硅灰石(Wollastonite)
一、概述
硅灰石是一种天然产出的偏硅酸钙(Ca3[Si3O9]),理论化学成分CaO48.3%、SiO251.7%。其中的Ca2+离子易被少量的Fe2+、Mn2+、Mg2+、Sr2+等离子呈类质同象形式替代。硅灰石有三种同质多象变体:两种低温相变体,即三斜晶系硅灰石和单斜晶系副硅灰石;一种高温相即假硅灰石。硅灰石与假硅灰石的转化温度为(1120±20)℃,转化较缓慢,随着温度升高,转化时间将明显缩短。自然界常见的硅灰石主要是低温三斜硅灰石,其他两种象变体很少见。
硅灰石晶体沿b轴多发育为柱状、针状,其长度与直径比值即长径比为(10~7):1,比值高的可达(15~13):1。硅灰石热膨胀特点是沿b轴膨胀系数(25~800℃为6.5×10-6℃-1)低,膨胀随温度改变呈线性变化。假硅灰石的热膨胀系数为11.8×10-6℃-1,明显高于硅灰石的热膨胀系数。因此在硅灰石质陶瓷的烧成过程中应避免硅灰石向假硅灰石的转变。硅灰石的物理-化学性质见表3-6-1。
表3-6-1 硅灰石的主要物化性质
在高温加热条件下,硅灰石的化学性质活泼,可与高岭石等矿物发生固相反应,与陶瓷工业有关的反应包括:
河南省非金属矿产开发利用指南
河南省非金属矿产开发利用指南
由于硅灰石具有针状晶体、低热膨胀系数、低吸油率、色白、绝缘性好、高温化学性质活泼等特点,使其应用在陶瓷工业、填料工业等领域中。
二、资源概况和矿石类型
1.资源概况
硅灰石的成因类型有五种,其中有工业价值的是接触变质类型和区域变质作用类型。接触变质生成的硅灰石产于岩浆侵入体与碳酸盐岩的接触带,由SiO2和CaCO3反应而成。区域变质作用生成的硅灰石是由含钙质的岩层如石灰岩、大理岩经区域变质作用形成。
目前世界各国已查明的硅灰石储量约2亿吨,远景储量约4亿吨。在20多个硅灰石产出国中,美国、印度和墨西哥三国硅灰石矿总储量约占世界已探明总储量(不包括中国)的三分之二。
美国纽约州阿迪龙朗克山北东侧是世界硅灰石重要产地,在该州的威尔斯博罗地区有福克斯诺尔、刘易斯和狄尔赫德三个主要矿床。
墨西哥的硅灰石矿床主要产在萨卡特卡斯和恰帕斯两个州。
印度的硅灰石主要产在拉贾斯坦邦和中央邦,其中有的矿床矿石品位高达96%~97%。
我国的硅灰石矿资源丰富,远景储量为0.5亿~1.0亿吨,探明储量仅次于印度,居世界第二位。我国硅灰石产地比较集中,主要分布在吉林省,占全国总储量44.7%,江西省占17%,青海占13.4%,辽宁占10.3%,其他主要分布在湖北、安徽、浙江、江苏、云南、福建等省。我国硅灰石矿成矿条件好,矿体规模大,成分简单,较富。吉林梨树大顶山硅灰石矿床是我国目前规模最大的矿床。此外,吉林磐石长崴子硅灰石矿床,湖北大冶小箕铺硅灰石矿床规模也较大。
硅灰石矿床的一般工业要求见表3-6-2,开采技术条件见表3-6-3。
表3-6-2 硅灰石矿床一般工业指标
注:①视矿石质量优、差取上、下限;②手选矿石块度要求,暂按直径≥4cm计。
表3-6-3 硅灰石矿床开采技术条件
2.矿石类型
硅灰石矿石类型主要有大理岩型和夕卡岩型两大类。美国的威尔斯鲍罗、刘易斯、格尔赫德硅灰石矿,印度别尔卡巴赫硅灰石矿等是夕卡岩型。墨西哥拉布兰卡硅灰石矿,芬兰拉彭兰塔硅灰石矿等是大理岩型。我国主要硅灰石矿石类型见表3-6-4。国内外部分硅灰石的化学成分分析见表3-6-5。
表3-6-4 我国主要硅灰石矿石类型
三、硅灰石的主要用途及质量标准
由于硅灰石具有许多优异的物化性质,使其被广泛应用于陶瓷工业、化学工业、冶金工业等各工业部门(见表3-6-6)。
迄今为止,硅灰石主要应用于陶瓷工业。其中又以作釉面砖为主,以及生产特种的无线电陶瓷和低介电损耗绝缘体陶瓷等。硅灰石之所以成为陶瓷的重要原料,是由下列因素决定的。
在传统生产陶瓷工艺中,是以铝硅为主要体系的原料,生成的物相以莫来石为主。需采用高温(1250~1300℃)、长周期(30h以上)的烧成工艺。在坯体中加入一定量的硅灰石,构成了以硅-铝-钙为主要成分的低共熔体系,生成的物相主要是钙长石。硅灰石同时是助熔剂,降低了坯体的老化点,整个坯体的快速烧结物均匀一致。因此,硅灰石降低了陶瓷生产的烧成温度,缩短了烧成时间。
表3-6-5 国内外部分硅灰石的化学成分分析
表3-6-6 硅灰石的主要用途
硅灰石的针状晶体为生坯提供水分快速排出的通道,干燥速度加快,从而易压制成型,不分层。焙烧时,硅灰石针状体的不熔残渣构成了阻止坯体体积变化的致密骨架,冷却时,烧结料结晶将它们之间的针状体牢固粘接。坯体具有多孔和网状结构。硅灰石低的热膨胀系数和线性膨胀的特点,有利于坯体抗热冲击。
美国、原苏联等国都已对硅灰石在釉面砖上的应用进行了大量的研究工作。美国年产硅灰石约6万~7万t,其中一半用于釉面砖生产。以硅灰石为主要原料的釉面砖,实现低耗能低温快烧的新工艺,可节省燃料约30%~50%,被誉为节能原料。
在冶金工业中,硅灰石主要用作生产模铸硅钢保护渣和板坯连铸保护渣。武汉钢铁公司钢铁研究所等单位研制的以硅灰石为主要原料的保护渣,可替代从日本进口的“浮光40”保护渣。以天然硅灰石为基料板坯连铸粉状和颗粒状保护渣,具有化学性质十分稳定,含Al2O3很低的特征,能起到稳定连铸操作和改善连铸坯质量的作用。
硅灰石作为电焊条药皮配料,在电焊工业中得到应用,特别适合用来制造高钛型低炭钢电焊条。硅灰石微粉和超细微粉被用于塑料、橡胶、造纸、油漆工业中作填料和涂料,不仅降低了产品成本,而且明显改善了产品的物理-化学性能,尤其是机械力学性能。预计今后作工业填料和涂料用的硅灰石微粉和超细微粉用量将以每年10%的速度增加。
目前我国仅国家建材局于1994年颁布了硅灰石产品质量标准,标准号为JC/T535-94。一些主要的硅灰石产区或企业根据用户要求制定了一些地方或企业标准。
陶瓷、油漆、涂料、冶金、电焊条等应用领域对硅灰石产品质量要求分别见表3-6-7~表3-6-10。
吉林梨树硅灰石矿业公司出口硅灰石块矿和针状硅灰石粉质量标准见表3-6-11和表3-6-12。
表3-6-7 陶瓷工业用硅灰石产品的质量要求
注:建筑陶瓷用硅灰石,一般要求硅灰石矿物含量>60%。
表3-6-8 油漆、涂料用硅灰石产品质量要求
表3-6-9 冶金保护渣用硅灰石产品质量要求
表3-6-10 电焊条工业对硅灰石产品质量要求
表3-6-11 吉林梨树硅灰石矿业公司出口硅灰石块矿质量标准
表3-6-12 H-G系列针状硅灰石粉
吉林四平市硅灰石企业标准(吉Q/SS124-85)适用于油漆涂料、塑料、橡胶、陶瓷等行业,见表3-6-13~表3-6-15。
表3-6-13 吉林四平市硅灰石产品规格
表3-6-14 吉林四平市硅灰石的技术要求
表3-6-15 吉林四平市涂料级硅灰石粉的技术要求
注:以上产品指标,可根据用户特殊要求,双方协商。
湖北大冶非金属矿公司的硅灰石产品质量标准见表3-6-16。国外硅灰石一般工业要求见表3-6-17。美国出售硅灰石的粒度要求见表3-6-18。
表3-6-16 湖北大冶非金属矿公司硅灰石产品质量标准
表3-6-17 国外硅灰石一般工业要求
表3-6-18 美国出售硅灰石的粒度要求
四、硅灰石矿石的选矿和超细粉碎
1.硅灰石矿石的选矿提纯
硅灰石属接触变质矿物,与其共生的主要矿物有方解石、透辉石、石榴子石、透闪石、符山石、石英、黄铜矿、斑铜矿等,硅灰石的选矿方法随着矿石类型不同而有所不同。手选、光电拣选、磁选、浮选、重选等方法广泛应用于硅灰石的加工工艺中。硅灰石的主要选矿方法和原则流程见表3-6-19和表3-6-20。
列举两个实例说明硅灰石矿石的选矿。
表3-6-19 硅灰石的主要选矿加工方法
表3-6-20 硅灰石的主要选矿工艺原则流程
例1 梨树硅灰石矿的选矿工艺
该矿位于吉林省梨树县内。矿石中硅灰石含量为46.50%,方解石41.23%,透辉石3.49%,石英6.67%。在矿石中,硅灰石晶体内有透辉石和石英包体,方解石则呈不规则状分布于硅灰石颗粒及其裂隙之间。根据原矿性质,采用单一浮选流程选别硅灰石。根据硅灰石与方解石、石英的可浮性不同,采用反浮选方法对硅灰石进行选别,选矿流程见图3-6-1。
图3-6-1 梨树硅灰石矿连选试验流程
方解石精矿含方解石95.71%,产率38.78%;硅灰石精矿含硅灰石87.20%,产率44.48%。
例2 威尔斯鲍罗硅灰石选矿厂
选矿厂位于美国纽约州威尔斯鲍罗。矿石主要矿物组成为硅灰石、钙铁石榴子石、透辉石、少量方解石。矿石中硅灰石含量为55%~65%,钙铁石榴子石和透辉石的含量为10%~20%。根据矿石性质,采用单一强磁选工艺流程使硅灰石和钙铁榴石及透辉石分离。工艺流程见图3-6-2。
2.硅灰石的超细粉碎
图3-6-2 威尔斯鲍罗硅灰石选矿流程
硅灰石作为高档无机工业填料,必须深加工成针状超细粉料。国外多采用气流磨对硅灰石精矿进行超细粉碎,产品中高长径比、高比表面的粉量增多。80年代末,吉林梨树硅灰石矿业公司从Alpine公司引进两台630AFG流化床式气流粉碎机,用于生产-10μm的硅灰石超细微粉。随后,该公司与武汉工业大学合作,实现了这种设备国产化,研制成与630AFG性能相同的LPM-680气流磨,并建成了年产200t的超细硅灰石粉生产线,生产线工艺流程见图3-6-3。给料粒度325目,产量280.6kg/h,10μm通过率97.7%。
硅灰石超细粉碎产品有800、1250、2500目等。也可以根据用户的需要加工出平均粒度为10、5、2、1μm级的产品。
五、硅灰石粉料的表面改性
图3-6-3 超细硅灰石生产线工艺流程
1—颚式破碎机;2—传送带;3—颚式破碎机;4—除尘器;5—提升机;6—料仓;7—风机;8—提升机;9—料仓;10—磨机;11—旋流分级机;12一风机;13—提升机;14—料仓;15—风送系统;16—料仓;17—螺旋输送机;18—空压机;19—冷凝器;20—储气罐;21—LPM气流磨;22—收集器;23—风机
粉体表面改性(Surface modification or Surface treatment)是指用物理、化学、机械等方法对粉体物料表面进行处理,根据应用的需要有目的地改善或完全改变物料的物理技术性能或表面物理化学性质,如表面晶体结构和官能团、表面能、表面润湿性、表面吸附和反应特性等,以满足现代新工艺和新技术发展对新材料的需要。粉体的表面处理改性既是一门新技术,又是一门新学科。对于非金属矿物,表面改性能提高其使用价值和开拓应用领域,是最重要的深加工技术之一。
在塑料、橡胶、胶粘剂等高分子材料工业及复合材料领域中,无机矿物填料占有很重要的地位,不仅可以降低生产成本,而且明显改善产品的物理化学性能,如机械力学性能、阻燃性、绝缘性等。但是由于无机矿物与基质,即有机高聚物或树脂等具有不同的膨胀系数、表面张力、抗弯模数等性质,在二者接触处,明显表现出不相容性,因此接触界面是最薄弱的部位,易发生分离。由于相容性差,无机矿物填料难以在基质中均匀分散,直接或过多地填充往往容易导致产品的某些力学性能下降以及易脆化等缺点。因此,用无机矿物作填料,除了对其粒度、粒度分布、颗粒形状有要求外,还必须对矿物填料表面进行改性,提高其与基质,即有机高聚物或树脂的相容性和分散性,以增强产品的机械强度和综合性能。
用来对矿物表面进行改性的化学试剂称为表面改性剂。表面改性剂分为无机试剂和有机试剂两大类。无机试剂主要是一些无机颜料,如铁、钛、铬等的氧化物或含氧盐等。有机表面改性剂的种类较多,主要包括偶联剂类、脂肪酸(或胺)类、烯烃低聚物类以及各种树脂类等。由于矿物填料的种类不同,改性目的不同,所选用的表面改性剂亦不同。
1.矿物填料的有机表面改性剂
1)偶联剂
又称为架桥剂,是一种具有两性结构的物质。它们分子中的一部分基团可与矿物填料表面的各种化学基团反应,形成强有力的化学键合;另一部分基团则有亲有机物的性质,可与有机高分子发生化学反应或形成物理缠绕,在无机矿物与有机高分子之间形成具有特殊功能的“分子桥”,从而把两种性质差异很大的材料牢固结合起来,形成新型的复合材料。
偶联剂是目前应用最广泛的表面改性剂,它适用于各种不同的有机高分子和无机矿物填料的复合材料体系。经偶联剂进行表面处理的无机矿物填料,抑制了填充体系“相”的分离,即使增加填充量,仍可较好地均匀分散,从而改善了制品的综合性能,特别是抗张强度、冲击强度、柔韧性和挠曲强度等。按偶联剂的化学结构可分为硅烷类、钛酸酯类、锆类和有机铬络合物四大类。下面简要介绍前三类。
(1)硅烷偶联剂 硅烷偶联剂是研究得最早应用最广的偶联剂,是由美国联合碳化物公司为发展玻璃纤维增强塑料而开发出来的,至今已有40年的历史。
硅烷偶联剂是一类具有特殊结构的低分子有机硅化合物。其通式为RSiX3,式中R代表与聚合物分子有亲和力或反应能力的活性官能团,如氨基、巯基、乙烯基、环氧基、氰基、甲基、丙烯酰氧基等;X代表能够水解的烷氧基(如甲氧基、乙氧基)或氯。在进行偶联时,X基首先水解形成硅醇,然后再与矿物表面上的羟基反应,形成氢键并缩合成—SiO—M共价键(M表示无机矿物填料表面)。同时,硅烷各分子的硅醇又相互缔合齐聚,形成网状结构的膜覆盖在填料表面,使无机填料有机化。现以甲氨基硅烷偶联剂为例,其偶联作用过程为:
河南省非金属矿产开发利用指南
偶联剂的另一端的R可与聚合物发生反应形成牢固的化学键合。这种化学反应取决于R基的性质和树脂的种类。以环氧硅烷为例,与环氧树脂反应
河南省非金属矿产开发利用指南
硅烷偶联剂可用于许多无机矿物填料的表面改性,其中对含硅酸成分较多的石英粉、玻璃纤维、白碳黑等的效果最好,对高岭土、水合氧化铝效果也较好,对不含游离酸的碳酸钙效果欠佳。硅烷偶联剂产品牌号和品种分类见表3-6-21。
表3-6-21 硅烷偶联剂产品牌号和品种分类
续表
续表
(2)钛酸酯偶联剂 钛酸酯偶联剂是美国肯里奇(Kenrich)石油化学公司70年代开发成功的一类新型偶联剂。它有独特的结构,对热塑性聚合物与干燥填料有良好的偶联效能。
钛酸酯偶联剂的分子结构分为6个功能区,每个功能区都有其特点,在偶联过程中发挥各自的作用。
钛酸酯偶联剂的通式和6个功能区:
偶联无机相·亲有机相
河南省非金属矿产开发利用指南
式中:1≤M≤4,M+N≤6;R—短碳链烷烃基;R′—长碳链烷烃基;X—C、N、P、S等元素;Y—羟基、氨基、环氧基、双键等机团。
各功能区说明如下:功能区1[(RO)M—]—与无机填、颜料偶联作用的基团;
功能区2(Ti—O……—)—酯基转移和交联功能;
功能区3(X—)—联结钛中心带有功能性的基团;
功能区4(R—)—长链的纠缠基团——适用于热塑性树脂;
功能区5(Y—)一固化反应基团——适用于热固性树脂;
功能区6(N—)—非水解基团数。
(RO)M为钛酸酯与矿物填料进行化学键合的官能团,它可与矿物表面结构水和H+作用,形成包围矿物的单分子层。Ti—O部分为钛酸酯的有机骨架,可与聚合物的羧基之间进行相互交换,起酯基和烷基转移和交联作用。X部分是和分子核心钛结合的基团,对钛酸酯的性质有重要影响,具体可分为磷酸酯、五磷酸酯、羧基酸、磺酸基等。
钛酸酯偶联剂按其化学结构可分为三种类型:单烷氧基型、螯合型和配位型。
单烷氧基型 这一类品种最多,价格适中,广泛应用于塑料、橡胶、涂料、胶粘剂工业。这类偶联剂的典型是三异硬脂酰基钛酸异丙酯(TTS)。除含乙醇胺基和焦磷酸酯基的单烷氧基型外,大多数品种耐水性差,适用于不含游离水,仅含化学键合水和物理键合水的干燥矿物填料体系,如碳酸钙、水合氧化铝等。单烷氧基钛酸酯与无机填料的作用机理见图3-6-4。
图3-6-4 单烷氧基钛酸酯与无机填料的作用机理
焦磷酸型钛酸酯偶联剂耐水性好,适用于中等含水的无机填料,如高岭土、滑石粉等。焦磷酸型钛酸酯处理湿填料的吸湿机理见图3-6-5。
图3-6-5 焦磷酸型钛酸酯处理湿填料的吸湿机理
螯合型 这类偶联剂适用于高湿无机填料和含水聚合物体系,如高岭土、滑石粉、水处理玻璃纤维、炭黑等。一般的单烷氧基型钛酸酯水解稳定性差,在高湿体系中偶联效果差。螯合型钛酸酯偶联剂具有极好的水解稳定性,适于在高湿状态下使用。根据螯合环的不同,这类偶联剂分为两种基本类型:螯合100型和螯合200型。前者螯合基为氧代乙酰氧基;后者螯合基为二氧乙撑基。它们的偶联机理见图3-6-6和图3-6-7。
图3-6-6 螯合100型与填料的偶联机理
图3-6-7 螯合200型与填料的偶联机理
配位体型 四价钛酸酯在一些体系中存在副反应,如在环氧树脂中与羟基反应,在聚酯中的酯交换反应等。配位体型钛酸酯中的钛原子由4价键转变为6价键,降低了钛酸酯的反应活性,提高了耐水性。因此,配位体型钛酸酯偶联剂可在溶剂型涂料或水性涂料中使用。配位体型钛酸酯偶联剂与填料的偶联机理见图3-6-8。
图3-6-8 配位型偶联剂与填料的作用机理
国内外钛酸酯偶联剂主要品种见表3-6-22。
表3-6-22 国内外钛酸酯偶联剂主要品种对照
(3)锆铝酸盐偶联剂 锆类偶联剂是美国Cavedon化学公司于80年代开发的一类新型偶联剂,其商品名称为“CavcoMod”,它是以水合氯化氧锆(ZrOCl2·8H2O)、氯醇铝(Al2OH5Cl)、丙烯醇、羧酸等为原料合成的。锆铝酸盐偶联剂分子中含有两个无机部分和一个有机功能配位体。由于分子中无机特性部分的比重大,因此具有更多的无机反应点,使偶联剂有良好的羟基稳定性和水解稳定性。根据分子中的金属含量(即无机特性部分的比重)和有机配位基的性质,将已商品化的锆铝酸盐偶联剂分为7类(见表3-6-23),分别适用于聚烯烃、聚酯、环氧树脂、尼龙、丙烯酸类树脂、聚氨酯、合成橡胶等不同的聚合物,对于矿物填料,可用于碳酸钙、二氧化硅、高岭土、三水合氧化铝、氧化钛等的偶联改性。锆铝偶联剂性能较好,价格较便宜,在很多情况下可代替硅烷偶联剂。
表3-6-23 锆类偶联剂(Cavco Mod)的品种
2)高级脂肪酸及其盐类改性剂
(1)高级脂肪酸及其盐类 高级脂肪酸属于阴离子表面活性剂,其分子通式为RCOOH。分子的一端为长链烷基(C16~C18),这种结构与聚合物分子结构相近似,尤其是与聚烯烃分子结构相近,因而与聚合物基料有一定的相容性。分子的另一端为羧基或其金属盐,可与矿物填料表面发生一定的化学反应和物理吸附。因此,用高级脂肪酸及其金属盐处理矿物填料时,具有类似于偶联剂的作用。
常用的高级脂肪酸及其金属盐类的表面改性剂有硬脂酸、硬脂酸钙、硬脂酸锌等。高级脂肪酸的胺类、酯类与其金属盐类近似,亦可作表面改性剂。
(2)不饱和有机酸类 不饱和有机酸分子具有一个或多个不饱和双键及一个或多个羟基,碳原子数一般在10个以上。常见的不饱和有机酸有丙烯酸、马来酸、衣康酸、醋酸乙烯、醋酸丙烯等。带有不饱和双键的有机酸,对含碱金属离子的矿物填料进行表面改性,具有良好的处理效果。由于分子中存在不饱和双键,在和基体树脂复合时,在残余引发剂或热能、机械能作用下,双键打开,与基体树脂发生“接枝”、交联等一系列化学反应,使矿物填料与树脂较好地结合在一起,提高了产品的物理机械性能。
3)有机低聚物
(1)聚烯烃低聚物 聚烯烃低聚物主要品种有无规聚丙烯和聚乙烯蜡。聚烯烃低聚物有较高的粘附性能,可以和无机填料较好地浸润、粘附、包裹。同时因为基本结构和聚烯烃相似,能与聚烯烃很好地相容结合。因此,聚烯烃低聚物广泛应用于聚烯烃类复合材料中无机填料的表面处理。
(2)聚乙二醇 用聚乙二醇包覆处理硅灰石可显著改善聚丙烯(PP)缺口的冲击强度和低温性能。
2.表面改性剂的选择及用量
目前市场上已有几百种表面改性剂供选择,其选择过程是一个复杂的过程。对于同一种无机矿物填料,影响其填充效果的主要因素有颗粒的形状、粒径大小和粒度分布、填料表面性质等。填料的粒径越小,其补强效果越好。如用325目和2500目碳酸钙作半硬质PVC填料,后者比前者强度提高30%。纤维状、片状填料有助于提高制品的机械强度。在填料粒径、形状确定的情况下,考查填料表面改性效果的主要判据是填料与有机聚合物基体结合的牢固程度、填加量的多少,产品的各种物理-化学性能是否提高了等。这些与表面改性剂的选择和表面改性工艺过程有关。表3-6-24列出了各种表面改性剂的适用范围。
表3-6-24 表面改性剂的适用范围
表面改性剂的用量一般为无机填料量的0.5%~3%。对于某些偶联剂类,可通过计算得到理论加入量。以硅烷偶联剂为例,计算公式为:
河南省非金属矿产开发利用指南
式中:W为硅烷偶联剂用量(g);W1为欲改性的矿物填料重量(g);S1为矿物填料的比表面积(m2/g),可实测获得;S2为偶联剂的最小包裹面积(m2/g),由生产厂家提供。
表3-6-25给出了KH系列硅烷偶联剂的最小包覆面积。
表3-6-25 KH系列硅烷偶联剂最小包覆面积
在生产和试验中主要采用“活化指数”来表征表面处理的效果。无机矿物填料或颜料粉体相对密度较大,而且表面呈极性状态,在水中自然沉降。经表面改性处理后的无机填料粉体表面由极性变为非极性,对水呈现出较强的非浸润性,不沉降。根据上述现象,提出“活性指数”,用H表示,其含义为:
河南省非金属矿产开发利用指南
由上式可见:未经表面活化处理的无机粉体,H=0,活化处理最彻底时,H=1.0,H变化范围为0~1.0。将改性样品放入清水中搅拌10min,然后观察是否有沉淀和沉淀多少,如果在2天内无沉淀或沉淀很少,说明改性成功。改性剂的用量可根据“活化指数”来确定。最佳用量应是表面改性剂在颗粒表面上覆盖单分子层的用量。大于此量,则将形成多层物理吸附的界面薄弱层,从而导致填充物的强度下降;低于最佳用量,则填料颗粒表面改性处理不完全。
液态表面改性剂使用前应稀释,固态表面改性剂应配制成溶液。由于硅烷偶联剂与水的作用是偶联作用的基础,大部分硅烷经水解后成为水溶液。因此,常用水作稀释剂配成溶液使用。一般采用酸性溶液水解硅烷,常用的酸有盐酸、醋酸、月桂酸等。对于水解产物易缩合的硅烷,其水溶液应在使用前临时配制。
钛酸酯偶联剂用惰性溶剂,如白油、石油醚、变压器油等稀释,配成一定浓度的溶液。
锆类偶联剂的溶剂见表3-6-23。
用丙酮溶解硬脂酸制成溶液。
3.矿物填料表面改性工艺及设备
对矿物填料表面进行改性的方式有两种。一种是矿物填料预先涂敷处理改性工艺,在填料与树脂基料混合之前,先对矿物填料表面改性。另一种是所谓的整体处理工艺,将矿物填料和改性剂一起加入到树脂基料中进行混合处理。
预先涂敷处理改性工艺所用的主要设备是高速混合(捏合)机(图3-6-9)。
图3-6-9 高速混合(捏合)机结构
1—回转盖;2—混合锅;3—折流板;4—搅拌叶轮;5—排料装置;6—驱动电机;7—机座
高速混合机工作时,高速旋转的叶轮使物料连续地螺旋状上、下运动,物料运动速度很快。快速运动着的颗粒之间相互碰撞、摩擦,使团块破碎,物料温度相应升高,使物料均匀分散和对改性剂均匀吸附。工作原理见图3-6-10。
高速混合机的改性效果主要与叶轮的形状和回转速度、物料的温度、物料在混合室内的充满程度(即填充率)、混合时间、改性剂的加入方式和用量等因素有关。
填充率一般为0.5~0.7,对于高位式叶轮,填充率可达0.90
温度是影响最终改性效果的重要因素之一,对于不同的矿物填料和所用的表面改性剂,加热温度高低也不同。
图3-6-10 高速混合(捏合)机的工作原理
1—回转盖;2—外套;3—折流板;4—叶轮;5—驱动轴;6—排料口;7—排料气缸;8—夹套
部分国产高速混合机主要技术参数见表3-6-26。
表3-6-26 部分国产高速加热混合(捏合)机主要技术参数及生产厂家
4.硅灰石填料
重碳酸钙、重晶石、滑石、硅灰石等被称为白色非金属矿物颜料、填料。其中,由于硅灰石具高长径比和色泽白的特点,使其成为白色非金属矿物填料的佼佼者。用经硅烷偶联剂、钛酸酯偶联剂表面改性的硅灰石粉料作填料,可明显改善产品的性能。如作聚碳酸脂填料,其弹性模量是未填充时的3倍,强度大约增加15%,填充到聚乙烯、聚丙烯中,产品的拉伸强度、弯曲强度等机械力学性能明显提高。表3-6-27和表3-6-28列出了硅灰石充填PVC硬板和尼龙1010的性能。
表3-6-27 硅灰石充填PVC硬板性能
表3-6-28 不同矿物填充尼龙1010性能对比
西北油漆厂用硅灰石粉代替部分钛白粉或滑石粉,成功地应用到涂料中。
主要参考文献
[1] 《非金属矿工业手册》编辑委员会,非金属矿工业手册(上、下册),冶金工业出版社,1992。
[2] 郑水林,粉体表面改性.中国建材工业出版社,1995。
[3] 李英堂等,应用矿物学,科学出版社,1995。
[4] 孙宝岐等,非金属矿深加工,冶金工业出版社,1995。
[5] 《矿产资源综合利用手册》编辑委员会,矿产资源综合利用手册,科学出版社,2000。
[6] 刘伯元,硅灰石深加工及其产品在塑料中的应用,非金属矿,1997.3期,P21~24。
[7] 李晓琴等,硅灰石质瓷质坯体焙烧过程物相变化研究,非金属矿,1999.1期,P12~13。
滑石,主要含水硅酸镁[Mg3(Si4O10)(OH)2](即3MgO·4SiO2·H2O.)。基本不于盐酸反应。
透辉石是辉石中常见的一种,属单斜晶系,它属于硅酸盐矿物,是钙和镁的硅酸盐。不于盐酸反应。
硅辉石应为硅灰石(wollastonite)成分Ca3〔Si3O9〕。不于盐酸反应。
一般地,硅矿石不与盐酸反应。在浓盐酸里长时间加热,会有微弱的反应,但不会放出气体。不会生成眼睛能看得到的硅酸沉淀。
硅灰石(wollastonite)的分子式是Ca3〔Si3O9〕。三斜晶系,属于单链硅酸盐矿物。通常呈片状、放射状或纤维状集合体。白色微带灰色。玻璃光泽,解理面上珍珠光泽。硬度4.5~5.0。解理平行{100}完全,平行{001}中等,两组解理面交角为74°。密度2.78~2.91克/立方厘米。主要产于酸性侵入岩与石灰岩的接触变质带,为构成矽卡岩的主要矿物成分。此外,还见于某些深变质岩中。用作:造纸、陶瓷、水泥、橡胶、塑料等的原料或填料;气体过滤材料和隔热材料;冶金的助熔剂等。
2017年10月27日,世界卫生组织国际癌症研究机构公布的致癌物清单初步整理参考,硅灰石在3类致癌物清单中。[1]
中文名
硅灰石
外文名
wollastonite
别 称
矽酸钙
类 别
硅酸盐
化学式
CaSiO3
颜 色
白色微带灰色
光 泽
玻璃光泽
透明度
不透明
晶 系
三斜晶系
解 理
{001}和{102}
硬 度
4.5~5.0
脆 性
脆
比 重
2.86~3.09克/立方厘米
溶解度
完全溶于浓盐酸
应 用
造纸、陶瓷、水泥、橡胶、塑料等
成 分
CaSiO3或CaOSiO2
CAS号
1344-95-2;10101-39-0;
结构式
Ca3Si3O9
硬 度
4.5-5.0
硅灰石是一种三斜晶系,细板状晶体,集合体呈放射状或纤维状。颜色呈白色,有时带浅灰、浅红色调。玻璃光泽,解理面呈珍珠光泽。硬度4.5~5.5,密度2.75~3.10g/cm3。完全溶于浓盐酸。一般情况下耐酸、耐碱、耐化学腐蚀。吸湿性小于4%。吸油性低、电导率低、绝缘性较好。硅灰石是一种典型的变质矿物,主要产于酸性岩与石灰岩的接触带,与符山石、石榴石共生。还见于深变质的钙质结晶片岩、火山喷出物及某些碱性岩中。硅灰石是一种无机针状矿物,其特点无毒、耐化学腐蚀、热稳定性及尺寸稳定良好,有玻璃和珍珠光泽,低吸水率和吸油值,力学性能及电性能优良以及具有一定补强作用。硅灰石产品,纤维长而易分离,含铁量低,白度高。该产品主要用作高聚物基复合材料的增强填料。如塑料、橡胶、陶瓷、涂料、建材等行业。
硅灰石属于一种链状偏硅酸盐,又是一种呈纤维状、针状硅酸盐。由于其特殊的晶体形
态结晶结构决定了其性质,硅灰石具有良好的绝缘性,同时具有很高的白度、良好的介电性能和较高的耐热、耐候性能。因硅灰石广泛地应用于陶瓷、化工、冶金、造纸、塑料、涂料 等领域。
硅灰石的化学分子式为CaSiO3,[3] 结构式为Ca3[Si3O9],理论化学成分:CaO 48.25%、SiO251.75%,玻璃质感或珍珠质感的透明脆性晶体。自然界中纯硅灰石罕见,在其形成过程中,Ca有时被Fe、Mn、Ti、Sr等离子部分置换而呈类质同象体,[4] 并混有少量的Al和微量K、Na,因此具有白色,灰白色,浅绿色,粉红色,棕色,红色,黄色等多种颜色,夹杂白色条纹。由于硅灰石形成时的温度、压力等条件不同,可能出现3种同质多象体:
①三斜链状结构的Tc型硅灰石,通称低温三斜硅灰石(α-CaSiO3);
②单斜链状结构的ZM型副硅灰石,通称副硅灰石(α′- CaSiO3);
③三斜三元环状结构的假硅灰石,通称假硅灰石(β-CaSiO3)。[5]
广泛用作工业矿物原料的主要是低温三斜硅灰石。
低温三斜硅灰石为三斜晶系,大多呈针状、纤维状或片状,常簇集呈扇形、辐射形集合体,有的呈细小的颗粒状。白色微带灰、红色,玻璃光泽,解理面呈珍珠光泽,解理平行 中等,两组解理面交角为74°。密度2.78~2.91 g/cm3,硬度4.5~5,熔点1540℃。热膨胀系数低,在25~800℃时热膨胀系数为6.5×10-6 mm/(mm·℃),PH值9.9,具有优良的耐热,耐腐蚀,耐候性。;在1125℃左右时可转化为假硅灰石,这时热膨胀系数增加,并由于释放出Fe、Sr等杂质,因此颜色由白色变为奶油色、红色或褐色。 硅灰石矿石自然类型通常有夕卡岩型矿石和硅灰石-石英-方解石型矿石两类。前者主要产于夕卡岩型矿床中,矿物组分复杂,常伴生石英、方解石及透辉石、石榴子石等夕卡岩矿物;后者主要产于接触变质和区域变质型矿床,矿物组分简单,又可分为:硅灰石-石英、硅灰石-方解石和硅灰石-石英-方解石型3个亚类。硅灰石矿石的结构构造通常也有两种:致密块状矿石具细粒花岗变晶或纤维变晶结构,致密块状构造,硅灰石呈细小粒状、柱状或纤维状集合体,个别极细粒致密者呈玉状;粗晶硅灰石矿石具纤维变晶结构,块状、似角砾状、巨斑状或条带状构造,硅灰石晶体粗大,呈板柱状,束状或放射状(菊花状)。
硅灰石是一种三斜晶系,细板状晶体,集合体呈放射状或纤维状。颜色呈白色,有时带浅灰、浅红色调。玻璃光泽,解理面呈珍珠光泽。硬度4.5~5.5,密度2.75~3.10g/cm3。完全溶于浓盐酸。一般情况下耐酸、耐碱、耐化学腐蚀。吸湿性小于4%。吸油性低、电导率低、绝缘性较好。硅灰石是一种典型的变质矿物,主要产于酸性岩与石灰岩的接触带,与符山石、石榴石共生。还见于深变质的钙质结晶片岩、火山喷出物及某些碱性岩中。硅灰石是一种无机针状矿物,其特点无毒、耐化学腐蚀、热稳定性及尺寸稳定良好,有玻璃和珍珠光泽,低吸水率和吸油值,力学性能及电性能优良以及具有一定补强作用。硅灰石产品,纤维长而易分离,含铁量低,白度高。该产品主要用作高聚物基复合材料的增强填料。如塑料、橡胶、陶瓷、涂料、建材等行业。
英文名
wollastonite
CAS号
1344-95-2;10101-39-0;13983-17-0
EINECS号
215-710-8233-250-6237-772-5
组成
CaSiO3或CaOSiO2,含SiO251.75%、CaO48.25%。常含铁、锰、镁。
1.矿区地质特征
南泥湖-三道庄超大型钼钨矿床位于栾川县南部,处于华北地台西南边缘的坳陷带内,东秦岭钼多金属成矿带的东端。东秦岭钼矿带位于华北克拉通南缘与东秦岭造山带相接的地带,钼矿带西起陕西省的金堆城地区,东至河南省方城县,发育南泥湖-三道庄钼钨矿床和上房沟钼(铁)矿床两个超大型矿床,外围尚有马圈、石宝沟、鱼库、黄背岭等斑岩型、矽卡岩型中-小型钼矿床(图2-4)(潘磊,2012)。
图2-4 南泥湖- 三道庄区域地质图
(据毛景文等,2009)
1—新元古界陶湾群碳酸盐岩、碎屑岩;2—新元古界栾川群碎屑岩、碳酸盐岩及粗面岩;3—中元古界官道口群含燧石条带大理岩;4—中元古界宽坪群大理岩及基性火山岩;5—早白垩世花岗岩;6—晚侏罗世花岗斑岩;7—晚侏罗世花岗岩;8—断裂;9—斑岩-矽卡岩型钼(钨)矿;10—脉状或沿层充填的铅锌矿;11—矽卡岩型硫铁矿
2.矿体特征
该矿床因占地面积大而被人为地划分为南泥湖和三道庄两个矿区,在成因上,南泥湖属于斑岩型钼钨矿床,而三道庄属于矽卡岩型钼钨矿床(图2-5)。栾川群分布于矿田中部,为一套碎屑岩-碳酸盐岩-粗面质火山岩夹基性火山岩,自下而上分别为白术沟组、三川组、南泥湖组和煤窑沟组,其中三川组和南泥湖组为主要赋矿层位。矿体主要呈似层状产于南泥湖岩体内外接触带上,其中南泥湖矿区矿体主要赋存于南庄口-三道庄岭箱状背斜南翼及其向西的倾伏端和南泥湖向斜的东端翘起部分,矿石主要赋存于花岗斑岩体和角岩化的南泥湖组中;三道庄矿区矿体主要赋存于该箱状背斜轴部及其两翼,矿石则主要赋存于矽卡岩化和角岩化的三川组中。
图2-5 南泥湖-三道庄钼(钨)矿横9勘探线剖面图
(据向君峰等,2012)
1—南泥湖组角岩化二云母片岩和石英岩;2—三川组黑云母斜长石角岩;3—三川组透辉石斜长石角岩;4—三川组含石榴子石硅灰石大理岩;5—三川组矽卡岩化大理岩;6—三川组矽卡岩;7—中生代花岗岩;8—中生代正长岩;9—断层
经野外观察,结合镜下鉴定,角岩型矿石主要呈细粒变晶结构、粒状结构、鳞片变晶结构,条带状构造、块状构造;主要由石英和斜长石组成,含少量黑云母、透辉石等;黑云母长英角岩的层理比较细密,而交代形成的透辉石斜长石岩层理明显宽疏,岩石被石英黄铁矿脉和辉钼矿脉裂隙切割,显示了明显的充填作用。矽卡岩型矿石主要具鳞片变晶结构、粒状结构,条带状构造、纹层状构造、块状构造;主要由透辉石、斜长石、石榴子石、硅灰石、石英和少量钙铁辉石等组成;可见星点状辉钼矿矿化,在条带状矽卡岩中,可见浸染状辉钼矿化,显示了明显的交代作用。
3.成因模式
南泥湖-三道庄钼矿床属于晚侏罗世—早白垩世与同熔型(I型)花岗斑岩有关的斑岩型-矽卡岩型钼(钨)矿床,是斑岩-矽卡岩过渡型钨钼矿床(潘磊,2012;翁纪昌等,2010)。在矿床成因上,潘磊(2012)认为斑状花岗岩侵位于三川组和南泥湖组中,形成角岩和钙矽卡岩,随之而来的成矿流体在钙矽卡岩中以交代方式形成钼钨矿化,在角岩和斑状花岗岩中主要形成以充填为主的钼矿化,成矿元素钼钨和硫主要来源于岩浆,而热流体为岩浆水和雨水的混合液(图2-6)。
4.矿床系列标本简述
2012年,根据矿床地质特征和围岩蚀变等特征,采用GPS定位捡块法采集了南泥湖矿区和三道庄矿区标本共33块(表2-2)。其中在南泥湖矿区及三道庄采场顶部重点采集反映在南泥湖岩体作用下蚀变过程的标本23块,岩性包括辉钼矿化黑云母长英质角岩、绿帘石石榴子石透辉石矽卡岩、透辉石矽卡岩、黑云母石英角岩、矽卡岩化黑云母石英角岩、辉钼矿化含黑云母石英角岩、黑云母石英片岩、似斑状钾长花岗岩、矿化似斑状钾长花岗岩和基性岩。在三道庄矿区重点采集反映从三川组灰岩蚀变为含矿矽卡岩整个过程的标本10块,岩性包括辉钼矿化石榴子石矽卡岩、黄铁矿黄铜矿矿石、含石榴子石方解石脉大理岩、含方解石石榴子石脉(条带)大理岩、石榴子石硅灰石矽卡岩、透辉石矽卡岩、透辉石石榴子石矽卡岩和透辉石化石英角岩。本次采集的标本反映出了矿床的地质特征及不同岩石类型在矿床中的分布情况。由于是热液填充的矿体,方解石脉和含辉钼矿薄脉无法采集。标本采样位置见图2-7。
图2-6 东秦岭地区钼铅锌成矿模式图(据毛景文等,2009)
表2-2 南泥湖-三道庄钼矿采集标本
续表
注:表中Mo2-B代表南泥湖-三道庄标本,Mo2-b代表该标本薄片编号,Mo2-g代表该标本光片编号。
图2-7 南泥湖-三道庄钼矿标本采样位置图
1—渣石堆;2—透辉石长英角岩,局部含纹层状透辉石斜长石矽卡岩;3—矽卡岩;4—黑云母长英角岩;5—条带状石榴子石硅灰石矽卡岩;6—大理岩;7—石英岩;8—纹层状透辉石斜长石矽卡岩;9—透辉石化大理岩;10—透辉石化黑云母长英角岩;11—石榴子石矽卡岩;12—花岗岩
5.图版
(1)标本照片及其特征描述
Mo2-B01
辉钼矿化黑云母长英质角岩。岩石呈灰—深灰色,细粒变晶结构,条带状构造。主要矿物成分为石英和长石,少量黑云母,矿物颗粒细小,呈他形细粒—微细粒结构。长石、石英和暗色矿物黑云母组成灰白相间的条带。岩石中见辉钼矿,铅灰色,金属光泽,可污手,他形细粒结构,星点状分布,另可见浸染状细脉,含量<1%。岩石中可见星散状微量黄铜矿和黄铁矿
中国典型矿床系列标本及光薄片图册.钨钼铜矿
Mo2-B02
绿帘石石榴子石透辉石矽卡岩。岩石呈绿—灰绿色,鳞片变晶结构,条带状构造。主要矿物成分为透辉石,次为石榴子石。透辉石,浅灰绿色,隐晶质,块状集合体,条带状分布。石榴子石,浅肉红色,油脂光泽,半自形—他形细粒结构,条带状分布。岩石中可见黑色条带,可能为未完全交代蚀变的黑云母角岩残存。岩石中见有少量黄铁矿和微量黄铜矿,他形细粒结构,多沿岩石裂隙分布呈细脉状或细脉浸染状,含量1%~2%
中国典型矿床系列标本及光薄片图册.钨钼铜矿
Mo2-B03
绿帘石石榴子石透辉石矽卡岩。岩石呈绿—灰绿色,细小鳞片变晶结构,条带状构造。主要矿物成分为透辉石,次为石榴子石。透辉石,浅灰绿色,隐晶质,块状集合体。石榴子石,浅肉红色,油脂光泽,半自形—他形,细粒结构。岩石中可见黑色条带,可能为未完全交代蚀变的黑云母角岩残存。岩石中见有少量黄铁矿和黄铜矿,沿岩石裂隙分布,自形—半自形粒状结构,黄铁矿含量略高,达5%左右
中国典型矿床系列标本及光薄片图册.钨钼铜矿
Mo2-B04
黑云母石英角岩。岩石呈深灰色,细小鳞片变晶结构,条带状、纹层状构造。主要矿物成分为石英,次为黑云母。石英,微细粒结构,无色透明,含量约70%。黑云母,棕褐色,鳞片状,含量约25%。石英和黑云母组成灰白相间条带,条带具褶皱现象,显示热力变质与动力变质共同作用。岩石中见有细脉状黄铁矿化和辉钼矿化,黄铁矿含量约1%,辉钼矿含量<1%
中国典型矿床系列标本及光薄片图册.钨钼铜矿
Mo2-B05
矽卡岩化黑云母石英角岩。岩石呈深灰—黑灰色,鳞片变晶结构,块状构造。主要矿物成分为石英,次为黑云母。石英,无色透明,他形细粒结构,含量30%~35%,黑云母,黑褐色,细小鳞片状,含量约25%。蚀变矿物为肉红色和灰绿色透辉石,均呈他形细粒结构,分布无规律,含量约20%。岩石中见黄铁矿化,呈细脉状或浸染状分布,含量3%~4%,细脉中晶体较大,可达3~5mm,浸染状颗粒细小。与黄铁矿伴生的多见硅化石英。岩石裂隙中偶见辉钼矿化
中国典型矿床系列标本及光薄片图册.钨钼铜矿
Mo2-B06
矽卡岩化黑云母石英角岩。岩石呈灰—褐灰色,细粒变晶结构,纹层状构造。主要矿物成分为石英,次为黑云母。石英,无色透明,他形粒状,含量约60%。黑云母,鳞片状,含量25%~30%。蚀变矿物可见石榴子石,肉红色,油脂光泽,含量约5%。岩石中发育硅化石英脉,伴随有黄铁矿化和辉钼矿化。黄铁矿,亮黄色,细粒状,含量约2%。辉钼矿,铅灰色,微细粒结构,云雾状分布,含量1%~2%
中国典型矿床系列标本及光薄片图册.钨钼铜矿
Mo2-B07
透辉石矽卡岩。岩石呈灰色—绿灰色,鳞片变晶结构,条带状、纹层状构造。主要矿物成分为透辉石,次为黑云母。透辉石,绿色—浅绿色,他形粒状结构,含量约60%。黑云母,棕褐色,鳞片状,可见黑色条带或纹层,含量约30%。岩石中普遍具黄铁矿化,星点状分布,细脉状多伴随有硅化,含量约5%。岩石中还见有辉钼矿化,主要呈细脉状沿裂隙分布,脉宽1~2mm
中国典型矿床系列标本及光薄片图册.钨钼铜矿
Mo2-B08
透辉石矽卡岩。岩石呈绿灰—灰绿色,鳞片变晶结构,条带状构造。主要矿物成分为透辉石,次为黑云母。透辉石,绿色,他形细粒结构,条带状分布,含量约50%。黑云母,棕褐色,层状,含量约30%。透辉石与黑云母形成浅绿色、黑色相间条带,具褶皱现象。少量石英,无色透明,他形粒状,含量约10%。岩石裂隙中普遍见有黄铁矿化,含量1%~2%,偶见辉钼矿
中国典型矿床系列标本及光薄片图册.钨钼铜矿
Mo2-B09
矽卡岩化黑云母石英角岩。岩石呈灰色—深灰色,鳞片变晶结构,条带状构造。主要矿物成分为石英,次为黑云母。石英,无色透明,他形细粒状,含量30%~40%。黑云母,棕褐色,细小鳞片状,含量约20%。蚀变矿物为透辉石,绿色—浅灰绿色,含量约20%。浅色石英和透辉石与黑云母组成的条带呈相间分布。可见辉钼矿化和黄铁矿化,沿裂隙分布,含量约1%
中国典型矿床系列标本及光薄片图册.钨钼铜矿
Mo2-B10
辉钼矿化含黑云母石英角岩。岩石呈灰黄色,粒状变晶结构,条带状—纹层状构造。主要矿物成分为石英,次为黑云母。石英,无色透明,他形细粒结构,含量约85%。黑云母,棕褐色,细小鳞片状,含量约10%。岩石中可见辉钼矿和少量黄铁矿沿裂隙分布。辉钼矿,铅灰色,污手,金属光泽,细—中粒自形晶,粒径2~3mm,含量1%~2%
中国典型矿床系列标本及光薄片图册.钨钼铜矿
Mo2-B11
黑云母石英片岩。岩石呈深灰色—黑灰色,粒状—鳞片变晶结构,条带状—纹层状构造。主要矿物成分为石英,次为黑云母。石英,无色透明,他形细粒结构,含量约60%。黑云母,棕褐色,细小鳞片状,另可见黑云母斑晶,粒径2~3mm,含量约30%。石英和黑云母形成纹层或条带。岩石中可见3组方解石石英细脉,宽1~6mm,辉钼矿在脉中呈星点状断续分布,含量<1%
中国典型矿床系列标本及光薄片图册.钨钼铜矿
Mo2-B12
黄铁矿黄铜矿矿石。矿石呈黄色,他形粒状结构,稠密浸染状构造、条带状构造。矿石矿物主要为黄铁矿和黄铜矿。黄铁矿,黄白色,他形细粒结构,金属光泽,含量约50%。黄铜矿,亮黄色,他形细粒结构,沿裂隙分布呈细脉状,脉宽约1mm,与黄铁矿共生呈浸染状,含量约5%。脉石矿物主要为辉石和绿泥石。辉石,浅灰绿色,他形粒状结构,含量约20%。绿泥石,绿黑色,他形粒状结构,由辉石蚀变而成,含量约20%
中国典型矿床系列标本及光薄片图册.钨钼铜矿
Mo2-B13
辉钼矿化石榴子石矽卡岩。岩石呈灰褐色,粒状变晶结构,块状构造。主要矿物成分为石榴子石和透辉石。石榴子石,棕褐色—褐红色,半自形—他形细粒结构,油脂光泽,粒径<1mm,含量约70%。透辉石,绿色—浅灰绿色,他形细粒结构,玻璃光泽,含量约20%。少量黑云母。辉钼矿,铅灰色,金属光泽,细粒结构,浸染状、团窝状分布,含量约1%
中国典型矿床系列标本及光薄片图册.钨钼铜矿
Mo2-B14
含石榴子石方解石脉大理岩。岩石呈白色,中粒变晶结构,块状构造。主要矿物成分为方解石,次为石榴子石。方解石,白色—无色透明,自形—半自形中粒结构,解理发育,滴稀盐酸剧烈起泡,含量达90%。石榴子石,褐红色,半自形—他形粒状,粒径2~5mm,主要与方解石组成条带,条带中石榴子石含量可达30%~40%。另可见少量细粒白云母,含量1%~2%
中国典型矿床系列标本及光薄片图册.钨钼铜矿
Mo2-B15
含方解石石榴子石脉(条带)大理岩。岩石呈白色—淡青色,中粒变晶结构,块状构造。主要矿物成分为方解石、石榴子石。方解石,白色—无色透明,半自形—他形粒状,滴稀盐酸强烈起泡,含量达95%。石榴子石,棕黄—浅绿色,半自形—他形粒结构,粒径1~2mm,呈脉状分布,脉宽约1cm,含量1%~2%
中国典型矿床系列标本及光薄片图册.钨钼铜矿
Mo2-B16
石榴子石硅灰石矽卡岩。岩石呈灰白—肉红色,中—细粒变晶结构,条带状构造。主要矿物成分为硅灰石,次为石榴子石。硅灰石,白—浅灰白色,细—微晶结构,肉眼不易区分,含量约40%。石榴子石,棕黄—浅肉红色,他形细粒结构,油脂光泽,含量约30%。另含少量大理石、方解石,含量约30%。浅色硅灰石、大理石与棕黄色石榴子石相对集中分布,组成白-黄相间的条带,形成条带状构造
中国典型矿床系列标本及光薄片图册.钨钼铜矿
Mo2-B17
石榴子石透辉石矽卡岩。岩石呈绿灰色—灰黄色,细粒变晶结构,条带状构造。主要矿物成分为透辉石,次为石榴子石和方解石。透辉石,浅绿—灰绿色,他形细粒结构,含量约60%。石榴子石,棕黄—浅肉红色,油脂光泽,他形细粒结构,含量约20%±,呈条带状分布。方解石,含量约20%,部分透辉石化与绿泥石化。岩石中可见星点状、浸染状辉钼矿化,含量约1%
中国典型矿床系列标本及光薄片图册.钨钼铜矿
Mo2-B18
矽卡岩化石英角岩。岩石灰色,细粒状变晶结构,条带状构造。主要矿物成分为石英和透辉石,少量石榴子石和白云母。石英,无色透明,他形细-微细粒结构,含量约60%。透辉石,灰绿色、绿黑色,他形细粒结构,含量约30%,条带状分布。石榴子石,斑点状分布,黄褐色,油脂光泽,斑点为石榴子石聚斑,含量约5%。深色透辉石与浅色石英组成细条带相间分布。岩石中含细小石英辉钼矿细脉和稀疏浸染状辉钼矿化,以细小石英辉钼矿化为主,含量<1%
中国典型矿床系列标本及光薄片图册.钨钼铜矿
Mo2-B19
石榴子石硅灰石矽卡岩。岩石呈浅灰白—肉红色,中—细粒变晶结构,条带状构造。主要矿物成分为硅灰石,次为石榴子石、透辉石。硅灰石,白色,玻璃光泽,呈细小鳞片状、纤维状放射状,自形—半自形晶,含量约50%。石榴子石,棕褐色—浅肉红色,油脂光泽,他形中粗粒结构,条带状分布,部分与硅灰石共生,含量约30%。透辉石,浅绿色—鲜绿色,他形粒状,含量约20%。岩石中发育一条与条带斜切的石英-石榴子石细脉,脉宽3~6mm,脉中零星分布有辉钼矿化
中国典型矿床系列标本及光薄片图册.钨钼铜矿
Mo2-B20
透辉石矽卡岩。岩石灰绿色,细粒变晶结构,条带状构造。主要矿物成分为透辉石,次为方解石。透辉石,浅绿—深绿色,自形—他形粒状结构,粒径相差悬殊,为0.2~10mm,含量约70%。方解石,白—无色,滴稀盐酸起泡,含量约20%。岩石中发育两条脉,一条为白色石英脉,脉宽5~10mm,另一条为肉红色石榴子石脉,脉宽2~3mm。两种脉中均伴有星点状辉钼矿化
中国典型矿床系列标本及光薄片图册.钨钼铜矿
Mo2-B21
黑云母石英角岩。岩石呈灰色,鳞片变晶结构,条带状构造。主要矿物成分为石英,次为黑云母。石英,细—微细粒状,无色透明,含量约70%。黑云母,棕褐—红褐色,细小鳞片状,含量约25%。浅色石英和暗色黑云母组成浅色-深色条带相间分布,带宽1~2mm。岩石中发育与纹层斜交的细小石英黄铁矿脉
中国典型矿床系列标本及光薄片图册.钨钼铜矿
Mo2-B22
透辉石化黑云母石英角岩。岩石呈灰—绿灰色,鳞片变晶结构,条带状-纹层状构造。主要矿物成分为石英,次为黑云母和透辉石。石英,无色透明,他形细粒结构,含量约50%。黑云母,褐色,片状,组成暗色条带,含量约30%。透辉石,绿色—灰绿色,他形微细粒结构,含量约20%。岩石中发育一组斜切纹层或条带的石英脉,脉中见有微量黄铁矿化和辉钼矿化
中国典型矿床系列标本及光薄片图册.钨钼铜矿
Mo2-B23
透辉石石榴子石矽卡岩。岩石呈灰—灰黄色,细粒变晶结构,条带状构造。主要矿物成分为石榴子石和透辉石。石榴子石,棕色,他形细粒结构,组成棕褐色条带,含量约50%。透辉石,绿色—浅灰绿色,多为块状,非晶质,含量约50%。岩石中含有星点状黄铁矿和辉钼矿,呈稀疏浸染状或细脉状分布,含量<1%
中国典型矿床系列标本及光薄片图册.钨钼铜矿
Mo2-B24
似斑状钾长花岗岩。岩石呈肉红色,似斑状结构,块状构造。斑晶主要矿物成分为钾长石、石英和少量斜长石、黑云母。钾长石,肉红色,自形—半自形晶,粒径5~7mm,含量约60%。石英,无色透明,他形粒状,粒径3~8mm,含量约30%。斜长石,白色—浅灰白色,细粒结构,粒径3~5mm,含量约8%。基质成分与斑晶相同,只是粒径明显偏小。岩石中见微量星散状黄铁矿化
中国典型矿床系列标本及光薄片图册.钨钼铜矿
Mo2-B25
石英岩。岩石呈白色,细粒变晶结构,块状构造。主要矿物成分为石英,细—微细粒状,无色透明,油脂光泽,含量>95%。岩石中发育一条石英辉钼矿细脉,脉宽约1mm。另在岩石裂隙面上见有零星黄铁矿化
中国典型矿床系列标本及光薄片图册.钨钼铜矿
Mo2-B26
矿化似斑状钾长花岗岩。岩石呈肉红色,似斑状结构,块状构造。斑晶主要矿物成分为钾长石、石英和少量斜长石、黑云母。岩石中见多条硅化石英脉,脉宽2~10mm,各脉交叉分布,互相交切。岩石黄铁矿化和辉钼矿化多沿硅化石英脉分布,部分沿岩石裂隙分布,黄铁矿含量约2%。辉钼矿含量<1%
中国典型矿床系列标本及光薄片图册.钨钼铜矿
Mo2-B27
石榴子石透辉石矽卡岩。岩石呈灰绿色,粒状变晶结构,纹层状构造。主要矿物成分为透辉石、石榴子石。透辉石,鲜绿色—灰绿色,他形粒状,含量约60%。石榴子石,棕褐色,他形粒状结构,呈条带状分布,与透辉石的暗色条带纹层相间分布,含量约20%。岩石中可见黄铁矿化和辉钼矿化,多沿石英脉分布,部分沿裂隙分布,黄铁矿含量2%~3%,辉钼矿含量<1%
中国典型矿床系列标本及光薄片图册.钨钼铜矿
Mo2-B28
基性岩。岩石呈深灰—黑灰色,细晶—微晶结构,块状构造。主要矿物成分为辉石,次为长石。辉石,绿黑色,他形细粒结构,含量50%~60%。长石,白色,半自形—他形细粒结构,有时呈斑晶形式出现,含量约30%。少量黑云母,部分蚀变为绿泥石。岩中含有浸染状黄铁矿,并见有沿裂隙或细小石英脉分布的黄铁矿和辉钼矿化,黄铁矿含量2%~3%,辉钼矿含量<1%
中国典型矿床系列标本及光薄片图册.钨钼铜矿
Mo2-B29
矽卡岩化黑云母角岩。岩石呈黑灰—绿灰色,细粒变晶结构,条带状构造。主要矿物成分为石英,次为黑云母和透辉石。石英,无色透明,他形细粒结构,含量约40%。黑云母,棕褐色,含量约30%。透辉石,黑绿色,他形细粒结构,含量约20%。浅色石英与黑绿色透辉石组成深浅相间的条带。岩石中可见微量黄铁矿化和辉钼矿化
中国典型矿床系列标本及光薄片图册.钨钼铜矿
Mo2-B30
石榴子石硅灰石矽卡岩。岩石呈浅灰白色,棕褐色,粒状变晶结构,块状—似条带状构造。主要矿物成分为硅灰石,次为石榴子石、透辉石。硅灰石,白色,自形—半自形晶,集合体呈片状、放射状,含量约40%。石榴子石,棕—褐色,中—细粒结构,油脂光泽,略具定向排列,含量约30%。透辉石,绿—鲜绿色,他形细粒结构,含量约20%。岩石中发育稀疏浸染状辉钼矿化,辉钼矿含量<1%
中国典型矿床系列标本及光薄片图册.钨钼铜矿
Mo2-B31
透辉石石榴子石矽卡岩。岩石呈灰黄色,中粒变晶结构,块状构造。主要矿物成分为石榴子石,次为透辉石。石榴子石,棕褐色—红褐色,半自形—他形粒状结构,粒径2~5mm,含量约70%。透辉石,绿色—灰色,他形粒状结构,含量约20%。可见少量石英和硅灰石。岩石中发育硅化石英脉,伴有星点状辉钼矿化,脉宽约5mm
中国典型矿床系列标本及光薄片图册.钨钼铜矿
Mo2-B32
含黑云母石英角岩。岩石呈白—浅灰白色,细晶结构,块状构造。主要矿物成分为石英,无色透明,他形细粒结构,含量达95%。黑云母,褐黑色,细小鳞片状,含量2%~3%。岩石中发育石英脉,脉宽约5mm,脉体平直延续性好
中国典型矿床系列标本及光薄片图册.钨钼铜矿
Mo2-B33
透辉石化石英角岩。岩石灰绿色,粒状变晶结构,条带状构造。主要矿物成分为石英,次为透辉石。石英,无色透明,油脂光泽,半自形—他形细粒结构,含量约65%。透辉石,灰绿色,半自形—他形粒结构,含量约30%。石英和透辉石形成白色—灰绿色相间条带。岩石中发育有与条带平行分布的黄铁矿化石英脉和与条带斜交的辉钼矿化石英脉,硫化物总量<1%
中国典型矿床系列标本及光薄片图册.钨钼铜矿
(2)标本镜下鉴定照片及特征描述
Mo2-b02
透辉石矽卡岩。粒状变晶结构,块状构造。主要矿物成分为透辉石(Di,约45%)、绿帘石(Ep,约30%)、石榴子石(Gr t,约15%)和少量斜长石(约5%)。透辉石,呈他形粒状结构,具不规则裂纹,显均质体,颗粒粒径约0.5mm。斜长石,呈长板状,负低突起,双晶发育明显
中国典型矿床系列标本及光薄片图册.钨钼铜矿
Mo2-b03
黑云母长英角岩。粒状变晶结构,角砾状构造。石英(Qz),呈他形粒状,按粒径大小分为两组,大颗粒粒径约为0.5mm,小颗粒粒径约0.05mm,石英和黑云母(Bt)呈定向排列
中国典型矿床系列标本及光薄片图册.钨钼铜矿
Mo2-b06
角闪透辉石长英岩。鳞片变晶结构,块状构造。主要矿物成分为透辉石(Di,约35%)、角闪石(Amp,约25%)、斜长石(Pl,约20%)和石英(Qz,约10%)。透辉石呈他形粒状,干涉色较高,正高突起,颗粒粒径约0.1mm。角闪石呈薄板状,长轴长0.5mm
中国典型矿床系列标本及光薄片图册.钨钼铜矿
Mo2-b08
黑云母长英角岩。鳞片变晶结构,块状构造。主要矿物成分为石英(Qz,约35%)、斜长石(Pl,约35%)和黑云母(Bt,约25%)。黑云母,呈片状,一组极完全解理,多色性明显,平行消光,长约0.1mm
中国典型矿床系列标本及光薄片图册.钨钼铜矿
Mo2-b12
石榴子石辉石矽卡岩。粒状变晶结构,块状构造。主要矿物成分为石榴子石(Grt,约55%)、透辉石(Di,约30%)、斜长石(Pl,约5%)和少量的不透明金属矿物。变斑晶为石榴子石,正高突起,显均质体,粒径约3mm,内部呈筛状结构,有透辉石包体
中国典型矿床系列标本及光薄片图册.钨钼铜矿
Mo2-b18
条带状石榴子石透辉石矽卡岩。粒状变晶结构,条带状构造。主要矿物成分为石榴子石(Grt,约40%)、透辉石(Di,约30%)和斜长石(Pl,约25%)。变斑晶为石榴子石,正高突起,粒径约4mm,内部呈筛状结构,有透辉石包体。透辉石,干涉色较高,正高突起,消光角为30º(<40º)。斜长石,负低突起,发育聚片双晶
中国典型矿床系列标本及光薄片图册.钨钼铜矿
Mo2-b22
石榴辉石岩。粒状变晶结构,块状构造。主要矿物成分为石榴子石(Grt,约45%)、透辉石(Di,约45%)和少量斜长石(约5%)。变斑晶为石榴子石,粒径约4mm,内部呈筛状结构。透辉石,呈短柱状,无多色性,干涉色较高,正高突起,粒径0.2~0.5mm。斜长石发育聚片双晶
中国典型矿床系列标本及光薄片图册.钨钼铜矿
Mo2-b25
似斑状云母花岗岩。似斑状结构,块状构造。主要矿物成分为斜长石(Pl,约35%)、石英(Qz,约35%)和白云母(Ms,约25%)。斜长石,呈半自形板状,负低突起,发育聚片双晶,颗粒粒径约0.5~1mm。白云母呈纤柱状集合体产出,闪突起,一组解理,干涉色为Ⅱ级顶部至Ⅲ级,鲜艳夺目,近平行消光
中国典型矿床系列标本及光薄片图册.钨钼铜矿
Mo2-b27
黑云绿帘石英岩。鳞片变晶结构,块状构造。主要矿物成分为石英(Qz,约50%)、绿帘石(Ep,约30%)和黑云母(Bt,约15%)。石英,无色透明,表面光滑,正低突起,无解理和双晶。绿帘石,正高—正极高突起,干涉色Ⅱ级蓝。黑云母,呈片状,一组极完全解理,多色性明显,平行消光
中国典型矿床系列标本及光薄片图册.钨钼铜矿
Mo2-b29
硅灰石石榴子石矽卡岩。粒状变晶结构,块状构造。主要矿物成分为石榴子石(Grt,约35%)、硅灰石(Wo,约35%)和斜长石(Pl,约25%)。石榴子石,呈筛状结构,内部有很多包体,颗粒粒径约3mm。硅灰石,呈柱状,三斜晶系,正中突起,最高干涉色为Ⅰ级橙红,解理发育,颗粒粒径约0.4mm。斜长石斑晶双晶发育,并具有环带
中国典型矿床系列标本及光薄片图册.钨钼铜矿
Mo2-g11
主要金属矿物有磁黄铁矿和黄铜矿。磁黄铁矿(Po)含量约95%,半自形—他形粒状结构,粒径0.05~0.3mm,主要集中在0.15mm左右,呈尖角状交代透明矿物,透明矿物呈交代残余结构。黄铜矿(Ccp)含量约5%,呈不规则粒状结构分布,粒径0.05~0.8mm,局部被压碎呈压碎结构;呈不规则状交代透明矿物,使得透明矿物呈港湾状结构;局部与磁黄铁矿呈共结边结构。
矿物生成顺序:磁黄铁矿(黄铜矿)→黄铜矿
中国典型矿床系列标本及光薄片图册.钨钼铜矿
Mo2-g12
主要金属矿物有黄铁矿、黄铜矿和辉钼矿。黄铁矿(Py)含量约75%,粒径0.025~1mm,呈不规则状充填在透明矿物的裂隙中,集合体呈脉状构造,少量半自形—他形颗粒呈串珠状分布,呈尖角状交代黄铜矿,交代透明矿物呈孤岛状结构。黄铜矿(Ccp)含量约15%,与黄铁矿密切伴生,呈不规则状或他形粒状结构充填于透明矿物的裂隙中,粒径0.02~0.1mm,被黄铁矿交代。辉钼矿(Mot)含量约10%,颗粒呈长板状结构,分布于透明矿物中呈星点状,粒径0.1~0.6mm,主要被黄铁矿和透明矿物交代呈交代残余结构。
矿物生成顺序:辉钼矿→黄铜矿→黄铁矿
中国典型矿床系列标本及光薄片图册.钨钼铜矿
1.二氧化硅和炭粉在高温条件下反应,生成粗硅:
SiO2+2C==Si(粗)+2CO
2.粗硅和氯气在高温条件下反应生成氯化硅:
Si(粗)+2Cl2==SiCl4
3.氯化硅和氢气在高温条件下反应得到纯净硅:
SiCl4+2H2==Si(纯)+4HCl
以上是硅的工业制法,在实验室中可以用以下方法制得较纯的硅:
1.将细砂粉(SiO2)和镁粉混合加热,制得粗硅:
SiO2+2Mg==2MgO+Si(粗)
2.这些粗硅中往往含有镁,氧化镁和硅化镁,这些杂质可以用盐酸除去:
Mg+2HCl==MgCl2+H2
MgO+2HCl==MgCl2+H2O
Mg2Si+4HCl==2MgCl2+SiH4
3.过滤,滤渣即为纯硅