子(H+,来自溴代氢)生成“氧(应为左边金属旁,右边一个羊的字)盐”中间体:CBr3CH2OH+ H+ =CBr3CH2H2O+
氧原子因与一个质子结合而带部分正电荷。
“氧盐”不稳定,易失去一分子水形成碳正离子(碳带部分正电荷):
CBr3CH2H2O+ = H2O + CBr3CH2+
溴在水中岐化:Br2+H2O=HBr+ H+ + BrO- (次溴酸根)
次溴酸根与碳正离子结合:
CBr3CH2+ + BrO- = CBr3CH2OBr (碳与两个氢和一个-OBr链接)
生成的CBr3CH2OBr不稳定,脱去HBr得到三溴乙醛:
CBr3CH2OBr= CBr3CHO +HBr。
也可以理解为:次溴酸根具有强氧化性,氧化三溴乙醇为三溴乙醛,自身变为溴离子
乙醇主要种类
1、按生产使用的原料可分为淀粉质原料发酵酒精、糖蜜原料发酵酒精、亚硫酸盐纸浆废液发酵生产酒精。
淀粉质原料发酵酒精(一般有薯类、谷类和野生植物等含淀粉质的原料,在微生物作用下将淀粉水解为葡萄糖,再进一步由酵母发酵生成酒精);
糖蜜原料发酵酒精(直接利用糖蜜中的糖分,经过稀释杀菌并添加部分营养盐,借酵母的作用发酵生成酒精);
亚硫酸盐纸浆废液发酵生产酒精(利用造纸废液中含有的六碳糖,在酵母作用下发酵成酒精,主要产品为工业用酒精。也有用木屑稀酸水解制作的酒精)。
2、按生产的方法来分,可分为发酵法、合成法两大类。
3、按产品质量或性质来分,又分为高纯度酒精、无水酒精、普通酒精和变性酒精。
4、按产品系列(BG384-81)分为优级、一级、二级、三级和四级。其中一、二级相当于高纯度酒精及普通精馏酒精。三级相当于医药酒精,四级相当于工业酒精。新增二级标准是为了满足不同用户和生产的需要,减少生产与使用上的浪费,促进提高产品质量而制订的。