聚乙二醇和硅酸钠反应
反应为Na2SiO3+NH4Cl→H2SiO3↓+2NH3↑+2NaCl。
聚乙二醇是一种高分子聚合物,化学式是HO(CH2CH2O)nH,无刺激性,味微苦,具有良好的水溶性,并与许多有机物组份有良好的相溶性。具有优良的润滑性、保湿性、分散性、粘接性,可作为抗静电剂及柔软剂等使用,在化妆品、制药、化纤、橡胶、塑料、造纸、油漆、电镀、农药、金属加工及食品加工等行业中均有着极为广泛的应用。硅酸钠,俗称泡花碱,是一种无机物,化学式为Na2O·nSiO2,其水溶液俗称水玻璃,是一种矿黏合剂。其化学式为Na2O·nSiO2,它是一种可溶性的无机硅酸盐,具有广泛的用途。
化学反应是指分子破裂成原子,原子重新排列组合生成新分子的过程。在反应中常伴有发光、发热、变色、生成沉淀物等,判断一个反应是否为化学反应的依据是反应是否生成新的分子。
重量法
方法提要
煤灰样经过氧化钠、氢氧化钠混合熔剂熔融,聚乙二醇凝聚硅酸。经过滤、洗涤、灼烧沉淀至质量恒定后计算二氧化硅的含量。
试剂
过氧化钠。
氢氧化钠。
盐酸。
聚乙二醇溶液(5g/L)。
分析步骤
称取0.3~0.5g(精确至0.0001g)灰样,置于镍坩埚中,加入2gNa2O4混匀后,覆盖1gNaOH,将坩埚放入已升温至300℃左右的高温炉中,继续升温至(520±10)℃熔融5min,待变成流体摇动一次,仍在此温度保温10min,取出,冷却。放入200mL烧杯中,加入30mL温水浸提熔块,当熔块完全转化为溶液后,加入20mLHCl,片刻后,用水将镍坩埚冲洗干净。将烧杯放在低温电热板上蒸发至湿盐状,取下冷却。小心用玻棒压碎盐类,加入浓盐酸20mL,搅拌均匀,放置过夜(或加热微沸1min)。将溶液加热到80~90℃,加入5mL新配制的聚乙二醇溶液,充分搅拌,放置30min。加入热水20mL,搅拌至盐类溶解,用中速定量滤纸过滤。用热的(2+98)盐酸洗涤烧杯和沉淀各数次,擦净烧杯,然后用水洗涤沉淀6~8次。将滤纸连同沉淀一起放入质量已恒定的瓷坩埚中,放入高温炉内低温灰化后,继续升温至1000℃灼烧1h,取出放入干燥器中冷却至室温,称量(精确至0.0001g),再灼烧至恒量为止。
按下式计算灰样中二氧化硅的含量:
岩石矿物分析第四分册资源与环境调查分析技术
式中:mx为坩埚+沉淀质量,gm1为坩埚质量,gm0为空白试验质量,gm为称取灰样质量,g。
注意事项
1)过氧化钠和氢氧化钠熔样时的比例最好为5+2或2+1,过氧化钠的用量一般为试样的6~8倍。
2)当熔融物在空气中放置过久,吸收二氧化碳转化为碳酸盐后,浸取困难,因此,熔矿后应及时进行浸取为好。
3)过滤硅酸沉淀时,必须注意将钠盐洗净,否则,将严重影响结果的准确性。
4)炉温一升到520℃立即将空白取出,否则对坩埚损害严重。
舒适达牙膏的成分:
水,山梨(糖)醇,水合硅石,甘油,硝酸钾,月桂醇硫酸酯钠,香精,黄原胶,CI 77891,氟化钠,糖精钠,氢氧化钠,积雪草提取物,CI 19140,CI 42090。
氟添加量:含氟化钠0.145%(以氟计)。
使用方法:每天刷牙两次,不要超过三次。刷牙后吐出,不可吞服。
注意事项:请按照包装标示使用。牙齿敏感可能是严重口腔问题的症状,如症状持续或恶化请及时咨询牙医。未经牙医指导,十二岁以下儿童不宜使用。如使用后出现刺激症状,请停止使用。如使用后发生面部或口腔肿胀,请尽快咨询医生。
扩展资料:
舒适达的科学:
作为抗牙齿敏感领域的领先者,各种学术机构及实验室密切合作,因而可以及时更新有关牙齿敏感的知识,了解牙齿敏感及其对人类生活的影响。将以科学为核心,继续应用最新的科学创新,帮助更多的人缓解牙齿敏感引起的疼痛。
科学家研制了很多专门的技术,用于舒适达系列产品,例如,硝酸钾、NovaMin®和氟化亚锡,可帮助舒缓牙齿敏感。这些技术有的可舒缓神经末梢对疼痛信号的传导,有的可以封闭裸露的牙本质小孔。
参考资料来源:舒适达官网-关于舒适达
牙膏是由粉状摩擦剂、湿润剂、表面活性剂、粘合剂、香料、甜味剂及其它特殊成分构成的。
1、摩擦剂:碳酸钙、磷酸氢钙、焦磷酸钙、二氧化硅、氢氧化铝 等。
2、保湿剂:甘油、山梨醇、丙二醇、聚乙二醇和水。
3、表面活性剂:十二醇硫酸钠、2-酰氧基键磺酸钠、月桂酰肌氨酸钠。
4、增稠剂:羧甲基纤维素、鹿角果胶、羟乙基纤维素、黄原胶、瓜尔胶、角叉胶等。
5、甜味剂:甘油、环己胺磺酸钠、糖精钠等。
含氟牙膏加有活性物氟化钠、氟化亚锡、单氟磷酸钠、氟化锌等,对防止龋齿有效。叶绿素牙膏里加入叶绿素,对阻止牙龈出血、防止口臭有特效。
加酶牙膏能分解残留食物,对清洁口腔、防止虫蛀有效果。药物牙膏在牙膏中添加药物,能预防和缓解口腔疾病。市场上出售的黄岑牙膏、牛黄牙膏等,它们对牙龈出血、牙龈红肿、口臭、牙质过敏症等有明显减缓和治疗作用。
扩展资料
为了防治口腔疾病,有的牙膏中还加入了一些特殊成分:
1、为除去口臭常在牙膏中加入双氧代苯基二胍基己烷和柏醇等杀菌剂,铜叶绿酸对防止口臭亦有一定功效。
2、防治龋齿可加入氟化合物,既能抑制口腔中残留物发酵,又使牙齿表面的珐琅质强化。从安全性来考虑,牙膏中氟含量规定在1000微克以下。在饮用含氟天然水的人群中,龋齿的发病率相对较低,但饮用含氟量高的水,牙齿表面会形成白浊状(斑状齿),反而使齿质变脆。
参考资料:百度百科-牙膏
沉淀法
沉淀法也称溶解度法。其纯化生命大分子物质的基本原理是根据各种物质的结构差异性来改变溶液的某些性质,进而导致有效成分的溶解度发生变化。
1、盐析法
盐析法的根据是蛋白质在稀盐溶液中,溶解度会随盐浓度的增高而上升,但当盐浓度增高到一定数值时,使水活度降低,进而导致蛋白质分子表面电荷逐渐被中和,水化膜逐渐被破坏,最终引起蛋白质分子间互相凝聚并从溶液中析出。
2、有机溶剂沉淀法
有机溶剂能降低蛋白质溶解度的原因有二:其一、与盐溶液一样具有脱水作用;其二、有机溶剂的介电常数比水小,导致溶剂的极性减小。
3、蛋白质沉淀剂
蛋白质沉淀剂仅对一类或一种蛋白质沉淀起作用,常见的有碱性蛋白质、凝集素和重金属等。
4、聚乙二醇沉淀作用
聚乙二醇和右旋糖酐硫酸钠等水溶性非离子型聚合物可使蛋白质发生沉淀作用。
5、选择性沉淀法
根据各种蛋白质在不同物理化学因子作用下稳定性不同的特点,用适当的选择性沉淀法,即可使杂蛋白变性沉淀,而欲分离的有效成分则存在于溶液中,从而达到纯化有效成分的目的。
吸附层析
1、吸附柱层析
吸附柱层析是以固体吸附剂为固定相,以有机溶剂或缓冲液为流动相构成柱的一种层析方法。
2、薄层层析
薄层层析是以涂布于玻板或涤纶片等载体上的基质为固定相,以液体为流动相的一种层析方法。这种层析方法是把吸附剂等物质涂布于载体上形成薄层,然后按纸层析操作进行展层。
3、聚酰胺薄膜层析
聚酰胺对极性物质的吸附作用是由于它能和被分离物之间形成氢键。这种氢键的强弱就决定了被分离物与聚酰胺薄膜之间吸附能力的大小。层析时,展层剂与被分离物在聚酰胺膜表面竞争形成氢键。因此选择适当的展层剂使分离在聚酰胺膜表面发生吸附、解吸附、再吸附、再解吸附的连续过程,就能导致分离物质达到分离目的。
离子交换层析
离子交换层析是在以离子交换剂为固定相,液体为流动相的系统中进行的。离子交换剂是由基质、电荷基团和反离子构成的。离子交换剂与水溶液中离子或离子化合物的反应主要以离子交换方式进行,或借助离子交换剂上电荷基团对溶液中离子或离子化合物的吸附作用进行。
凝胶过滤
凝胶过滤又叫分子筛层析,其原因是凝胶具有网状结构,小分子物质能进入其内部,而大分子物质却被排除在外部。当一混合溶液通过凝胶过滤层析柱时,溶液中的物质就按不同分子量筛分开了。
亲和层析
亲和层析的原理与众所周知的抗原-抗体、激素-受体和酶-底物等特异性反应的机理相类似,每对反应物之间都有一定的亲和力。正如在酶与底物的反应中,特异的底物(S)才能和一定的酶(E)结合,产生复合物(E-S)一样。在亲和层析中是特异的配体才能和一定的生命大分子之间具有亲和力,并产生复合物。而亲和层析与酶-底物反应不同的是,前者进行反应时,配体(类似底物)是固相存在;后者进行反应时,底物呈液相存在。实质上亲和层析是把具有识别能力的配体L(对酶的配体可以是类似底物、抑制剂或辅基等)以共价键的方式固化到含有活化基团的基质M(如活化琼脂糖等)上,制成亲和吸附剂M-L,或者叫做固相载体。而固化后的配体仍保持束缚特异物质的能力。因此,当把固相载体装人小层析柱(几毫升到几十毫升床体积)后,让欲分离的样品液通过该柱。这时样品中对配体有亲和力的物质S就可借助静电引力、范德瓦尔力,以及结构互补效应等作用吸附到固相载体上,而无亲和力或非特异吸附的物质则被起始缓冲液洗涤出来,并形成了第一个层析峰。然后,恰当地改变起始缓冲液的pH值、或增加离子强度、或加入抑制剂等因子,即可把物质S从固相载体上解离下来,并形成了第M个层析峰。显然,通过这一操作程序就可把有效成分与杂质满意地分离开。如果样品液中存在两个以上的物质与固相载体具有亲和力(其大小有差异)时,采用选择性缓冲液进行洗脱,也可以将它们分离开。用过的固相载体经再生处理后,可以重复使用。
上面介绍的亲和层析法亦称特异性配体亲和层析法。除此之外,还有一种亲和层析法叫通用性配体亲和层析法。这两种亲和层析法相比,前者的配体一般为复杂的生命大分子物质(如抗体、受体和酶的类似底物等),它具有较强的吸附选择性和较大的结合力。而后者的配体则一般为简单的小分子物质(如金属、染料,以及氨基酸等),它成本低廉、具有较高的吸附容量,通过改善吸附和脱附条件可提高层析的分辨率。
聚焦层析
聚焦层析也是一种柱层析。因此,它和另外的层析一样,照例具有流动相,其流动相为多缓冲剂,固定相为多缓冲交换剂。
聚焦层析原理可以从pH梯度溶液的形成、蛋白质的行为和聚焦效应三方面来阐述。
1、PH梯度溶液的形成
在离子交换层析中,pH梯度溶液的形成是靠梯度混合仪实现的。例如,当使用阴离子交换剂进行层析时,制备pH由高到低呈线性变化的梯度溶液的方法是,在梯度仪的混合室中装高pH溶液,而在另一室装低pH极限溶液,然后打开层析柱的下端出口,让洗脱液连续不断地流过柱体。这时从柱的上部到下部溶液的pH值是由高到低变化的。而在聚焦层析中,当洗脱液流进多缓冲交换剂时,由于交换剂带具有缓冲能力的电荷基团,故pH梯度溶液可以自动形成。例如,当柱中装阴离子交换剂PBE94(作固定相)时,先用起始缓冲液平衡到pH9,再用含pH6的多缓冲剂物质(作流动相)的淋洗液通过柱体,这时多缓冲剂中酸性最强的组分与碱性阴离子交换对结合发生中和作用。随着淋洗液的不断加入,柱内每点的pH值从高到低逐渐下降。照此处理J段时间,从层析柱顶部到底部就形成了pH6~9的梯度。聚焦层析柱中的pH梯度溶液是在淋洗过程中自动形成的,但是随着淋洗的进行,pH梯度会逐渐向下迁移,从底部流出液的pH却由9逐渐降至6,并最后恒定于此值,这时层析柱的pH梯度也就消失了。
2、蛋白质的行为
蛋白质所带电荷取决于它的等电点(PI)和层析柱中的pH值。当柱中的pH低于蛋白质的PI时,蛋白质带正电荷,且不与阴离于交换剂结合。而随着洗脱剂向前移动,固定相中的pH值是随着淋洗时间延长而变化的。当蛋白质移动至环境pH高于其PI时,蛋白质由带正电行变为带负电荷,并与阴离子交换剂结合。由于洗脱剂的通过,蛋白质周围的环境pH 再次低于PI时,它又带正电荷,并从交换剂解吸下来。随着洗脱液向柱底的迁移,上述过程将反复进行,于是各种蛋白质就在各自的等电点被洗下来,从而达到了分离的目的。
不同蛋白质具有不同的等电点,它们在被离子交换剂结合以前,移动之距离是不同的,洗脱出来的先后次序是按等电点排列的。
3、聚焦效应
蛋白质按其等电点在pH梯度环境中进行排列的过程叫做聚焦效应。pH梯度的形成是聚焦效应的先决条件。如果一种蛋白质是加到已形成pH梯度的层析柱上时,由于洗脱液的连续流动,它将迅速地迁移到与它等电点相同的pH处。从此位置开始,其蛋白质将以缓慢的速度进行吸附、解吸附,直到在等电点pH时被洗出。若在此蛋白质样品被洗出前,再加入第二份同种蛋白质样品时,后者将在洗脱液的作用下以同样的速度向前移动,而不被固定相吸附,直到其迁移至近似本身等电点的环境处(即第一个作品的缓慢迁移处)。然后两份样品以同样的速度迁移,最后同时从柱底洗出。事实上,在聚焦层析过程中,一种样品分次加入时,只要先加入者尚未洗出,并且有一定的时间进行聚焦,剩余样品还可再加到柱上,其聚焦过程都能顺利完成,得到的结果也是满意的。
气相色谱
多种组分的混合样品进入色谱仪的气化室气化后呈气态。当载气流入时,气化的物质被带人色谱柱内,在固定相和流动相中不断地进行分配.在理想状态下,溶质于气-液两相间的分配可用分配系数Kg描述。当分配系数小时,溶质在柱中就停留时间短,也即滞留因子(Rf)大,所以它将首先从色谱柱流出而进入鉴定器,经放大系统放大后,输出讯号便在记录仪中自动记录下来,这时呈现的图形为色谱图,亦称色谱峰;当分配系数大时,溶质在柱中停留时间就长,其色谱图在记录仪上后出现。由于不同物质有不同的分配系数,所以将一混合样品通过气-液色谱柱时,其所含组分就可得到分离。
气相色谱柱效率高、分辨率强的重要原因是,理论塔板数(N)大。毛细管气相色谱的N可达105~6。增加理论塔板数和降低样品组分的不同分子在展层中扩展程度(速率理论),就可明显地提高柱效。以下将讨论塔板理论和速率理论对柱效的影响:
1、塔板理论
塔板理论是将色谱假设为一个蒸馏塔,塔内存在许多块塔板,样品各组分在每块塔板的液相和气相间进行分配,在柱内塔板间高度H(即理论塔板高度)一定时,在有效范围内,柱子越长,N也就越大,样品各组分分配次数也就越多,分辨率自然提高;若柱长一定时,塔板理论高度H越小,就越能增加样品各组分的分配次数,进而提高其分辨率。因此 N=L/H 在线性分配和忽略塔板间纵向扩散的条件下,根据样品组分的保留时间tr、峰宽W或半峰高宽度2ΔXi,Martin导出了计算N的公式,样品组分峰宽度值越小,理论塔板数越高。实际上,进行色谱分析时,峰宽度值的大小是衡量分辨率高低的一个尺度。
2、速率理论
根据塔板理论,在H(塔板理论高度)一定时,增加柱长可以提高柱效。但是,柱子过长,将会延长分析时间,降低检测的灵敏度。所以实践中应设法降低H,提高柱效。
速率理论主要是分析同一样品的不同分子,在色谱柱中迁移速度差异所引起色谱峰的扩张程度。而涡流扩散、纵向分子扩散和质量传递(包括流动相传质和固定相传质)等因子与速率理论值(H)的密切关系可用下面的公式表示:
H=A+B/U+C
涡流扩散(A)是由于样品组分随着流动相的移动通过固定相颗粒不均匀的色谱柱时,引起同一组分的不同分子在流动相中形成不规则的"涡流",致使色谱峰变宽、柱效降低。如固定相颗粒均匀、直径小时,则可降低"涡流"现象发生。
纵向扩散(B/U)亦称分子扩散项。纵向扩散与样品分子在色谱柱中的流畅程度(有无阻碍)、流动相的速度(U)等因子有关。因此,降低溶质在流动相中扩散系数和缩短溶质在流动相中停留时间,均可降低纵向扩散。
传质阻力(C):溶质分子在气相与气液界面进行交换所受的阻力,以及在进入固定相液膜传递的差异性统称传质阻力。传质阻力分别与固定相颗粒直径的平方和固定相液膜厚度成正比关系。
高效液相色谱
高效液相色谱按其固定相的性质可分为高效凝胶色谱、疏水性高效液相色谱、反相高效液相色谱、高效离子交换液相色谱、高效亲和液相色谱以及高效聚焦液相色谱等类型。用不同类型的高效液相色谱分离或分析各种化合物的原理基本上与相对应的普通液相层析的原理相似。其不同之处是高效液相色谱灵敏、快速、分辨率高、重复性好,且须在色谱仪中进行。
高效液相色谱仪主要有进样系统、输液系统、分离系统、检测系统和数据处理系统,下面将分别叙述其各自的组成与特点。
1、进样系统
一般采用隔膜注射进样器或高压进样器完成进样操作,进样量是恒定的。这对提高分析样品的重复性是有益的。
2、输液系统
该系统包括高压泵、流动相贮存器和梯度仪三部分。高压泵的一般压强为l.47~4.4×107Pa,流速可调且稳定,当高压流动相通过层析柱时,可降低样品在柱中的扩散效应,可加快其在柱中的移动速度,这对提高分辨率、回收样品、保持样品的生物活性等都是有利的。流动相贮存和梯度仪,可使流动相随固定相和样品的性质而改变,包括改变洗脱液的极性、离子强度、pH值,或改用竞争性抑制剂或变性剂等。这就可使各种物质(即使仅有一个基团的差别或是同分异构体)都能获得有效分离。
3、分离系统
该系统包括色谱柱、连接管和恒温器等。色谱柱一般长度为10~50cm(需要两根连用时,可在二者之间加一连接管),内径为2~5mm,由"优质不锈钢或厚壁玻璃管或钛合金等材料制成,住内装有直径为5~10μm粒度的固定相(由基质和固定液构成)。固定相中的基质是由机械强度高的树脂或硅胶构成,它们都有惰性(如硅胶表面的硅酸基团基本已除去)、多孔性(孔径可达1000?)和比表面积大的特点,加之其表面经过机械涂渍(与气相色谱中固定相的制备一样),或者用化学法偶联各种基团(如磷酸基、季胺基、羟甲基、苯基、氨基或各种长度碳链的烷基等)或配体的有机化合物。因此,这类固定相对结构不同的物质有良好的选择性。例如,在多孔性硅胶表面偶联豌豆凝集素(PSA)后,就可以把成纤维细胞中的一种糖蛋白分离出来。
另外,固定相基质粒小,柱床极易达到均匀、致密状态,极易降低涡流扩散效应。基质粒度小,微孔浅,样品在微孔区内传质短。这些对缩小谱带宽度、提高分辨率是有益的。根据柱效理论分析,基质粒度小,塔板理论数N就越大。这也进一步证明基质粒度小,会提高分辨率的道理。
再者,高效液相色谱的恒温器可使温度从室温调到60C,通过改善传质速度,缩短分析时间,就可增加层析柱的效率。
4、检测系统
高效液相色谱常用的检测器有紫外检测器、示差折光检测器和荧光检测器三种。
(1)紫外检测器
该检测器适用于对紫外光(或可见光)有吸收性能样品的检测。其特点:使用面广(如蛋白质、核酸、氨基酸、核苷酸、多肽、激素等均可使用);灵敏度高(检测下限为10-10?g/ml);线性范围宽;对温度和流速变化不敏感;可检测梯度溶液洗脱的样品。
(2)示差折光检测器
凡具有与流动相折光率不同的样品组分,均可使用示差折光检测器检测。目前,糖类化合物的检测大多使用此检测系统。这一系统通用性强、操作简单,但灵敏度低(检测下限为10-7?g/ml),流动相的变化会引起折光率的变化,因此,它既不适用于痕量分析,也不适用于梯度洗脱样品的检测。
(3)荧光检测器
凡具有荧光的物质,在一定条件下,其发射光的荧光强度与物质的浓度成正比。因此,这一检测器只适用于具有荧光的有机化合物(如多环芳烃、氨基酸、胺类、维生素和某些蛋白质等)的测定,其灵敏度很高(检测下限为10-12~10-14?g/ml),痕量分析和梯度洗脱作品的检测均可采用。
(5)数据处理系统
该系统可对测试数据进行采集、贮存、显示、打印和处理等操作,使样品的分离、制备或鉴定工作能正确开展。
1、 透明水溶性切削液
配方1(%)透明水溶性切削液
乙二醇 65.8四硼酸钠 3.0偏硅酸钠 1.0磷酸钠 0.2水 余量。
本液用于结构钢的车削、研磨和钻孔,使用时用水稀释3倍。
……
共三种配方。
2、 乳化切削油
配方1(%)石油磺酸钠 13聚氧乙烯烷基酚醚(OP-10) 6.5氯化石蜡 10~30;环烷酸铅 5三乙醇胺油酸皂 2.5高速机械油(5号) 余量。
本油用于金属加工的挤压、车、钻等到工序,使用浓度为本乳化油的5%~30%.。
配方2(%)妥尔油酸钠盐 4.5~5.5石油酸钠盐 4.5~5.5C1-4合成脂肪酸 2.5~4聚乙二醇 1.5工业机械油 余量。
……
共五种配方。
3、 防锈极压乳化油
配方1(%)氯化石蜡 10硫化油酸 9石油磺酸钡 20油酸 2三乙醇胺 5机械油(10号) 余量。
本油主要用于重载切削加工,可代替植物油及硫化切削油。以20%的浓度使用。防锈性能良好。
……
共两种配方。
4、 其他切削液
配方1(份)硫化切削油
硫化棉子油 500棉子油 1350硫磺 70机械油(10号) 2200.。
配方2……
共有四种配方。
切削液的配方研究:
水基切削液具有优良的冷却和清洗性能,但润滑和防锈性能差,因而应用范围受到限制。以松香、顺酐和多元胺等原料合成了非离子表面活性剂H,同是以油酸和三乙醇胺为原料合成油酸三乙醇胺酯,经实用证明:以非离子表面活性剂H和油酸三乙醇胺酯等复合配制而成的水基切削液,具有优良的润滑性、防锈性、冷却性和清洗性。是水基切削液的重大突破。
现代机械加工向高速、强力、精密方向发展,超硬、超强度等难加工材料的发展也使切削加工的难度日益增加。这两方面的原因导致切削加工过程中的摩擦力、摩擦热大幅度提高,这就要求金属加工液具有更好的润滑、冷却、清洗、防锈性能,以便获得理想的加工表面。矿物润滑油的润滑、防锈性能优越,但冷却、清洗性能差乳化液和水基切削液的冷却、清洗性能优良,但润滑、防锈性能差。水基切削液除具有乳化液的所有性能外,其润滑、冷却、防锈性能亦达到或超过乳化液的标准要求。因而水基切削液已成为国内外机械加工中提高加工性能的发展方向[l]。在水基切削液中添加油性添加剂和极压添加剂,是改善水基切削液润滑和防锈性能的有效途径。以松香、顺酐和多元胺等原料合成的非离子表面活性剂H具有优异的润滑和防锈性能,油酸三已醇胺酯是优良的油性添加剂,以非离子表面活性剂H和油酸三乙醇胺酯等复合配制而成的水基切削液,具有优良的润滑性、防锈性、冷却性和清洗性。是水基切削液的重大突破。
1、非离子表面活性剂H的合成
在催化剂存在下,反应温度为160~200℃时,松香[3]与顺酐进行共聚反应,共聚物进一步与多元胺发生中和反应,生成了非离子表面活性剂H。产物为红棕色粘稠液体。实验测定了顺酐,松香及其聚合物的红外光谱[2],证明了反应的发生。
2 油酸三乙醇胺酯的合成
油酸是重要脂肪酸之一,其润滑性能很好,但它是非水溶性的。要把它添加在水基切削液中,必须在其分子链中引入亲水基团。三乙醇胺分子中含有三个一OH基团,它可与酸发生酯化反应[4]。
在130~160。C条件下,油酸与三已醇胺的初始反应摩尔比不超过1:3时,油酸的COOH基团与三乙醇胺的一0H基团发生酯化反应,生成了油酸三乙醇胺酯,油酸三乙醇胺酯是一种优良的水溶性油性剂。经四球机检测:5%的油酸三乙醇胺水溶液的最大无卡咬负荷PB值可达700N,用MPV一200摩擦磨损试验机测定其摩系数为0.070。
3 新型水基切削液的配方及工艺流程
(1)新型水基切削液的配方
作者研制的新型水基合成切削液,主要成份有:非离子表面活性剂H、油酸三乙醇胺、极压抗磨剂、防腐剂及消泡剂等。其中非离子表面活性剂H、油酸三乙醇胺由自己合成,其他组分均为市售。各组分配比通过实验选定如表1所示。
(2)工艺流程
新型水基合成切削液的工艺流程如下:
非离子表面活性剂H的制备一油酸三乙醇胺的合成一各组分混合一搅拌一一+加入消泡剂一装桶。4新型水基切削液的质量指标
按照国标(GB6144—85)进行检测,新型水基切削液的质量指标如表2所示。
4、 应用结果及理论分析
(1)应用结果
新型水基切削液研制完成之后,先后在渝州齿轮厂、大江车辆制造厂进行试用,都获得了比较理想的效果。综合起来,产品有如下特点:
1)冷却性能突出。能大大带走切削热和充分冷却刃具的切削刃,使其保持硬度、强度和锐利的切削能力,从而提高了工作效率。
2)润滑性能优越。在切削区能形成润滑油膜,切削液最大无卡咬负荷PB值达到686N以上。因而能大大降低切削力和降低刀具及砂轮的消耗。同乳化油相比,表面加工精度显著提高。
3)该润滑切削液在使用中可以渗入工件切削表面的极细微裂缝中,使表面金属晶格脆化,使切削加工容易进行。
4)具有很好的流动性和良好的清洗性。同乳化油相比,可提高工件光洁度l~2级。
5)具有优良的稳定性。在存储和使用时,不分层及析出沉淀物,不易腐败,不产生防碍工人健康的气体。同时该产品不含对人体有害的亚硝酸钠和矿物油,工作环境干净无味,加工时能清晰观察工件表面。
6)具有优良的化学、热安定性和防锈性。在高温、高压与空气接触中不分解、不变质、不腐蚀金属表面。加工件常温下两周内不生锈。
7)新型水基切削液的总体性能与矿物油相当,但成本不到矿物油的一半。
8)新型水基切削液的工作废液少,易于处理,大大地减少了环境污染。
(2)理论分析
1)润滑性能分析
在金属切削加工中,大多数摩擦属于边界润滑摩擦。在边界润滑中,由于不存在完全的油膜,其承载能力已与油的粘度无关,而取决于润滑液的油性,即润滑成分是否包含着对金属存在强烈吸附的原子
团,能在切削界面形成物理吸附膜。
非离子表面活性剂H中的极性基团对金属有较大的亲合能力,很容易吸附在金属表面上,形成吸附润滑膜。因其疏水基团较大,并有芳环结构,具有油性剂的作用。同时非离子表面活性剂H含有N非活性极压元素,它兼有油性剂和极压剂的双重功效。再与加入的极压抗磨剂协同作用,形成高强度物理和化学吸附膜,使之在高压、高温和激烈摩擦作用下不致于破坏。能防止或减小工件、切屑、刀具三者之间的直接接触,达到减小摩擦及粘结的目的,起到极好的润滑作用。
油酸三乙醇胺是一种阳离子表面活性剂,作为油性剂添加在切削液中,易在刃具与切削工件之间形成物理吸附膜,从而起到润滑作用。另外,油酸三乙醇胺与极压抗磨剂也有良好的协同抗磨作用,亦可使润滑性能显著提高。
2)清洗性能分析
切削液清洗性能的好坏,与切削液的渗透性和流动性紧密相关,表面张力低、渗透性和流动性好的切削液,清洗性能就好。
新型水基切削液中由于有含量不低的非离子表面活性剂H和阳离子表面活性剂油酸三乙醇胺的存在,二者协调作用,极大地降低了切削液的表面张力,明显地增强了切削液的渗透性和流动性。因而具有很好的清洗性能。
3)冷却性能分析
切削液的冷却作用,取决于它的导热系数、比热、汽化热及汽化速度等。水的导热系数为油的3~5倍,比热为油的2~2.5倍,故水的冷却性能比油优越很多。新型水基切削液中含有90%以上的水分,所以冷却性能突出。
4)防锈性能分析
非离子表面活性剂H本身具有防锈和防腐作用,与加入的防腐剂产生复合增效作用,在金属表面形成吸附保护膜层,钝化膜层,从而阻滞了阴、阳极腐蚀过程,由于有致密的履盖膜,能有效地抗拒介质中的水分子、氧及其他腐蚀性物质的浸入,具有优良的防腐、防锈性能。
5、 结论
(1)以松香、顺酐和多元胺等原料合成的非离子表面活性剂H,具有优异的润滑、防锈和清洗性能。
(2)油酸三乙醇胺酯是一种优良的水溶性油性剂。
(3)以非离子表面活性剂H和油酸三乙醇胺酯等复合配制而成的水基切削液,具有优良的润滑性、防锈性、冷却性和清洗性。是水基切削液的重大突破。
中午好,pegdge一般不能直接参与羟基交联,它可用于环氧树脂随环氧氯丙烷单体与脂肪胺或者芳香胺的氨基发生醚化聚合是一种活性稀释剂类似ppgdge和age,缩水甘油醚和甘油酯如果没有特别说明只用在环氧。羟基产生交联可粗略理解为能与水分子或者醇羟基发生反应例如四氯化钛、正硅酸乙酯、二月桂基丁基锡或者甲苯二异氰酸酯等等。