建材秒知道
登录
建材号 > cas号 > 正文

四氧化三铁的英文命名

开朗的白猫
机灵的夕阳
2022-12-31 17:53:47

四氧化三铁的英文命名

最佳答案
潇洒的洋葱
不安的猎豹
2025-12-04 00:32:35

ferroferric oxide

四氧化钌

英文名称: ruthenium tetroxide

CAS号:

分 子 式: RuO4

相关信息:

黄色针状结晶(斜方晶型)。熔点25.5℃。液体为橙红色,挥发性强。易溶于水,水溶液呈中性。溶于四氯化碳、乙醇等有机溶剂。有强烈的氧化作用。还原时析出黑色二氧化钌。500℃分解为二氧化钌和氧气。四氧化钌气体易被金属盐水溶液吸收生成金属钌酸盐(如钌酸钠)。蒸气有毒!有臭氧的特殊臭,刺激黏膜。可由金属钌碱溶得钌酸盐,钌酸盐的水溶液,通氯气后制得。由于具有强挥发性,用于与其他铂系金属(锇除外)分离。

四氧化三钴

英文名称: tricobalt tetroxide

CAS号:

分 子 式: CO3O4

相关信息:

黑色立方晶体。相对密度6.07。在空气中加热至900~950℃时转化为一氧化钴。溶于浓硫酸和熔融氢氧化钠,不溶于水,难溶于盐酸、硝酸和王水。在低温时能吸收氧,但晶体结构不发生变化。有吸湿性。易被碳、一氧化碳或氢气还原成金属钴。由碳酸钴或硝酸钴(或一氧化钴)在700℃加热而得。用于制金属钴、钴催化剂、搪瓷、陶瓷颜料、半导体、砂轮和钴盐及作氧化剂等。

四氧化三锰

英文名称: manganous manganic oxide

CAS号:

分 子 式: Mn3O4

相关信息:

黑色四方晶系结晶,经灼烧成结晶在温度1443K以下时为扭曲的四方晶系尖晶石结构;1443K以上时则为立方尖晶石结构。在自然界中以黑锰矿形式存在。密度4.856g/cm3。熔点1564℃。可溶于盐酸。不溶于水。在氢气或一氧化碳中加热至高温生成一氧化锰。在氧气中加热生成二氧化锰。高温下碳可使它还原为锰。与盐酸共热可放出氯气并生成二氯化锰。由锰的氧化物或盐类在空气或氧气中于1000℃灼烧制得。或由高纯β-二氧化锰于980~1000℃下焙烧,再经冷却、粉碎制得γ-四氧化三锰。当用二氧化锰或水锰矿为原料时则先焙烧,再在甲烷气体下进一步还原也可制得。主要用于电子工业生产软磁铁氧体,用作电子计算机中存储信息的磁芯、磁盘和磁带,电话用变压器和商品质电感器,电视回归变压器,磁头,电感器,磁放大器,饱和电感器,天线棒等。还可用作某些油漆或涂料的颜料。

四氧化三铁

英文名称: ferroferric oxide

CAS号:

分 子 式: Fe3O4

相关信息:

又称磁性氧化铁。黑色立方晶体或红黑色无定形粉末。相对密度5.18。熔点1538℃(分解)。溶于酸,不溶于水、乙醇和乙醚。在空气中灼烧时转变为三氧化二铁。有强磁性,具磁极的即天然磁石,灼热(约500℃)后磁性消失,冷却后磁性复原。在自然界中以磁铁矿形式存在,是冶炼铁和钢的原料。由铁或氧化亚铁在空气(或氧)中加热或由三氧化二铁在400℃以氢还原而制得。或由硫酸亚铁和硫酸铁的混合液与5%的沸腾氢氧化钾溶液反应而得。用于医药、冶金、电子和纺织等工业,以及用作催化剂、抛光剂、油漆和陶瓷等的颜料、玻璃着色剂等。特制的磁性氧化铁可用以制造录音磁带和电信器材。

四氧化物

英文名称: tetroxide

CAS号:

分 子 式:

相关信息:

含有O4—的氧化物。如四氧化钾KO4、四氧化锇OsO4等。

四氧化氙

英文名称: xenon tetroxide

CAS号:

分 子 式: XeO4

相关信息:

无色气体。分子构型为四面体。热稳定性极差,易爆炸。低温下为黄色固体,也极不稳定,甚至在-40℃也会发生爆炸。氧化性比三氧化氙更强。由高氙酸钠与浓硫酸反应制得。用作氧化剂。

四氧嘧啶类氧化还原树脂

英文名称: tetraoxypyrimidine redox resin

CAS号:

分 子 式:

相关信息:

指具有如下结构的聚合物,也称为5,6-二氧脲嘧啶氧化还原树脂。四氧嘧啶的高分子化通常通过杂环氮原子上的氢置换反应完成。常用的聚合物骨架有聚丙烯和聚苯乙烯型树脂,以聚卤代丙烯或聚氯甲基苯乙烯与四氧嘧啶反应制备。四氧嘧啶通常含有一个或两个结晶水,由于具有类似醌结构,因此也具有氧化还原反应能力,可以将硫化氢还原成硫。含有四氧嘧啶结构的树脂还是重要的电子转移催化剂。

四氧杂环辛烷

英文名称: s-tetroxoctane

CAS号:

分 子 式:

相关信息:

又称四氧八环。细小针状晶体。熔点113℃。沸点176.2℃。1.44。爆炸范围3.9%~35%(体积)。Fp94℃。由甲醛浓溶液在酸性复合催化剂存在下合成。比三氧杂环己烷易于聚合成聚甲醛。可用作丝绸整理剂等。

四乙基硅烷

英文名称: tetraethylsilane

CAS号:

分 子 式: Si(C2H5)4

相关信息:

沸点153℃,相对密度0.7658。折射率1.4268。化学稳定,不被浓硫酸和强碱分解,有很高的热稳定性和氧化稳定性,在540~600℃下才开始分解。在卤素和Friedel-Crafts催化剂作用下,硅碳键易断裂,生成三乙基卤硅烷、四乙基硅烷与氢气在350℃高压釜内共热时,同样发生硅碳键断裂,生成乙烷、六乙基二硅烷等。可由四氯硅烷与二乙基锌在140~160℃下反应来制取。

四乙基铝锂

英文名称: tetraethylaluminum lithium;lithium tetraethylaluminate

CAS号:

分 子 式: (C2H5)4A1Li

相关信息:

针状晶体。熔点163~165℃。沸点160℃(0.133Pa)。由三乙基铝与乙基锂反应制得,内酯、内酰胺聚合反应催化剂。

四乙基铅

英文名称: tetraethyl lead;lead tetraethyl;tetraethylplumbate

CAS号:

分 子 式: (C2H5)4Pb

相关信息:

又称四乙铅。无色液体。熔点-136℃。沸点84~85℃(2kPa)。闪点72℃。密度1.653g/m1。折射率1.5190。几乎不溶于水,溶于苯、石油醚、汽油,微溶于乙醇。由呼吸道吸入或皮肤接触后引起急性或慢性中毒。燃烧时产生橘红色火焰,在600℃时分解为游离的乙基和铅。工业制法有三:(1)在三乙基铝(C2H5)3Al,催化下由铅、乙烯和氢气制取;(2)由钠铅合金与氯乙烷反应后分离去氯化钠和单质铅而制得;(3)电解法以铅与格利雅试剂为原料。本品作为烃基化试剂。另外可用于汽油抗爆剂和引发剂(引发自由基链反应)。四乙铅是大气铅污染的重要来源。它在汽车(内燃机)中燃烧后大部分转化成无机铅,10%为有机铅。无机铅中70%和全部有机铅都排人大气中。在常温下为稳定化合物,在100℃以上或有氧化剂存在和受紫外线照射时会分解。是一种剧毒污染物,由呼吸道进入人体后分布于血液、骨髓、肝、肾、大脑等处,并积蓄而造成血液、神经、消化系统毒害。日本牛达柳町事件即为由于汽车排气污染大气,造成居民铅中毒的公害事件。

四乙基铅中毒

英文名称: tetraethyl lead poisoning

CAS号:

分 子 式:

相关信息:

四乙基铅主要经呼吸道进入人体,胃肠道和皮肤也容易吸收。本品为强烈的神经毒物,易侵犯中枢神经系统。急性中毒初期症状有睡眠障碍、全身无力、情绪不稳、植物神经功能紊乱等,往往有血压、体温、脉率降低现象(“三低症”)。严重者发生中毒性脑病,出现谵妄、精神异常、昏迷、抽搐等;可有心脏和呼吸功能障碍。吸入高浓度者可立即死亡。慢性中毒主要表现为神经衰弱综合征和植物神经功能紊乱,可出现“三低症”。

四乙基锡

英文名称: tetraethyltin

CAS号:

分 子 式: (C2H5)4Sn

相关信息:

无色液体。有毒!相对密度1.187(23℃)。熔点-112℃。沸点181℃。不溶于水,溶于乙醇、乙醚等有机溶剂。与溴作用生成溴化三乙基锡和二溴化二乙基锡。与三氯化铝作用生成二氯化二乙基锡。由四氯化锡与溴化乙基镁在乙醚或乙醚-甲苯混合液中反应而得。用作。烯烃、丙烯腈聚合催化剂,聚酰胺稳定剂,乙基化反应电解质,镀锡原料等。

四乙基锗

英文名称: tetraethylgermane

CAS号:

分 子 式: (C2H5)4Ge

相关信息:

无色油状液体。相对密度0.991(24.5℃)。熔点-90℃。沸点162.5℃。溶于苯、乙醚。遇水分解。由四溴化锗与溴化乙基镁或乙基锂在乙醚中反应,也可由卤化锗与三乙基铝、氯化钠加热至80~130℃制得。用作低压乙烯聚合催化剂,生产高纯锗的原料等。

四乙炔基合镍(II)酸钾

英文名称: potassium tetraethynylnicolate (II)

最新回答
甜蜜的面包
平常的未来
2025-12-04 00:32:35

海波化学式是Na2S2O3。

海波(硫代硫酸钠的俗称)一般指硫代硫酸钠,硫代硫酸钠,又名次亚硫酸钠、大苏打、海波,是常见的硫代硫酸盐,化学式为Na2S2O3,是硫酸钠中一个氧原子被硫原子取代的产物,因此两个硫原子的氧化数分别为-2和+6。

硫代硫酸钠主要用于照相业作定影剂。其次作鞣革时重铬酸盐的还原剂、含氮尾气的中和剂、媒染剂、麦杆和毛的漂白剂以及纸浆漂白时的脱氯剂。还用于四乙基铅、染料中间体等的制造和矿石提银等。

海波的基本信息:

化学式:Na2S2O3。

分子量:158.108。

CAS号:7772-98-7。

EINECS号:231-867-5。

熔点:48°C。

沸点:100°C。

密度:1.667g/cm3。

外观:无色或白色结晶性粉末。

溶解性:溶于水和松节油,难溶于乙醇。

以下内容参考:百度百科-海波

温柔的老师
重要的发带
2025-12-04 00:32:35
序号 化学品名称 别 名 海关商品编号 计量单位

1 朱砂(辰砂) 2617901000 千克

2 砷 2804800000 千克

3 汞 2805400000 千克

4 砷酸 2811199020 千克

5 偏砷酸 2811199020 千克

6 焦砷酸 2811199020 千克

7 三氧化二砷亚砷(酸)酐,砒霜,白砒,氧化亚砷,三氧化砷2811290010 千克

8 五氧化二砷 砷(酸)酐 2811290010 千克

9 三氟化砷 氟化亚砷 2812901920 千克

10 三溴化砷 溴化亚砷 2812909010 千克

11 三碘化砷 碘化亚砷 2812909010 千克

12 二硫化碳 2813100000 千克

13 一氧化铅 铅黄,黄丹 2824100000 千克

14 四氧化(三)铅 红丹、铅丹、铅橙 2824901000 千克

15 氟化铅 2826199030 千克

16 四氟化铅 2826199030 千克

17 氟化镉 2826199030 千克

18 氟硼酸铅 2826909030 千克

19 氟硼酸镉 2826909030 千克

20 氰化钠 山奈 2837111000 千克

21 氰化钾 2837191000 千克

22 氰化锌 2837199011 千克

23 氰化亚铜 2837199011 千克

24 氰化铜 氰化高铜 2837199011 千克

25 氰化镍 氰化亚镍 2837199012 千克

26 氰化钙 2837199012 千克

27 氰化钡 2837199013 千克

28 氰化镉 2837199013 千克

29 氰化铅 2837199013 千克

30 氰化钴 氰化钴(II),氰化钴(III) 2837199014 千克

31 氰化镍钾 氰化钾镍,镍氰化钾 2837200011 千克

32 氰化钠铜锌 铜盐 2837200011 千克

33 氰化亚铜(三)钠 紫铜盐,紫铜矾,氰化铜钠2837200012 千克

34 氰化亚铜(三)钾 氰化亚铜钾,亚铜氰化钾 2837200012 千克

35 硅酸铅 2839900010 千克

36 亚砷酸钠 偏亚砷酸钠 2842909013 千克

37 亚砷酸钾 2842909013 千克

38 亚砷酸钙 2842909013 千克

39 亚砷酸锶 2842909014 千克

40 亚砷酸钡 2842909014 千克

41 亚砷酸铁 2842909014 千克

42 亚砷酸铜 亚砷酸氢铜 2842909015 千克

43 亚砷酸锌 2842909015 千克

44 亚砷酸铅 2842

45 亚砷酸锑 2842909016 千克

46 砷酸铵 2842909016 千克

47 砷酸氢二铵 2842909016 千克

48 砷酸钠 砷酸三钠 2842909017 千克

49 砷酸氢二钠 2842909017 千克

50 砷酸二氢钠 2842909017 千克

51 砷酸钾 2842909018 千克

52 砷酸二氢钾 2842909018 千克

53 砷酸镁 2842909018 千克

54 砷酸钙 砷酸三钙 2842909019 千克

55 砷酸钡 2842909019 千克

56 砷酸铁 2842909019 千克

57 砷酸亚铁 2842909021 千克

58 砷酸铜 2842909021 千克

59 砷酸锌 2842909021 千克

60 砷酸铅 2842909022 千克

61 砷酸锑 2842909022 千克

62 偏砷酸钠 2842909022 千克

63 硒化铅 2842909023 千克

64 硒化镉 2842909023 千克

65 碲化镉 2842902000 千克

66 氰化银 2843290010 克

67 氰化银钾 银氰化钾 2843290010 克

68 亚砷酸银 2843290010 克

69 砷酸银 2843290010 克

70 氰化金 2843300010 克

71 氰化亚金(I)钾包括氰化亚金(I)钾(含金68.3%)2843300010 克

72 氰化亚金(III)钾包括氰化亚金(III)钾(含金57%)2843300010 克

73 氰化金钾 包括氰化金钾(含金40%) 2843300010 克

74 氰化铈 2846109010 千克

75 砷化氢 砷烷,砷化三氢,胂 2850009010 千克

76汞的无机或有机化合物,汞齐除外,已有化学定义的2852100000 千克

77其他汞的无机或有机化合物,汞齐除外,已有化学定义的除外2852900000 千克

78 氰 氰气 2853009021 千克

79 氰化碘 碘化氰 2853009021 千克

80 氰化溴 溴化氰 2853009021 千克

81 铅汞齐 2853009021 千克

82 砷化锌 2853009022 千克

83 砷化镓 2853009022 千克

84 二氯甲烷纯度在99%及以上的二氯甲烷2903120001 千克

85 二氯甲烷 其他二氯甲烷 2903120090 千克

86 三氯甲烷 氯仿 2903130000 千克

87 1,2-二氯乙烷(ISO) 2903150000 千克

88 三氯乙烯 2903220000 千克

89 四氯乙烯 2903230000 千克

90 1,1-二氯乙烯 2903299010 千克

91 1,2,3,4,5,6- 六氯环已烷{六六六(ISO)}六六六混合异构体 2903810090 千克

92 多氯三联苯(PCT) 2903999030 千克

93 4-硝基联苯 2904209020 千克

94全氟辛基磺酸、全氟辛基磺酸钾、全氟辛基磺酸锂、全氟辛基磺酸铵、全氟辛基磺

酰氟2904909014 千克

95 壬基酚 4-壬基苯酚壬基苯酚 2907131000 千克

96 对壬基酚 2907131000 千克

97 支链-4-壬基酚* 2907131000 千克

98 五氯苯酚 五氯酚 2908110000 千克

99 4-硝基苯酚 对硝基苯酚 2908991010 千克

100 环氧乙烷 2910100000 千克

101 乙醛 2912120000 千克

102 丙烯醛 2912190030 千克

103 乙酸铅 醋酸铅 2915299023 千克

104 对硫磷(ISO) 2920110000 千克

105 甲基对硫磷(ISO) 2920110000 千克

106 三乙基砷酸酯 2920909020 千克

107 苯胺 2921411000 千克

108 2-萘胺 2921450010 千克

109 4-氨基联苯 2921499020 千克

110 2,4-二氨基甲苯 2921519020 千克

1114,4’-二氨基-3,3’-二氯二苯基甲烷2921590031 千克

112 3,3’-二氯联苯胺 2921590032 千克

113 4,4’-二氨基二苯基甲烷 2921590033 千克

114 全氟辛基磺酸二乙醇胺 2922120010 千克

115全氟辛基磺酸四乙胺、全氟辛基磺酸双癸基二甲基铵2923900013 千克

116 久效磷(ISO) 2924120090 千克

117 磷胺(ISO) 2924120090 千克

118 丙烯酰胺 2924199040 千克

119 丙烯腈 即2-丙烯腈、乙烯基氰 2926100000 千克

120 甲胺磷(ISO) 2930500010 千克

121 内吸磷 2930909028 千克

122 四甲基铅 2931100000 千克

123 四乙基铅 2931100000 千克

124 三丁基锡化合物 2931200000 千克

125 4-二甲氨基偶氮苯-4’-胂酸 锆试剂 2931909014 千克

126 二甲胂酸 卡可基酸 2931909014 千克

127 二甲基胂酸钠 2931909014 千克

128 4-氨基苯胂酸钠 对氨基苯胂酸钠 2931909015 千克

129 二氯化苯胂 二氯苯胂,苯胂化二氯 2931909015 千克

130 蒽醌-1-胂酸 2931909016 千克

131 三环锡 普特丹 2931909016 千克

132 月桂酸三丁基锡 2931909016 千克

133 醋酸三丁基锡 2931909016 千克

134 硫酸三乙基锡 2931909017 千克

135 二丁基氧化锡 氧化二丁基锡 2931909017 千克

136 乙酸三乙基锡 三乙基乙酸锡 2931909017 千克

137 四乙基锡 四乙锡 2931909018 千克

138 乙酸三甲基锡 醋酸三甲基锡 2931909018 千克

139 毒菌锡 三苯基羟基锡(含量>20%) 2931909019 千克

140 乙酰亚砷酸铜祖母绿,翡翠绿,醋酸亚砷酸铜2931909021 千克

141 二苯(基)胺氯胂 吩吡嗪化氯,亚当氏气 2931909021 千克

142 3-硝基-4-羟基苯胂酸 4-羟基-3-硝基苯胂酸 2931909022 千克

143 乙基二氯胂 二氯化乙基胂 2931909023 千克

144 二苯(基)氯胂 氯化二苯胂 2931909023 千克

145 甲(基)胂酸 2931909024 千克

146 丙(基)胂酸 2931909024 千克

147 二碘化苯胂 苯基二碘胂 2931909024 千克

148 苯胂酸 2931909025 千克

149 2-硝基苯胂酸 邻硝基苯胂酸 2931909025 千克

150 3-硝基苯胂酸 间硝基苯胂酸 2931909025 千克

151 4-硝基苯胂酸 对硝基苯胂酸 2931909026 千克

152 2-氨基苯胂酸 邻氨基苯胂酸 2931909026 千克

153 3-氨基苯胂酸 间氨基苯胂酸 2931909027 千克

154 4-氨基苯胂酸 对氨基苯胂酸 2931909027 千克

155 1,4-二恶烷 2932999070 千克

156N-乙基全氟辛基磺酰胺、N-甲基全氟辛基磺酰胺、N-乙基-N-(2-羟乙基)全氟辛基

磺酰胺、N-(2-羟乙基)-N-甲基全氟辛基磺酰胺2935009033 千克

157含有壬基酚聚氧乙烯醚的有机表面活性剂(不论是否零售包装,肥皂除外)3402130010 千克

158零售包装含多种第38 章子目注释一所列物质的货品3808501090 千克

159非零售包装含多种第38 章子目注释一所列物质的货品3808509090 千克

160以铅化合物为基本成分的抗震剂3811110000 千克

161含多氯联苯(PCBs)、多氯三联苯(PCTs) 或多溴联苯(PBBs)的混合物3824820000 千克

162 氰化物的混合物 3824909930 千克

酷炫的水蜜桃
开心的白猫
2025-12-04 00:32:35

二氯乙烷(化学式:C 2 H 4 Cl 2 ;Cl(CH 2 ) 2 Cl,式量:98.97),即1,2-二氯乙烷,是卤代烃的一种, 常用 EDC表示。无色或浅黄色透明液体熔点-35.7℃,沸点83.5℃,密度1.235g/cm 3 ,闪点17℃。难溶于水主要用作氯乙烯(聚氯乙烯单体)制取过程的中间体,也用作溶剂等。它在室温下是无色有类似氯仿气味的液体,有毒,具潜在致癌性,可能的溶剂替代品包括1,3-二氧杂环己烷和甲苯。用作溶剂及制造,三氯乙烷的中间体。用作蜡、脂肪、橡胶等的溶剂及谷物杀虫剂。

基本介绍中文名 :二氯乙烷 英文名 :Dichloroethane 别称 :二氯化乙烯乙撑二氯烯虫乙酯 化学式 :C2H4Cl2 分子量 :98.97 CAS登录号 :107-06-2 EINECS登录号 :203-458-1 熔点 :-35.3°C 沸点 :83.7°C 水溶性 :微溶于水,可混溶于醇、醚、氯仿。 密度 :1.235 外观 :无色或浅黄色透明液体,,有类似氯仿的气味 闪点 :17℃ 套用 :有机合成,萃取剂 安全性描述 :S45 危险性符号 :7(中闪点易燃液体) 危险性描述 :R11 国际编号 :32035 InChI :1/C2H4Cl2/c3-1-2-4/h1-2H2 RTECS号 :KI0175000 HS编码 :2903150000 UN编号 :1184 IMDG规则页码 :3205 折射度 :1.4448 折射率 :1.4167 饱和蒸气压 :15.33kPa/10℃ 临界温度 :261.5℃ 临界气压 :5.05MPa 燃烧热 :1244.8kj/mol物化性质,物理性质,化学性质,制备,工艺分析,实验部分,结果与讨论,结论,储存,套用,注意事项,危险特性,泄漏处置,毒性危害,急救措施,安全信息,管理储运, 物化性质 物理性质 分子结构数据: 1.生态毒性 LC50:225mg/L(96h)(虹鳟鱼,静态);230~710mg/L(96h)(蓝鳃太阳鱼,静态);136mg/L(96h)(黑头呆鱼,静态);65mg/L(96h)(褐虾);218mg/L(48h)(水蚤) IC50:105~710mg/L(72h)(藻类) 2.生物降解性 好氧生物降解(h):2400~4320 厌氧生物降解(h):9600~17280 3.非生物降解性 空气中光氧化半衰期(h):292~2917 一级水解半衰期(h):1.1a 外观与性状: 无色或浅黄色透明液体,有类似氯仿的气味。味甜。能缓慢分解变成酸性,颜色变暗。 溶解性: 溶于多数有机溶剂。在水中沉底,基本不溶。溶解性溶于约120倍的水,与乙醇、氯仿、乙醚混溶。能溶解油和脂类、润滑脂、石蜡。 1,2- 二氯乙烷 在常温常压下为具有类似氯仿气味和甜味的无色透明油状剧毒液体。难溶于水,可与乙醇、乙醚、氯仿等各种有机溶剂混溶,能溶解油和脂。对水、酸、碱稳定, 化学性质 具有抗氧化性。不腐蚀金属。其蒸气与空气可形成爆炸性混合物。遇高热、明火、强氧化剂有引起燃烧爆炸的危险。 制备 1.乙烯与氯气直接合成法 以乙烯和氯气在1,2-二氯乙烷介质中进行氯化生成粗二氯乙烷及少量多氯化物,加碱闪蒸除去酸性物及部分高沸物,用水洗涤至中性,共沸脱水,精馏,得成品。 2.乙烯氧氯化法乙烯直接与氯气氯化生成二氯乙烷。由二氯乙烷裂解制氯乙烯时回收的氯化氢和预热至150-200℃的含氧气体(空气)和乙烯,通过载于氧化铝上的氯化铜触媒,在压力0.0683-0.1033MPa;温度200-250℃下反应,粗产品经冷却(使大部分三氯乙醛和部分水冷凝);加压;精制,得二氯乙烷产品。 3.由石油裂解气或焦炉的乙烯直接氯化的方法。此外,在氯乙醇法制取环氧乙烷的生产中还副产有1,2-二氯乙烷。 4.将工业品1,2-二氯乙烷是用浓硫酸洗至酸层无色,而后用5%的氢氧化钙溶液洗,再用水洗一次,分去水层。用无水氯化钙干燥后,进行精馏。1,2-二氯乙烷能与水形成共沸混合物,含有8.9%的水,共沸点7.7℃。利用此特性脱去大量的水后再进行干燥和蒸馏即得纯品1,2-二氯乙烷。 5.将催化剂三氯化铁、氯化铜或氯化亚锑悬浮于二氯乙烷中作为反应介质,分别通入气体乙烯和氯气进行反应,控制反应温度为50~70℃,反应压力0.4~0.5 MPa: 反应所得产物用水洗去氯化氢和催化剂,静置分层,分去水层,然后用1%~2%的氢氧化钠洗涤,分去水层后进行共沸精馏,蒸出的共沸物静置分去水层,干燥后,再精馏,即得1,2-二氯乙烷纯品。 工艺分析 平衡氧氯化法是目前世界上主要采用的氯乙烯生产工艺,具有规模大、利于环保、经济性能佳等特点。该工艺主要由乙烯直接氯化、乙烯氧氯化、二氯乙烷精馏和裂解等工艺单元组成 。其 中,乙烯直接氯化合成二氯乙烷是平衡氧氯化法生 产氯乙烯工艺中的一个重要单元 。 乙烯直接氯化反应分为气相法和液相法。气相法目前还只停留在实验室阶段,因反应选择性差 等原因没有工业化。液相法生产工艺采用液相二氯 乙烷为介质,以FeCl3或其络合物为催化剂,由氯 气和乙烯鼓泡通过液层进行反应生成二氯乙烷, 该反应为气液非均相反应。根据反应温度的不同, 直接氯化可分为低温氯化 、中温氯化和高温氯化工艺,有必要对这3种直接氯化工艺进行比较。 实验部分 实验原理 乙烯直接氯化反应为放热反应 。氯气用路易斯酸FeCl3极化,极化后的氯离子作为一个亲电基团攻击乙烯的双键,形成氯阳离子化合物和四氯化铁负离子,然后四氯化铁负离子中的一个氯离子加到氯阳离子化合物的碳原子上,从而生成二氯乙烷。 乙烯直接氯化反应的主要副产物为一氯乙烷和1,1,2-三氯乙烷,反应方程式如下: C2H4+HCL → C2H5Cl (1) C2H4Cl2+Cl2→ C2H3Cl3+HCl (2) 实验装置 实验装置是容积为300 mL的耐压夹套玻璃反应釜。设计压力为2.5 MPa,温度范围-20~150 ℃,搅拌转速可调范围0~1 500 r/min。 采用低温氯化工艺时,生成物二氯乙烷可直接从釜 底出料口液相出料。采用中温、高温氯化工艺时, 反应在二氯乙烷沸点以上进行,气相二氯乙烷经冷 凝后进入储罐,其中大部分循环回反应釜以保持反 应釜内液位,另一部分则由储罐下方出料口取出。 实验方法 向反应釜内加入200 mL二氯乙烷,其中, FeCl3的含量为0.1%(w)以及一定量的NaCl。通入氮气将反应体系内空气排空,搅拌、加热反应釜, 然后通入乙烯和氯气开始反应。低温氯化实验的反 应温度约为50 ℃,反应压力微正压。中温氯化实 验的反应温度为90 ℃,压力约为0.15 MPa。 高温氯化反应的温度为110~120 ℃,压力为0.25 MPa。 采用气相色谱法对产物 中的二氯乙烷含量进行分析。分析条件为:SGE BP5型气相色谱柱(30 m×0.32 mm×0.5 μm,固定 相:BP5),FID检测,检测器温度200 ℃,载气为氮气,流量为1 mL/min,气化室温度120 ℃,柱温50~200 ℃。 结果与讨论 氯化工艺的特点分析 由反应温度对二氯乙烷选择性和系统热负荷可见,采用低温氯化工艺(反应温度为50 ℃)时二氯乙烷的选择性最高,但系统热负荷也最高,这是由于直接氯化反应放热量大,需要消耗大量的冷却水保持反应釜内的 温度恒定,而反应热未得到有效的利用,此外液相 出料催化剂损失大,需要不断补充催化剂;采用 中温氯化工艺(反应温度为90 ℃)和高温氯化工艺 (反应温度为110~120 ℃)时由于反应温度升高,反应速率加快,副反应增多,因此二氯乙烷的选择 性比低温氯化工艺分别降低了0.10%和0.25%,但系统热负荷与低温工艺相比从624.7 kJ/h分别降至304.1 kJ/h和265.2 kJ/h。 这是由于中温、高温氯化 工艺采用气相出料,减少了催化剂的损失,反应热直接将部分二氯乙烷汽化,相应地减少了为移出反 应热所消耗的冷却水量;尤其是采用高温氯化工艺 时,汽相二氯乙烷不需水洗、脱轻、脱重,可直接 进入二氯乙烷精制单元的精馏塔,为精馏塔提供了 部分热源,减少了精馏塔再沸器的热负荷,降低了 装置的能耗 。高温氯化工艺比低温和中温氯化 工艺在能耗及物耗等方面具有明显竞争优势,是乙 烯直接氯化工艺的发展方向。 NaCl助催化剂用量对直接氯化反应的影响 由 NaCl助催化剂用量对直接氯化反应的影响可看出,在中温和高温氯化反应中添加 NaCl助催化剂能提高二氯乙烷的选择性,而低温氯化反应的二氯乙烷选择性几乎没有变化。这是由 于在反应过程中二氯乙烷提供电子的能力很弱,在 溶剂中FeCl3易形成二聚体Fe2Cl6,导致中心原子Fe 的空轨道被占据,使Cl2与中心原子Fe的配位反应 变得困难,从而降低了反应速率。 NaCl助催化剂的作用是打破Fe2Cl6的结构,使其形成[Fe2Cl7 ]- , 而Cl2与[Fe2Cl7 ]- 的中心原子Fe的配位反应要比与 Fe2Cl6中Fe原子配位反应容易,因为FeCl4 - 比FeCl3的 化学性质更加稳定,易从配合物[Fe2Cl7 ]- 中脱离出 去,从而加快了乙烯氯化反应的速率,也就相应减 少了副反应的发生,有利于提高二氯乙烷的选择性。 但NaCl在二氯乙烷中的溶解度非常小,50 ℃ 时几乎不溶于二氯乙烷,即使在120 ℃时其溶解度 仅约为3×10-4 g,因此在低温氯化反应中添加NaCl 助催化剂对二氯乙烷选择性基本上无影响。此外, NaCl易从二氯乙烷溶液中析出造成设备腐蚀及堵塞 等问题,因此不宜过量添加,控制好NaCl的 含量对直接氯化反应至关重要。 乙烯与氯气分压比对直接氯化反应的影响 随乙烯与氯气分压比的增大, 3种氯化工艺的二氯乙烷的选择性均呈现出先增加 后降低的趋势,当乙烯与氯气分压比约为1.25时二 氯乙烷的选择性最高,分别为99.90%,99.86%, 99.81%。这是因为乙烯和氯气均为气体,反应中必 须先扩散进入二氯乙烷液相,然后在液相中进行反 应。乙烯直接氯化反应是快速反应,反应速率和选择性取决於乙烯和氯气的溶解和扩散特性。由于氯气 与乙烯在相同分压下,氯气更易溶于二氯乙烷 , 因此只有在乙烯分压较高的情况下,才能达到两者 溶解相的微观平衡。 在乙烯直接氯化反应过程中只 有当体系中乙烯的浓度大于氯气的浓度时,才能得 到高的反应选择性。但实验过程发现过量的乙烯也 会导致副产物含量的增加,因此选择合理的乙烯与 氯气分压比才能有效地提高二氯乙烷的选择性。除此以外,在反应器中添加填料,可以使乙 烯和氯气分散在二氯乙烷溶液中形成的气泡分布均 匀,有助于减少气泡的聚并,提高反应速率,减少 副反应的发生,从而获得较高的反应选择性。 结论 1)采用低温氯化工艺时二氯乙烷选择性高, 但催化剂损失量大,能耗高;采用中温、高温氯化 工艺时气相出料,能有效的利用反应热,降低装置 的能耗。高温氯化工艺比低温和中温氯化工艺在能 耗及物耗等方面具有明显竞争优势,是乙烯直接氯 化工艺的发展方向。 2) NaCl助催化剂的加入可有效地破坏FeCl3二 聚体的形成,加快直接氯化反应速率,减少副反应 的发生,提高反应的选择性。但若NaCl添加量过 多,由于其在二氯乙烷中溶解性较差,易造成设备 腐蚀及堵塞等问题。 3)直接氯化反应过程中,当乙烯分压较高的 情况下,乙烯和氯气才能在二氯乙烷溶液中达到微 观平衡,从而获得较高的反应选择性。 储存 安瓿瓶外普通木箱;螺纹口玻璃瓶、铁盖压口玻璃瓶、塑胶瓶或金属桶(罐)外普通木箱。 具有抗氧化性。不腐蚀金属。二氯乙烷的蒸气与空气可形成爆炸性混合物。遇高热、明火、强氧化剂有引起燃烧爆炸的危险。 套用 1.主要用作氯乙烯;乙二醇;乙二酸;乙二胺;四乙基铅;多乙烯多胺及联苯甲酰的原料。也用作油脂;树脂;橡胶的溶剂,干洗剂,农药除早菊素;咖啡因;维生素;激素的萃取剂,湿润剂,浸透剂,石油脱蜡,抗震剂,还用于农药制造以及药物灭虫宁;哌哔嗪的原料。在农业上可用作粮食;谷物的熏蒸剂;土壤消毒剂等。 2.用于硼的分析,油脂及菸草的萃取剂。也用於乙酰纤维素的制造。 3.用作分析试剂,如作溶剂、色谱分析标准物质。还用作油脂的萃取制,并用于有机合成。 4.作洗涤剂、萃取剂、农药和金属脱油剂等。 5.用作蜡、脂肪、橡胶等的溶剂及谷物杀虫剂。 注意事项 危险特性 避免接触的条件: 防护服 燃烧性: 易燃 建规火险分级: 甲 闪点(℃): 13 自燃温度(℃):458℃ 引燃温度(℃):413℃ 爆炸下限(V%): 5.6 爆炸上限(V%): 16.0 危险特性: 其蒸气与空气形成爆炸性混合物,遇明火、高热能引起燃烧爆炸。与氧化剂能发生强烈反应。受高热分解产生有毒的腐蚀性气体。其蒸气比空气重,能在较低处扩散到相当远的地方,遇火源引著回燃。若遇高热,容器内压增大,有开裂和爆炸的危险。腐蚀塑胶和橡胶。易燃性(红色):3 反应活性(黄色):0 二氯乙烷 燃烧(分解)产物: 一氧化碳、二氧化碳、氯化氢、光气。 稳定性: 稳定 禁忌物: 强氧化剂、酸类、碱类。 聚合危害: 不能出现 灭火方法: 泡沫、干粉、二氧化碳、砂土、雾状水。如果该物质或被污染的流体进入水路,通知有潜在水体污染的下游用户,通知地方卫生、消防官员和污染控制部门。 泄漏处置 疏散泄漏污染区人员至安全区,禁止无关人员进入污染区,切断火源。建议应急处理人员应佩戴防护用具。在确保全全情况下堵漏。喷水雾会减少蒸发,但不能降低泄漏物在受限制空间内的易燃性。用沙土、蛭石或其它惰性材料吸收,然后收集运至废物处理场所处置。也可以用不燃性分散剂制成的乳液刷洗,经稀释的洗水放入废水系统经过处理,达标排放。如大量泄漏,利用围堤收容,然后收集、转移、回收,被污染场地进行无害化处理。 环境信息:防止空气污染法:危害空气污染物(篇1,条A,款112)。防止水污染法:款307主要污染物、款313主要化学物或款401.15毒性物。EPA有害废物代码:U076。 资源保护和回收法:款261,有毒物或无其他规定。资源保护和回收法:禁止土地存放的废物。资源保护和回收法:通用的处理标准废水0.059mg/L;非液体废物6.0mg/kg。资源保护和回收法:地表水监测清单表建议方法(PQLg/L)8010(1);8240(5)。安全饮水法:主表(55FR1470)。应急计画和社区知情权法:款304应报告量454kg。应急计画和社区知情权法:款313表R,最低应报告浓度1.0%。海洋污染物:联邦法规49,副条172.101,索引B。加州建议65:致癌物。有毒物质控制法:40CFR712.30(e)10。 毒性危害 接触限值:中国MAC:未制定标准苏联MAC:10mg/m3 美国TWA:OSHA 100ppm,405mg/m3;ACGIH 200ppm,810mg/m3 美国STEL:ACGIH 250ppm,1010mg/m3 侵入途径:吸入食入经皮吸收 毒性:属微毒类 LD50:725mg/kg(大鼠经口) LC50: 健康危害: 具麻醉作用。吸入、摄入或经皮肤吸收后对身体有害,吸入一定的浓度可致肾损害,反复吸入可造成肝损害。对皮肤有 *** 作用,引起皮炎,其蒸气或烟雾对眼睛、黏膜和呼吸道有 *** 作用。IDLH:3000ppm 嗅阈:255ppm OSHA:表Z—1空气污染物健康危害(蓝色):2 急性毒性 :LD50:680 mg/kg(大鼠经口);2800 mg/kg(大鼠经皮);LC50:4050 mg/m3,432 min(大鼠吸入)。急性毒性吸入40.5 g/m3,可使猫、兔和豚鼠发生深麻醉,使猫发生四肢瘫痪,比吸入同浓度四氯化碳或氯仿的麻醉作用深而长,但恢复较快,对肝功能损害比四氯化碳轻。小鼠麻醉浓度约为20.25 g/m3。 亚急性和慢性毒性 :猴吸入0.22 g/m3,7 h/d,5 d/周,125次,无症状;4.11 g/m3,7 h/d,5 d/周,25~50次,死亡率较高。小动物对1,2-二氯乙烷的敏感性高于大动物。慢性动物实验中毒尸检可见有心脏扩大,肺充血和水肿,心肌和肝脏有脂肪浸润、脂性肾病和肾上腺脂质堆积等改变。 代谢 :主要经呼吸道和消化道吸收,亦可经皮肤吸收。给小鼠腹腔注射后,10%~42%以原形从呼吸道排出,12%~15%以二氧化碳形式呼出;51%~73%放射活性出现于尿中;粪便中排出极少,0.6%~1.3%存留于体内。尿中主要代谢物为硫二醋酸和硫二醋酸氧硫基,因而推测谷胱甘肽在二氯乙烷生物转化中起重要作用。 *** 性 :家兔经眼:63 mg,重度 *** 。家兔经皮开放性 *** 试验:625 mg,轻度 *** 。 致癌性 :IARC致癌性评论:动物阳性,人类可疑。 致突变性 :职业暴露致人外周血淋巴细胞染色体畸变。 环境危害 :该物质对大气臭氧层破坏力极强。 生物降解性 :氯乙醇是1,2-二氯乙烷在温血动物体内的主要代谢物之一。进入体内的1,2-二氯乙烷首先贮存于脂肪组织中,以后(2 d内)从脂肪组织转移进入血液,由于酶的脱氢作用,代谢转化变成氯乙醇。氯乙醇系一种高毒化学物质,它进一步代谢可变成一氯乙酸;氯乙醛是介于氯乙烷与一氯乙酸之间的又一个中间代谢产物。在1,2-二氯乙烷代谢产物中,氯乙醇和一氯乙酸的毒性比二氯乙烷本身更大。 非生物降解性 :在环境中,二氯乙烷代谢生成氯乙酸的速度,随湿度与温度的增加而加快。在90℃的湿空气中,二氯乙烷有0.66%分解生成氯乙酸;当温度升高到110℃和140℃时,氯乙酸含量分别为4%和7%~12%。1,2-二氯乙烷在常温和干燥的环境中较难被降解。光与大气中氧对纯品二氯乙烷很少发生影响,而含有杂质的工业品二氯乙烷受到联合作用可产生光气和某些聚合化学物。 急救措施 皮肤接触:脱去污染的衣着,用肥皂水及清水彻底冲洗。注意患者保暖并且保持安静。吸入、食入或皮肤接触该物质可引起迟发反应。确保医务人员了解该物质相关的个体防护知识,注意自身防护和及时医治。 眼睛接触:立即提起眼睑,用流动清水冲洗。 吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。呼吸困难时给输氧。呼吸停止时,立即进行人工呼吸。就医。 食入:误服者给饮大量温水,催吐,洗胃。就医。 防护措施 工程控制:生产过程密闭,加强通风。 呼吸系统防护:空气中浓度超标时,应该佩带防毒面具。紧急事态抢救或逃生时,佩带自给式呼吸器。NIOSH/OSHA1000ppm:供气式呼吸器。2500ppm:连续供气式呼吸器。3000ppm:自携式呼吸器、全面罩呼吸器。应急或有计画进入浓度未知区域,或处于立即危及生命或健康的状况:自携式正压全面罩呼吸器、供气式正压全面罩呼吸器辅之以辅助自携式正压呼吸器。逃生:装有机蒸气滤毒盒的空气净化式全面罩呼吸器(防毒面具)、自携式逃生呼吸器。 眼睛防护: 戴化学安全防护眼镜。 防护服: 穿相应的防护服。 手防护: 必要时戴防化学品手套。 其他: 工作现场禁止吸菸、进食和饮水。工作后,淋浴更衣。注意个人清洁卫生。 安全信息 危险品标志:F:Flammable 风险术语:R11 安全术语:S45 毒理学数据:1300-21-6 管理储运 简介 危险性类别:第3.2类中闪点易燃液体危险货物包装标志:7 包装类别:Ⅱ 储运注意事项: 储存于阴凉、通风仓间内。远离火种、热源。仓温不宜超过30℃。应与氧化剂分开存放。储存间内的照明、通风等设施应采用防爆型,开关设在仓外。配备相应品种和数量的消防器材。罐储时要有防火防爆技术措施。禁止使用易产生火花的机械设备和工具。灌装时应注意流速(不超过3m/s),且有接地装置,防止静电积聚。搬运时要轻装轻卸,防止包装及容器损坏。运输按规定路线行驶,中途不得停驶。ERG指南:130 ERG指南分类:易燃液体(非极性的/与水不混溶的/有害的) 。 二氯乙烷 操作的管理 密闭操作,局部排风。操作人员必须经过专门培训,严格遵守操作规程。建议操作人员佩戴过滤式防毒面具(半面罩),戴化学安全防护眼镜,穿防静电工作服,戴橡胶耐油手套。远离火种、热源,工作场所严禁吸菸。使用防爆型的通风系统和设备。防止蒸气泄漏到工作场所空气中。避免与氧化剂、酸类、碱类接触。灌装时应控制流速,且有接地装置,防止静电积聚。搬运时要轻装轻卸,防止包装及容器损坏。配备相应品种和数量的消防器材及泄漏应急处理设备。倒空的容器可能残留有害物。 储存的管理 储存于阴凉、通风的库房。远离火种、热源。库温不宜超过30℃。保持容器密封。应与氧化剂、酸类、碱类、食用化学品分开存放,切忌混储。采用防爆型照明、通风设施。禁止使用易产生火花的机械设备和工具。储区应备有泄漏应急处理设备和合适的收容材料。应严格执行极毒物品“五双”管理制度。 运输的管理 铁路运输时应严格按照铁道部《危险货物运输规则》中的危险货物配装表进行配装。运输时运输车辆应配备相应品种和数量的消防器材及泄漏应急处理设备。夏季最好早晚运输。运输时所用的槽(罐)车应有接地链,槽内可设孔隔板以减少震荡产生静电。严禁与氧化剂、酸类、碱类、食用化学品等混装、混运。运输途中应防曝晒、雨淋,防高温。中途停留时应远离火种、热源、高温区。装运该物品的车辆排气管必须配备阻火装置,禁止使用易产生火花的机械设备和工具装卸。公路运输时要按规定路线行驶,勿在居民区和人口稠密区停留。铁路运输时要禁止溜放。严禁用木船、水泥船散装运输。 废弃的管理 用焚烧法处置。与燃料混合后,再焚烧。焚烧炉排出的卤化氢通过酸洗涤器除去。 其他 1、不能熏蒸大豆、玉米、大麦、燕麦。 2、熏蒸前须自仓外截断电源,施药时工作人员不能带任何易燃物品。 3、熏蒸时应作好防火准备。

愉快的长颈鹿
甜美的牛排
2025-12-04 00:32:35
四乙基铅是一种金属铅,有水果香味,易溶于有机溶剂和油脂中,挥发性强。

补充回答:

1,我国车用汽油的牌号有70号、80号、90号-98号等。牌号数值就相应表示这种汽油的辛烷大小。辛烷值越高,表示汽油的抗爆震性能越好,耗油也越省。

2,车用汽油由直馏汽油、催化裂化汽油、催化重整汽油和烷基化汽油等组分调合而成,其中还可以加入适量的抗爆剂、抗氧剂、金属钝化剂和清净剂等添加剂。

3,一般来说:直馏汽抽的辛烷值只有40到50,为达到国家规定的要求,汽油中还需掺入催化裂化、抗爆剂、抗氧剂、金属钝化剂和清净剂等添加剂。换句话说,汽油为了提高辛烷值,通常要加入一定数量的四乙基铅(金属铅)。四乙基铅有剧毒,所以人们使用汽油时要加小心,千万不要用嘴吸取汽油。

4,所谓的“无铅汽油”同样含有四乙基铅(金属铅);只不过含铅量较少罢了:

现在,国家制定了新的车用无铅汽油标准。新标准2000年7月1日首先在北京、上海、广州三大城市执行。新标准对车用汽油中可能产生有害气体的组分做了严格的规定,其中:车用汽油中硫含量不大于0.08(m/m)铅含量不大于0.005g/L;苯含量不大于2.5%(v/v);芳烃含量不大于40%(v/v);烯烃含量不大于35%(v/v)等。

5,车用无铅汽油英文名为:Unleaded gasolines for motor vehicles,

给你列个公式,你就明白了:

汽油中的金属钝化剂=四乙基铅(金属铅)=剧毒、高致癌物=“ 燃烧后”=leaded=石墨铅=积炭

无铅汽油因为含四乙基铅(金属铅)较少,对人体伤害较小,能保证发动机运转平稳、燃烧完全、积炭少;具有较好的安定性,在贮运和使用过程中不易出现早期氧化变质,对发动机部件及储油容器无腐蚀性。

优美的期待
魁梧的小蚂蚁
2025-12-04 00:32:35
相对密度(水=1): 0.92

相对蒸气密度(空气=1): 2.20

饱和蒸气压(kPa): 53.32(-3.9℃)

燃烧热(kJ/mol): 1349.3

临界温度(℃): 187.2

临界压力(MPa): 5.23

辛醇/水分配系数的对数值: 1.54

闪点(℃): -43(O.C)

引燃温度(℃): 510

爆炸上限%(V/V): 14.8

爆炸下限%(V/V): 3.6

溶解性: 微溶于水,可混溶于多数有机溶剂。

主要用途

要用作四乙基铅、乙基纤维素及乙基咔唑染料等的原料。也用作烟雾剂、冷冻剂、局部麻醉剂、杀虫剂、乙基化剂、烯烃聚合溶剂、汽油抗震剂等。还用作聚丙烯的催化剂,磷、硫、油脂、树脂、蜡等的溶剂。农药、染料、医药及其中间体的合成。

健康危害

有刺激和麻醉作用。高浓度损害心、肝、肾。吸入2%~4%浓度时可引起运动失调、轻度痛觉减退,并很快出现知觉消失,但其刺激作用非常轻微;高浓度接触引起麻醉,出现中枢抑制,可出现循环和呼吸抑制。皮肤接触后可因局部迅速降温,造成冻伤。

燃爆危险: 本品易燃,具刺激性。

二.氯乙烯

摘要 :氯乙烯是一种应用于高分子化工的重要的单体,可由乙烯或乙炔制得。为无色、易液化气体,沸点-13.9℃,临界温度142℃,临界压力5.22MPa。氯乙烯是有毒物质,肝癌与长期吸入和接触氯乙烯有关。它与空气形成爆炸混合物,爆炸极限4%~22%(体积),在压力下更易爆炸,贮运时必须注意容器的密闭及氮封,并应添加少量阻聚剂。

基本信息

分子式: C2H3Cl

结构式: CHCl=CH2

分子量: 62.50

有害物成分 含量 CAS No.

氯乙烯 ≥99.99% 75-01-4

主要成分: 含量: 纯度≥99.99%。

外观与性状: 无色、有醚样气味的气体。

pH:无意义

熔点(℃): -159.8

沸点(℃): -13.4

相对密度(水=1): 0.91

相对蒸气密度(空气=1): 2.15

饱和蒸气压(kPa): 346.53(25℃)

燃烧热(kJ/mol): 无资料

临界温度(℃): 142

临界压力(MPa): 5.60

辛醇/水分配系数的对数值: 1.38

闪点(℃): 无意义

引燃温度(℃): 415

爆炸上限%(V/V): 31.0

爆炸下限%(V/V): 3.6

理化性质

主要成分:含量: 纯度≥99.99%。

外观与性状:无色、有醚样气味的气体。

熔点(℃):-160.0。

沸点(℃):-13.9。

相对密度(水=1):0.91。

相对蒸气密度(空气=1):2.15。

蒸气压(kPa):346.53(25℃)。

燃烧热(kJ/mol):

闪点(℃):

稳定性和反应活性:

禁配物:强氧化剂。避免受热。

危险特性:易燃,与空气混合能形成爆炸性混合物。遇热源和明火有燃烧爆炸的危险。燃烧或无抑制剂时可发生剧烈聚合。其蒸气比空气重,能在较低处扩散到相当远的地方,遇火源会着火回燃。

溶解性:微溶于水,溶于乙醇、乙醚、丙酮等多数有机溶剂。

用途

主要用于生产聚氯乙烯,并能与醋酸乙烯酯、丙烯腈、丙烯酸酯、偏二氯乙烯(1,1-二氯乙烯)等共聚,制得各种性能的树脂。此外,还可用于合成1,1,2-三氯乙烷及1,1-二氯乙烯等。

氯乙烯-的危害

急性毒性: 短时间吸入大量氯乙烯,因其麻醉作用而产生中枢神经抑制,可导致急性中毒。

亚急性和慢性毒性: 。本品为致癌物,可致肝血管肉瘤。

代谢: 在生产条件下,长期吸入高浓度氯乙烯空气的人员,在他们的血液中蓄积了相当可观的氯乙烯并形成代谢物,从而对人体产生严重的危害,这种在血液中的蓄积和代谢,时间长,后果严重。

刺激性:刺激物,短时间接触低浓度,能刺激眼和皮肤,与其液体接触后由于快速蒸发能引起冻伤。

致癌性:IARC:人类致癌物质。

致畸性:大鼠吸入最低中毒浓度(TCL0):500 ppm(7 h),孕6~15 d,引起胚胎毒性。小鼠吸入最低中毒浓度(TCL0):500 ppm(7 h),孕6~15 d,引起胚胎毒性和肌肉骨骼发育异常。

致突变性:微生物致突变:鼠伤寒沙门氏菌2000 ppm(48 h)。细胞遗传学分析:人Hela细胞10 mmol/L。

危害分级(GB 5044—85):I级(极度危害)

环境危害:氯乙烯在环境中能参与光化学烟雾反应。

迁移转化和降解:工业企业制取,生产和加工聚氯乙烯以及生产聚氯乙烯为基质的各种聚合物的过程中,是氯乙烯析出并进入环境的主要来源,由于以聚氯乙烯为基质的各种聚合材料中,含有未参加聚合反应的氯乙烯单体,它在暴露过程中可逸出而进入环境。作为一种烃类,氯乙烯在环境中能参与光化学烟雾反应;与类似的烃分子比较,氯乙烯的反应性属中等。氯乙烯在大气中的氧化产物包括甲醛、甲酸和氯化氢。

其他有害作用:氯乙烯在环境中能参与光化学烟雾反应,由于其挥发性强,在大气中易被光解,也可被生物降解和化学降解

三.聚氯乙烯

摘要

聚氯乙烯简称PVC,由氯乙烯在引发剂作用下聚合而成的热塑性树脂,是氯乙烯的均聚物。聚氯乙烯是世界上产量最大的塑料产品之一,价格便宜,应用广泛,聚氯乙稀树脂为白色或浅黄色粉末。根据不同的用途可以加入不同的添加剂,聚氯乙稀塑料可呈现不同的物理性能和力学性能。在聚氯乙稀树脂中加入适量的增塑剂,可制成多种硬质、软质和透明制品。聚氯乙烯通过塑料加工可制成各种型材和制品。①一般软制品。利用注射成型机配合各种模具,可制成塑料凉鞋、鞋底、拖鞋等。②薄膜。利用三辊或四辊压延机制成规定厚度的透明或着色薄膜。薄膜用途很广,可以通过剪裁,热合加工成包装袋、雨衣、桌布、窗帘、充气玩具等。 ③涂层制品。如人造革。人造革可以用来制作皮箱、皮包、书的封面、沙发及汽车的座垫等。④泡沫制品。如泡沫塑料,可作泡沫拖鞋、凉鞋、鞋垫、坐垫、及防震缓冲包装材料。 ⑤透明片材。利用热成型可以作成薄壁透明容器或用于真空吸塑包装,是优良的包装材料和装饰材料。⑥糊制品。⑦硬管和板材。⑨中空容器

物理和化学性质

稳定;不易被酸、碱腐蚀;对热比较耐受

聚氯乙烯具有阻燃(阻燃值为40以上)、耐化学药品性高(耐浓盐酸、浓度为90%的硫酸、浓度为60%的硝酸和浓度20%的氢氧化钠)、机械强度及电绝缘性良好的优点。但其耐热性较差,软化点为80℃,于130℃开始分解变色,并析出HCI。具有稳定的物理化学性质,不溶于水、酒精、汽油,气体、水汽渗漏性低;在常温下可耐任何浓度的盐酸、90%以下的硫酸、50—60%的硝酸和20%以下的烧碱溶液,具有一定的抗化学腐蚀性;对盐类相当稳定,但能够溶解于醚、酮、氯化脂肪烃和芳香烃等有机溶剂。此外,POVC的光、热稳定性较差,在100℃以上或经长时间阳光暴晒,就会分解产生氯化氢,并进一步自动催化分解、变色,物理机械性能迅速下降,因此在实际应用中必须加入稳定剂以提高对热和光的稳定性。

聚氯乙烯-应用范围

正是由于其防火耐热作用,聚氯乙烯被广泛用于电线外皮和光纤外皮。此外也常被制成手套、某些食物的保鲜纸。

聚氯乙烯可由乙烯、氯和催化剂制成。

回收及循还再用

资源回收再利用: 国际塑料回收代码: PVC的是3 (3字在三个循还再用箭号中心)

聚氯乙烯-危害

聚氯乙烯也是经常使用的一种塑料,它是由聚氯乙烯树脂、增塑剂和防老剂组成的树脂,本身并无毒性。但所添加的增塑剂、防老剂等主要辅料有毒性,日用聚氯乙烯塑料中的增塑剂,主要使用对苯二甲酸二丁酯、邻苯二甲酸二辛酯等,这些化学品都有毒性,聚氯乙烯的防老剂硬脂酸铅盐也是有毒的。含铅盐防老剂的聚氯乙烯(PVC)制品和乙醇、乙醚及其他溶剂接触会析出铅。含铅盐的聚氯乙烯用作食品包装与油条、炸糕、炸鱼、熟肉类制品、蛋糕点心类食品相遇,就会使铅分子扩散到油脂中去,所以不能使用聚氯乙烯塑料袋盛装食品,尤其不能盛装含油类的食品。

另外,聚氯乙烯塑料制品在较高温度下,如50℃左右就会慢慢地分解出氯化氢气体,这种气体对人体有害,因此聚氯乙烯制品不宜作为食品的包装物。电木(酚醛塑料)含有游离苯酚和甲醛,对人体有一定毒性,不适合存放食品和作食品包装。电玉(尿醛塑料)虽然无嗅无味,但在100℃沸水中或用作盛放醋类食品时,会有游离甲醛析出,对人体有害,所以也不适于作为食具或食品包装。 废旧塑料(有的可能添加少许新料)的更新品,因其成分复杂,很难保证不带有毒性,故一般也不可用来作为食品盛具和包装物。 [1]

三氯甲烷

三氯甲烷为氯仿的学名,又称“哥罗芳”、“三氯甲烷”和“三氯化碳”。氯仿一名为英语Chloroform的半意半音译;哥罗芳为音译。常温下为无色透明的重质液体,极易挥发,味辛甜而有特殊芳香气味。

性质

熔沸点(℃)熔点: -63.7 ,沸点: 61.2

密度

相对密度(水=1): 1.48g/cm3(液)

相对蒸气密度(空气=1): 4.12

溶解性

在水中的溶解度:0.8 g/100 ml, 20 °C

其它

饱和蒸气压(kPa): 13.33(10.4℃)

临界温度(℃): 263.4

临界压力(MPa): 5.47

辛醇/水分配系数的对数值: 1.97

三氯甲烷又称氯仿。为甲烷分子中三个氢原子被氯取代而生成的化合物,分子式CHCl3。无色易挥发液体稍有甜味;熔点-63.5℃,沸点61.7℃,相对密度1.4832(20/4℃);微溶于水,溶于乙醚、乙醇、苯等;难燃烧。

三氯甲烷在光照下,能被空气中的氧氧化成氯化氢和有剧毒的光气:

主要用途

氯仿为有机合成原料,主要用来生产氟里昂(F-21、F-22、F-23)。此外,还用于有机合成及麻醉剂;脂肪、橡胶、树脂、油类、蜡、磷、碘和粘合压克力的溶剂;青霉素、精油、生物碱等的萃取剂;测定血清中无机磷;清洗剂;肝功能试验的防腐剂等。是手机维修人员必备的清洗剂。

氯仿与四氯化碳混合可制成不冻的防火液体。还用于烟雾剂的发射药、谷物的熏蒸剂和校准温度的标准液。工业产品通常加有少量乙醇,使生成的光气与乙醇作用生成无毒的碳酸二乙酯

危害

三氯甲烷主要作用于中枢神经系统,具有麻醉作用,对心、肝、肾有损害。

环境危害: 对环境有危害,对水体可造成污染。

燃爆危险: 本品不燃,有毒,为可疑致癌物,具刺激性。

危险特性: 与明火或灼热的物体接触时能产生剧毒的光气。

难燃烧。三氯甲烷在光照下能被空气中的氧氧化成氯化氢和有剧毒的光气

四.氟氯烃

是一类有机化合物,主要的是以氯原子取代甲烷中的氢,再通入氢氟酸中。

氟氯烃广泛地存在于各种较早的制冷剂中作为热交换介质。氟氯烃被压缩时会放热,而压强变小时会大量吸热。

氟氯烃可以在紫外线的照射下产生氯原子,作为臭氧分解的催化剂。因此对臭氧层危害极大。有研究指责氟氯烃的滥用是造成臭氧层空洞的重要原因。因此,我国政府已经全面禁止氟氯烃在家用制冷电器中的使用。

二氟二氯甲烷是一种经典的氟氯烃,化学式 CF2Cl2,是二氯甲烷与氟化氢气体取代得到的。

氟氯烃化学性质稳定,低毒,部分略有香味

五.四氟乙烯

四氟乙烯主要由氯仿制得,也可由四氟二氯乙烷在三氟化铝存在下催化脱氯而制得。常温下为无色无臭的气体,沸点-76.3℃;可加压液化,临界温度33.3℃,临界压力3.92MPa。与其他多种氟代烃不同,四氟乙烯有毒。主要用于生产使用温度范围广、化学稳定性高的聚四氟乙烯;也可与乙烯或六氟丙烯共聚制备含氟绝缘材料,或与偏氟乙烯共聚生产含氟纤维。

性质:无色无臭气体。熔点-142.5℃,沸点-76.3℃,不溶于水。比空气重。相对密度1.519,临界温度33.3℃,临界压力3.92MPa,燃点620℃。溶于丙酮、乙醇。自燃极限为11%-60%(体积),引燃温度只有180℃。有氧存在时,易形成不稳定易爆炸的过氧化物。 制备方法:二氟一氯甲烷经气化、预热、通入裂解炉,热裂解产含四氟乙烯单体的裂化气,经水洗、碱洗、压缩、冷冻脱水、干燥,分馏等工序,最后精馏得成品。

用途:制造聚四氟乙烯及其他氟塑料、氟橡胶和全氟丙烯的单体。可用作制造新型的热塑料、工程塑料、耐油耐低温橡胶、新型灭火剂和抑雾剂的原料

危险性概述

危险性类别:局部过热引发歧化反应

健康危害:急性中毒:轻者有咳嗽、胸闷、头晕、乏力、恶心等。

环境危害:对大气可造成污染。

燃爆危险:本品易燃。

六.四氯乙烯

简述:又称全氯乙烯。为乙烯中全部氢原子被氯取代而生成的化合物,分子式Cl2C匉CCl2。无色液体熔点-19℃,沸点121℃,相对密度1.6227(20/4℃);不溶于水,溶于乙醇、乙醚和苯等;气味像乙醚;不能燃烧。

性质:四氯乙烯较为稳定,不易发生加成反应。它与乙醇钠作用时,氯原子可被乙氧基取代,生成二氯乙烯酮乙缩酮,再与乙醇加成,水解后可得二氯乙酸乙酯:

作用:四氯乙烯主要用作有机溶剂、干洗剂和金属去脂剂;曾用于驱除人体内的钩虫和姜片虫;高浓度时有麻醉作用,对皮肤有脱脂作用并能引起皮炎。

危害:一项最新研究显示,妇女怀孕期间如果接触过多的四氯乙烯,会增加新生儿患唇腭裂和神经系统先天缺陷的风险。

七.七氟丙烷

-七氟丙烷是一种无色无味的气态氟代烃,是灭火剂的一种常见材料。以七氟丙烷为原材料的灭火剂计有:HFC-227 HFC-227ea MH-227 (Shanghai Waysmos) FE-227,和 FM-200

七氟丙烷-化学特性

七氟丙烷的化学式是 CF3-CHF-CF3,或C3HF7,熔点是−131 °C、沸点是−16.4 °C。微溶于水(260 mg/L)。

七氟丙烷参数:

臭氧层的耗损潜能值ODP=0

温室效应潜能值GWP=0.6

大气中存留寿命ALT=31年

灭火剂无毒性反应浓度NOAEL=9.0%

灭火剂有毒性反应浓度LOAEL=10.5%

灭火设计基本浓度C=8%

低于NOAEL和LOAEL,相对安全。

七氟丙烷-七氟丙烷的应用

由于七氟丙烷不含有氯或溴,不会对大气臭氧层发生破坏作用,所以被采用来替换对环境危害的海龙1301和海龙1211来作为灭火剂的原料。七氟丙烷在大气中的生命周期约为31年到42年间,而且在释出后不会留下残余物或油渍,亦可透过正常排气通道排走,所以很适合作为数据中心或服务器存放中心的灭火剂。通常这些地方都会把一罐含有压缩了的七氟丙烷的罐安装在楼层顶部,当火警发生时,七氟丙烷从罐的出气口排出,迅速把火警发生场所的氧气排走、并冷却火警发生处,从而达到灭火的目的。

七氟丙烷虽然在室温下比较稳定,但在高温下仍然会分解,并产生氟化氢,产生刺鼻的味道。其他燃烧产物还包括一氧化碳和二氧化碳。

接触液态七氟丙烷可以导致冻伤。

七氟丙烷亦可作为发射火箭的湿剂(propellant)。

七氟丙烷被使用在配药测量的药量吸入器,例如在哮喘疗程中使用的吸入器。

八.四氯化碳

四氯化碳 (carbon tetrachloride,CCl4),化学式CCl4。CAS号:56-23-5,又称四氯甲烷 (tetrachloromethane),为无色、易挥发、不易燃的液体。具氯仿的微甜气味。并具有一种令人愉快的气味。分子量153.84,密度1.595g/cm3(20/4℃),沸点76.8℃,蒸气压15.26kPa(25℃),蒸气密度5.3g/L。微溶于水,可与乙醇、乙醚、氯仿及石油醚等混溶。遇火或炽热物可分解为二氧化碳、氯化氢、光气和氯气等。

主要性质

四氯化碳为无色澄清易流动的液体,工业上有时因含杂质呈微黄色,具有芳香气味,易挥发。密度(20℃)1.595克/立方厘米、熔点-22.8℃,沸点76~77℃。 四氯化碳的蒸气较空气重约5倍,且不会燃烧。四氯化碳的蒸气有毒,它的麻醉性较氯仿为低,但毒性较高。吸入人体2~4毫升就可使人死亡。 四氯化碳在水中的溶解度很小,且遇湿气及光即逐渐分解生成盐酸。易溶于各种有机溶剂,能与醇、醚、氯仿、苯等任意混合。对于脂肪、油类及多种有机化合物为一极优良的溶剂。

四氯化碳用作灭火剂时,不能灭活泼金属的火,因为活泼金属可以与之反应

毒性危害

CCl4是典型的肝脏毒物,但接触浓度与频度可影响其作用部位及毒性。高浓度时,首先是中枢神经系统受累,随后累及肝、肾而低浓度长期接触则主要表现肝、肾受累。乙醇可促进四氯化碳的吸收,加重中毒症状。另外,四氯化碳可增加心肌对肾上腺素的敏感性,引起严重心律失常。人对四氯化碳的个体易感性差异较大,有报道口服3~5ml即可中毒,29.5ml即可致死。在160~2OOmg/m3浓度下可发生中毒。但也有在1~2g/m3浓度下接触3Omin方出现轻度中毒。目前认为四氯化碳无致畸和致突变作用,但具有胚胎毒性。根据IARCl972及1979年资料,四氯化碳长期作用可以引起啮齿动物的肝癌,被列为"对人类有致癌可能"一类的化学物。

研究表明,CCl4在高温下与水反应会有有毒物质光气产生

用途:四氯化碳主要用作溶剂和灭火剂,也可用于生产氟利昂,在医药上可作麻醉剂。

九.DDT

DDT又叫滴滴涕,二二三,化学名为双对氯苯基三氯乙烷(Dichlorodiphenyltrichloroethane),化学式(ClC6H4)2CH(CCl3)。中文名称从英文缩写DDT而来,为白色晶体,不溶于水,溶于煤油,可制成乳剂,是有效的杀虫剂。为20世纪上半叶防止农业病虫害,减轻疟疾伤寒等蚊蝇传播的疾病危害起到了不小的作用。

物质的理化常数

分子式 C14H9Cl5 外观与性状 DDT化合物所有异构体都是白色结晶状固体或淡黄色粉末,无味,几乎无嗅

分子量 354.5 蒸汽压 2.53×10-8kPa/20℃ 闪点:72-77℃

熔 点 108~109℃ 沸点:260℃ 溶解性 DDT在水中极不易溶解,在有机溶剂中的溶解情况如下(g/100ml):苯为106,环已酮为100,氯仿为96,石油溶剂为4-10,乙醇为1.5

密 度 1.55(25℃ ) 稳定性 DDT化学性质稳定,在常温下不分解。对酸稳定,强碱及含铁溶液易促进其分解。当温度高于熔点时,特别是有催化剂或光的情况下,p,p'-DDT经脱氯化氢可形成DDE

危险标记 14(有毒品), 主要用途 :用作农用杀虫剂

对健康的危害侵入途径

吸入、食入、经皮吸收。

健康危害

轻度中毒可出现头痛、头晕、无力、出汗、失眠、恶心、呕吐,偶有手及手指肌肉抽动震颤等症状。重度中毒常伴发高烧、多汗、呕吐、腹泻;神经系统兴奋,上、下肢和面部肌肉呈强直性抽搐,并有癫痫样抽搐、惊厥发作,对人不论是故意的或是过失造成大量服用时,即能引起中毒

内向的楼房
狂野的白猫
2025-12-04 00:32:35

从石油分馏塔中分馏出来的汽油是不含铅的,那么汽油中的铅是从哪里来的呢?

原来,汽油中的铅是为了提高汽油质量人为添加的。汽油燃烧是否充分,是否会发生爆震现象,是检验汽油品质和实用性的一个重要指标。

通常,从石油分馏塔中制造的汽油,辛烷值只有55,用这样的汽油作为燃料,汽车极易发生爆震,且燃料的燃烧不充分,会造成极大的浪费。产生爆震的直接原因是自燃点低的烃类化合物在气缸工作的温度下极易形成烃类化合物的过氧化物,而这种过氧化物会分解出自由基,从而引发爆震。总的来说,辛烷值低的汽油,抗爆性能差。

为了增强抗爆性,人们“不得不”往汽油中添加一种铅的化合物——四乙基铅。如果往55号汽油中加入1/1000的四乙基铅,它的辛烷值立即就变为66。在20世纪,中国普遍使用的66号汽油,就是这种添加了四乙基铅的汽油。

四乙基铅之所以能起到提高汽油辛烷值的作用,是因为它在气缸工作的温度下会发生分解而生成氧化铅。氧化铅是过氧化物的克星,没有了过氧化物,气缸内就不会发生爆震,相当于提高了汽油的辛烷值。添加了四乙基铅的汽油,在内燃机工作过程中,会发生化学反应生成铅和氧化铅。

爱听歌的刺猬
儒雅的路人
2025-12-04 00:32:35
小苏打:

小苏打,又叫碳酸氢钠,是一种弱碱性的抗酸药物,也是厨房用品。小苏打的化学式是NaHCO3。它的名字也有很多,学名碳酸氢钠,又称重碳酸钠或酸式碳。小苏打通常的用途是:在灭火器里,它是产生二氧化碳的原料之一;在食品工业上,它是发酵粉的一种主要原料;在制造清凉饮料时,它也是常用的一种原料;在医疗上,它是治疗胃酸过多的一种药剂;通常也用作食品工作的发酵剂。

大苏打:

大苏打是硫代硫酸钠的俗名,大苏打是无色透明的晶体,易溶于水,水溶液显弱碱性。它在33℃以上的干燥空气中风化而失去结晶水。在中性、碱性溶液中较稳定,在酸性溶液中会迅速分解。大苏打是重要的化工原料之一,用于制化学品、清洗剂、洗涤剂、也用于照相术和制医药品。另外,大苏打还用于鞣制皮革、电镀以及由矿石中提取银等。

舒心的西装
耍酷的毛衣
2025-12-04 00:32:35

维基百科,自由的百科全书

跳转到: 导航, 搜索

IUPAC中文命名

常规

分子式 C6H6

SMILES C1=CC=CC=C1

分子量 78.11 g/mol

外观 无色透明易挥发液体

气味 有强烈芳香气味。12ppm浓度时可检测到油漆稀释剂气味

CAS号 71-43-2

RTECS号 CY1400000

IMDG规则页码 3185

UN编号 1114

性质

STP下的密度 0.8786 g/cm3

溶解度 0.18 g/ 100 ml 水

熔点 278.65 K (5.5 ℃)

沸点 353.25 K (80.1 ℃)

相态

三相点 278.5 ± 0.6 K

临界点 289.5℃

4.92MPa

熔解热

(ΔfusH) 9.84 kJ/mol

汽化热

(ΔvapH) 44.3 kJ/mol

燃烧热 3264.4 kJ/mol

危险性

闪点 -10.11℃(闭杯)

自燃 562.22℃

爆炸极限 1.2 - 8.0 %

摄取 可引起急性中毒,麻痹中枢神经,需要充分漱口,喝水,尽快洗胃。

吸入 可导致呼吸困难。严重者可能导致呼吸及心跳停止。

皮肤 变干燥,脱屑,皴裂,有的可能发生过敏性湿疹

眼睛 有刺激性。需用大量清水冲洗

处理方式

* 危险性:

o 遇热、明火易燃烧、爆炸。

* 人身保护:

o 防护手套,防护服,浓度过高须配带防毒面具

* 稳定性:

o 能与氧化剂强烈反应。不能与乙硼烷共存。

* 储存:

o 阴凉,通风。远离火种、热源。防止阳光直射。密封储存。防止静电

液体性质

标准生成焓

(ΔfH0液) 48.95 ± 0.54 kJ/mol

标准熵

(S0液) 173.26 J/mol·K

热容

(Cp) 135.69 J/mol·K (298.15 K)

若非注明,所有数据都依从国际单位制和来自标准温度和压力条件下。 参考和免责条款

苯(C6H6)在常温下为一种无色、有甜味的透明液体,并具有强烈的芳香气味。苯可燃,有毒,也是一种致癌物质。

化学上,苯是一种碳氢化合物也是最简单的芳烃。它难溶于水,易溶于有机溶剂,本身也可作为有机溶剂。苯是一种石油化工基本原料。苯的产量和生产的技术水平是一个国家石油化工发展水平的标志之一。苯具有的环系叫苯环,是最简单的芳环。苯分子去掉一个氢以后的结构叫苯基,用Ph表示。因此苯也可表示为PhH。

目录

[隐藏]

* 1 发现

* 2 结构

* 3 物理性质

* 4 化学性质

o 4.1 取代反应

+ 4.1.1 卤代反应

+ 4.1.2 硝化反应

+ 4.1.3 磺化反应

+ 4.1.4 烷基化反应

o 4.2 加成反应

o 4.3 氧化反应

o 4.4 其他反应

* 5 制备

o 5.1 从煤焦油中提取

o 5.2 从石油中提取

+ 5.2.1 催化重整

+ 5.2.2 蒸汽裂解

o 5.3 芳烃分离

o 5.4 甲苯脱烷基化

+ 5.4.1 甲苯催化加氢脱烷基化

+ 5.4.2 甲苯热脱烷基化

o 5.5 甲苯歧化和烷基转移

o 5.6 其他方法

* 6 分析测试方法

* 7 安全

o 7.1 毒性

o 7.2 可燃性

* 8 工业用途

* 9 苯的异构体

* 10 苯的衍生物

o 10.1 取代苯

o 10.2 多环芳烃

* 11 参看

* 12 参考文献

* 13 外部链接

[编辑]

发现

凯库勒的摆动双键

放大

凯库勒的摆动双键

苯最早是在18世纪初研究将煤气作为照明用气时合成出来的。1803年-1819年G. T. Accum采用同样方法制出了许多产品,其中一些样品用现代的分析方法检测出有少量的苯。然而,一般认为苯是在1825年由麦可·法拉第发现的。他从鱼油等类似物质的热裂解产品中分离出了较高纯度的苯,称之为“氢的重碳化物”(Bicarburet of hydrogen)。并且测定了苯的一些物理性质和它的化学组成,阐述了苯分子的碳氢比。

1833年,Milscherlich确定了苯分子中6个碳和6个氢原子的经验式(C6H6)。弗里德里希·凯库勒于1865年提出了苯环单、双键交替排列、无限共轭的结构,即现在所谓“凯库勒式”。又对这一结构作出解释说环中双键位置不是固定的,可以迅速移动,所以造成6个碳等价。他通过对苯的一氯代物、二氯代物种类的研究,发现苯是环形结构,每个碳连接一个氢。也有人提出了其他的设想:

詹姆斯·杜瓦则归纳出不同结构;以其命名的杜瓦苯现已被证实是与苯不同的另外一种物质,可由苯经光照得到。

1845年德国化学家霍夫曼从煤焦油的轻馏分中发现了苯,他的学生C. Mansfield随后进行了加工提纯。后来他又发明了结晶法精制苯。他还进行工业应用的研究,开创了苯的加工利用途径。大约从1865年起开始了苯的工业生产。最初是从煤焦油中回收。随着它的用途的扩大,产量不断上升,到1930年已经成为世界十大吨位产品之一。

[编辑]

结构

苯具有的苯环结构导致它有特殊的芳香性。苯环是最简单的芳环,由六个碳原子构成一个六元环,每个碳原子接一个基团,苯的6个基团都是氢原子。

6个p轨道形成离域大∏键的电子云

放大

6个p轨道形成离域大∏键的电子云

碳数为4n+2(n是自然数),且具有单、双键交替排列结构的环烯烃称为轮烯,苯就是[6]-轮烯。

苯分子是平面分子,12个原子处于同一平面上,6个碳和6个氢是均等的,C-H键长为1.08Å,C-C键长为1.40Å,此数值介于单双键长之间。分子中所有键角均为120°,说明碳原子都采取sp2杂化。这样每个碳原子还剩余一个p轨道垂直于分子平面,每个轨道上有一个电子。于是6个轨道重叠形成离域大∏键,现在认为这是苯环非常稳定的原因,也直接导致了苯环的芳香性。

[编辑]

物理性质

苯的沸点为80.1℃,熔点为5.5℃,在常温下是一种无色、有芳香气味的透明液体,易挥发。苯比水密度低,密度为0.88g/ml,但其分子质量比水重,。苯难溶于水,1升水中最多溶解1.7g苯;但苯是一种良好的有机溶剂,溶解有机分子和一些非极性的无机分子的能力很强。

苯能与水生成恒沸物,沸点为69.25℃,含苯91.2%。因此,在有水生成的反应中常加苯蒸馏,以将水带出。

在10-1500mmHg之间的饱和蒸气压可以根据安托万方程(antoine)计算:

\lg P = A - {B \over C + t}

其中:P 单位为 mmHg, t 单位为 ℃, A = 6.91210, B = 1214.645, C = 221.205

[编辑]

化学性质

苯参加的化学反应大致有3种:一种是其他基团和苯环上的氢原子之间发生的取代反应;一种是发生在C-C双键上的加成反应;一种是苯环的断裂。

[编辑]

取代反应

苯环上的氢原子在一定条件下可以被卤素、硝基、磺酸基、烃基等取代,生成相应的衍生物。由于取代基的不同以及氢原子位置的不同、数量不同,可以生成不同数量和结构的同分异构体。

苯环的电子云密度较大,所以发生在苯环上的取代反应大都是亲电取代反应。亲电取代反应是芳环有代表性的反应。苯的取代物在进行亲电取代时,第二个取代基的位置与原先取代基的种类有关。

[编辑]

卤代反应

苯的卤代反应的通式可以写成:

PhH + X_2 \to PhX + HX

反应过程中,卤素分子在苯和催化剂的共同作用下异裂,X+进攻苯环,X-与催化剂结合。

以溴为例:反应需要加入铁粉,铁在溴作用下先生成三溴化铁。

FeBr_3 + Br^- \to FeBr_4^-

PhH + Br^+ + FeBr_4^- \to PhBr + FeBr_3 + HBr

在工业上,卤代苯中以氯和溴的取代物最为重要。

[编辑]

硝化反应

苯和硝酸在浓硫酸作催化剂的条件下可生成硝基苯:

PhH + HONO_2 \to PhNO_2 + H_2O

硝化反应是一个强烈的放热反应,很容易生成一取代物,但是进一步反应速度较慢。

[编辑]

磺化反应

用浓硫酸或者发烟硫酸在较高温度下可以将苯磺化成苯磺酸。

H_2SO_4 + PhH \to PhSO_3H + H_2O

苯环上引入一个磺酸基后反应能力下降,不易进一步磺化,需要更高的温度才能引入第二、第三个磺酸基。这说明硝基、磺酸基都是钝化基团,即妨碍再次亲电取代进行的基团。

[编辑]

烷基化反应

在AlCl3催化下苯环上的氢原子可以被烷基(烯烃)取代生成烷基苯,这种反应称为烷基化反应,又称为傅-克烷基化反应。例如与乙烯烷基化生成乙苯:

PhH + C_2H_4 \to Ph\!-\!C_2H_5

在反应过程中,R基可能会发生重排:如1-氯丙烷与苯反应生成异丙苯,这是由于自由基总是趋向稳定的构型。

[编辑]

加成反应

苯环虽然很稳定,但是在一定条件下也能够发生双键的加成反应。通常经过催化加氢,镍作催化剂,苯可以生成环己烷。

C_6H_6 + 3H_2 \to C_6H_{12}

此外由苯生成六氯环己烷(六六六)的反应可以在紫外线照射的条件下,由苯和氯气加成而得。

[编辑]

氧化反应

苯和其他的烃一样,都能燃烧。当氧气充足时,产物为二氧化碳和水。

2C_6H_6 + 15O_2 \to 12CO_2 + 6H_2O

但是在一般条件下,苯不能被强氧化剂所氧化。但是在氧化钼等催化剂存在下,与空气中的氧反应,苯可以选择性的氧化成顺丁烯二酸酐。这是屈指可数的几种能破坏苯的六元碳环系的反应之一。(马来酸酐是五元杂环。)

2C_6H_6 + 9O_2 \to 2C_4H_2O_3 + 4CO_2 + 4H_2O

这是一个强烈的放热反应。

[编辑]

其他反应

苯在高温下,用铁、铜、镍做催化剂,可以发生缩合反应生成联苯。和甲醛及次氯酸在氯化锌存在下可生成氯甲基苯。和乙基钠等烷基金属化物反应可生成苯基金属化物。在四氢呋喃中氯苯或溴苯和镁反应可生成苯基格林尼亚试剂。

[编辑]

制备

苯可以由含碳量高的物质不完全燃烧获得。自然界中,火山爆发和森林火险都能生成苯。苯也存在于香烟的烟中。

直至二战,苯还是一种钢铁工业焦化过程中的副产物。这种方法只能从1吨煤中提取出1千克苯。1950年代后,随着工业上,尤其是日益发展的塑料工业对苯的需求增多,由石油生产苯的过程应运而生。现在全球大部分的苯来源于石油化工。工业上生产苯最重要的三种过程是催化重整、甲苯加氢脱烷基化和蒸汽裂化。

[编辑]

从煤焦油中提取

在煤炼焦过程中生成的轻焦油含有大量的苯。这是最初生产苯的方法。将生成的煤焦油和煤气一起通过洗涤和吸收设备,用高沸点的煤焦油作为洗涤和吸收剂回收煤气中的煤焦油,蒸馏后得到粗苯和其他高沸点馏分。粗苯经过精制可得到工业级苯。这种方法得到的苯纯度比较低,而且环境污染严重,工艺比较落后。

[编辑]

从石油中提取

在原油中含有少量的苯,从石油产品中提取苯是最广泛使用的制备方法。

[编辑]

催化重整

重整这里指使脂肪烃成环、脱氢形成芳香烃的过程。这是从第二次世界大战期间发展形成的工艺。

在500-525°C、8-50个大气压下,各种沸点在60-200°C之间的脂肪烃,经铂 - 铼催化剂,通过脱氢、环化转化为苯和其他芳香烃。从混合物中萃取出芳香烃产物后,再经蒸馏即分出苯。也可以将这些馏分用作高辛烷值汽油。

[编辑]

蒸汽裂解

蒸汽裂解是由乙烷,丙烷或丁烷等低分子烷烃以及石脑油,重柴油等石油组份生产烯烃的一种过程。其副产物之一裂解汽油富含苯,可以分馏出苯及其他各种成分。裂解汽油也可以与其他烃类混合作为汽油的添加剂。

裂解汽油中苯大约有40-60%,同时还含有二烯烃以及苯乙烯等其他不饱和组份,这些杂质在贮存过程中易进一步反应生成高分子胶质。所以要先经过加氢处理过程来除去裂解汽油中的这些杂质和硫化物,然后再进行适当的分离得到苯产品。

[编辑]

芳烃分离

从不同方法得到的含苯馏分,其组分非常复杂,用普通的分离方法很难见效,一般采用溶剂进行液-液萃取或者萃取蒸馏的方法进行芳烃分离,然后再采用一般的分离方法分离苯、甲苯、二甲苯。根据采用的溶剂和技术的不同又有多种分离方法。

* Udex法:由美国道化学公司和UOP公司在1950年联合开发,最初用二乙二醇醚作溶剂,后来改进为三乙二醇醚和四乙二醇醚作溶剂,过程采用多段升液通道(multouocomer)萃取器。苯的收率为100%。

* Suifolane法:荷兰壳牌公司开发,专利为UOP公司所有。溶剂采用环丁砜,使用转盘萃取塔进行萃取,产品需经白土处理。苯的收率为99.9%。

* Arosolvan法:由联邦德国的鲁奇公司在1962年开发。溶剂为N-甲基吡咯烷酮(NMP),为了提高收率,有时还加入10-20%的乙二醇醚。采用特殊设计的Mechnes萃取器,苯的收率为99.9%。

* IFP法:由法国石油化学研究院在1967年开发。采用不含水的二甲亚砜作溶剂,并用丁烷进行反萃取,过程采用转盘塔。苯的收率为99.9%。

* Formex法:为意大利SNAM公司和LRSR石油加工部在1971年开发。吗啉或N-甲酰吗啉作溶剂,采用转盘塔。芳烃总收率98.8%,其中苯的收率为100%。

[编辑]

甲苯脱烷基化

甲苯脱烷基制备苯,可以采用催化加氢脱烷基化,或是不用催化剂的热脱烷基。原料可以用甲苯、及其和二甲苯的混合物,或者含有苯及其他烷基芳烃和非芳烃的馏分。

[编辑]

甲苯催化加氢脱烷基化

用铬,钼或氧化铂等作催化剂,500-600°C高温和40-60个大气压的条件下,甲苯与氢气混合可以生成苯,这一过程称为加氢脱烷基化作用。如果温度更高,则可以省去催化剂。反应按照以下方程式进行:

Ph\!-CH_3 + H_2 \to Ph\!-H + CH_4

根据所用催化剂和工艺条件的不同又有多种工艺方法:

* Hydeal法:由Ashiand &refing 和UOP公司在1961年开发。原料可以是重整油、加氢裂解汽油、甲苯、碳6-碳8混合芳烃、脱烷基煤焦油等。催化剂为氧化铝-氧化铬,反应温度600-650℃,压力3.43-3.92MPa。苯的理论收率为98%,纯度可达99.98%以上,质量优于Udex法生产的苯。

* Detol法:Houdry公司开发。用氧化铝和氧化镁做催化剂,反应温度540-650℃,反应压力0.69-5.4MPa,原料主要是碳7-碳9芳烃。苯的理论收率为97%,纯度可达99.97%。

* Pyrotol法:Air products and chemicals公司和Houdry公司开发。适用于从乙烯副产裂解汽油中制苯。催化剂为氧化铝-氧化铬,反应温度600-650℃,压力0.49-5.4MPa。

* Bextol法:壳牌公司开发。

* BASF法:BASF公司开发。

* Unidak法:UOP公司开发。

[编辑]

甲苯热脱烷基化

甲苯在高温氢气流下可以不用催化剂进行脱烷基制取苯。反应为放热反应,针对遇到的不同问题,开发出了多种工艺过程。

* MHC加氢脱烷基过程:由日本三菱石油化学公司和千代田建设公司在1967年开发。原料可以用甲苯等纯烷基苯,含非芳烃30%以内的芳烃馏分。操作温度500-800℃,操作压力0.98MPa,氢/烃比为1-10。过程选择性97-99%(mol),产品纯度99.99%。

* HDA加氢脱烷基过程:由美国Hydrocarbon Research和Atlantic Richfield公司在1962年开发。原料采用甲苯,二甲苯,加氢裂解汽油,重整油。从反应器不同部位同如氢气控制反应温度,反应温度600-760℃,压力3.43-6.85MPa,氢/烃比为1-5,停留时间5-30秒。选择性95%,收率96-100%。

* Sun过程:由Sun Oil公司开发

* THD过程:Gulf Research and Development公司开发

* Monsanto过程:孟山都公司开发

[编辑]

甲苯歧化和烷基转移

随着二甲苯用量的上升,在1960年代末相继开发出了可以同时增产二甲苯的甲苯歧化和烷基转移技术,主要反应为:

甲苯歧化和烷基转移反应

这个反应为可逆反应,根据使用催化剂、工艺条件、原料的不同而有不同的工艺过程。

* LTD液相甲苯岐化过程:美国美孚化学公司在1971年开发,使用非金属沸石或分子筛催化剂,反应温度260-315℃,反应器采用液相绝热固定床,原料为甲苯,转化率99%以上

* Tatoray过程:日本东丽公司和UOP公司1969年开发,以甲苯和混合碳9芳烃为原料,催化剂为丝光沸石,反应温度350-530℃,压力2.94MPa,氢/烃比5-12,采用绝热固定床反应器,单程转化率40%以上,收率95%以上,选择性90%,产品为苯和二甲苯混合物。

* Xylene plas过程:由美国Atlantic Richfield公司和Engelhard公司开发.使用稀土Y型分子筛做催化剂,反应器为气相移动床,反应温度471-491℃,常压。

* TOLD过程:日本三菱瓦斯化学公司1968年开发,氢氟酸-氟化硼催化剂,反应温度60-120℃,低压液相。有一定腐蚀性。

[编辑]

其他方法

此外,苯还可以通过乙炔加成得到。反应方程式如下:

\rm 3CH\!\equiv\!CH \longrightarrow C_6H_6

[编辑]

分析测试方法

气相色谱和液相色谱可以检测各种产品中苯的含量。苯的纯度的测定一般使用冰点法。

对空气中微量苯的检测,可以用甲基硅油等有挥发性的有机溶剂或者低分子量的聚合物吸收,然后通过色谱进行分析;或者采用比色法分析;也可以将含有苯的空气深度冷冻,将苯冷冻下来,然后把硫酸铁和过氧化氢溶液加入得到黄褐色或黑色沉淀,再用硝酸溶解,然后通过比色法分析。或者直接用硝酸吸收空气中的苯,硝化成间二硝基苯,然后用二氯化钛溶液滴定,或者用间二甲苯配制的甲乙酮碱溶液比色定量。

[编辑]

安全

[编辑]

毒性

参看苯中毒

由于苯的挥发性大,暴露于空气中很容易扩散。人和动物吸入或皮肤接触大量苯进入体内,会引起急性和慢性苯中毒。有研究报告表明,引起苯中毒的部分原因是由于在体内苯生成了苯酚。

苯对中枢神经系统产生麻痹作用,引起急性中毒。重者会出现头痛、恶心、呕吐、神志模糊、知觉丧失、昏迷、抽搐等,严重者会因为中枢系统麻痹而死亡。少量苯也能使人产生睡意、头昏、心率加快、头痛、颤抖、意识混乱、神志不清等现象。摄入含苯过多的食物会导致呕吐、胃痛、头昏、失眠、抽搐、心率加快等症状,甚至死亡。吸入20000ppm的苯蒸气5-10分钟便会有致命危险。

长期接触苯会对血液造成极大伤害,引起慢性中毒。引起神经衰弱综合症。苯可以损害骨髓,使红血球、白细胞、血小板数量减少,并使染色体畸变,从而导致白血病,甚至出现再生障碍性贫血。苯可以导致大量出血,从而抑制免疫系统的功用,使疾病有机可乘。有研究报告指出,苯在体内的潜伏期可长达12-15年。

妇女吸入过量苯后,会导致月经不调达数月,卵巢会缩小。对胎儿发育和对男性生殖力的影响尚未明了。孕期动物吸入苯后,会导致幼体的重量不足、骨骼延迟发育、骨髓损害。

对皮肤、粘膜有刺激作用。国际癌症研究中心(IARC)已经确认为致癌物。

接触限值:

* 中国 MAC 40 mg/m3(皮)

* 美国ACGIH 10ppm, 32mg/m3 TWA: OSHA 1ppm, 3.2 mg/m3

毒性:

* LD50: 3306mg/kg(大鼠经口);48mg/kg(小鼠经皮)

* LC50: 10000ppm 7小时(大鼠吸入)

当然,由于每个人的健康状况和接触条件不同,对苯的敏感程度也不相同。嗅出苯的气味时,它的浓度大概是1.5ppm,这时就应该注意到中毒的危险。在检查时,通过尿和血液的检查可以很容易查出苯的中毒程度。

[编辑]

可燃性

由于苯可以在空气中燃烧,因此它一般都被定为危险化学品。例如在中华人民共和国《危险货物品名表》(GB 12268-90)中,苯属第三类危险货物易燃液体中的中闪点液体。而且由于它的挥发性,可能造成蒸气局部聚集,因此在贮存,运输时一般都要求远离火源和热源,防止静电。

由于苯的冰点比较高,在寒冷天气中运输会有困难,但是加热熔化会带来危险性。

[编辑]

工业用途

早在1920年代,苯就已是工业上一种常用的溶剂,主要用于金属脱脂。由于苯有毒,人体能直接接触溶剂的生产过程现已不用苯作溶剂。

苯有减轻爆震的作用而能作为汽油添加剂。在1950年代四乙基铅开始使用以前,所有的抗爆剂都是苯。然而现在随着含铅汽油的淡出,苯又被重新起用。由于苯对人体有不利影响,对地下水质也有污染,欧美国家限定汽油中苯的含量不得超过1%。

苯在工业上最重要的用途是做化工原料。苯可以合成一系列苯的衍生物:

* 苯与乙烯生成乙苯,后者可以用来生产制塑料的苯乙烯

* 与丙烯生成异丙苯,后者可以经异丙苯法来生产丙酮与制树脂和粘合剂的苯酚

* 制尼龙的环己烷

* 合成顺丁烯二酸酐

* 用于制作苯胺的硝基苯

* 多用于农药的各种氯苯

* 合成用于生产洗涤剂和添加剂的各种烷基苯

此外还可以用来合成氢醌,蒽醌等化工产品。

[编辑]

苯的异构体

* 杜瓦苯

* 盆苯

* 休克尔苯

* 棱柱烷

[编辑]

苯的衍生物

下面是一些有代表性的苯的取代物或与苯结构相似的物质。

[编辑]

取代苯

烃基取代

* 甲苯

* 二甲苯

* 苯乙烯

含氧基团取代

* 苯酚

* 苯甲酸

* 苯乙酮

* 苯醌

卤代

* 氯苯

* 溴苯

[编辑]

多环芳烃

* 联苯

* 三联苯

* 稠环芳烃

o 萘

o 蒽

o 菲

o 茚

o 芴

o 苊

o 薁

[编辑]

参看

* 芳香性

* BTX

* π键

* 粗苯

[编辑]

参考文献

1. 中国石化北京化工研究院,《常用危险化学品安全数据卡》(内部材料),2004年

2. 魏文德主编,《有机化工原料大全》第三卷,化学工业出版社,1994年,p358-381, ISBN 7-5025-0684-5

3. (英)汉考克(Hancock,E.G.)主编,《苯及其工业衍生物》,化学工业出版社,1982.11

4. US 3863310 (1975).

5. FR 1549188 (1972).

6. JP 45-24933 (1970).

7. GB 1241316 (1975).

8. US 3879602 (1983).

9. Wilson, L. D. "Health Hazards from aromatic Hydrocarbons", Des Plaines, III., Universal Oil Products Company, 1962

[编辑]

外部链接

维基词典

您可以在维基词典中查找此百科条目的相关解释:

维基共享资源图标

您可以在维基共享资源中查找与此条目相关的多媒体资源:

* Benzene Material Safety Data Sheet

* Chemistry WebBook上的化学性质数据

* 职业性苯中毒诊断标准——GBZ68-2002

* 化工世界苯网——提供苯的市场行情

闪闪的野狼
超级的宝贝
2025-12-04 00:32:35
四乙基铅是一种金属铅,有水果香味,易溶于有机溶剂和油脂中,挥发性强。

1,我国车用汽油的牌号有70号、80号、90号-98号等.牌号数值就相应表示这种汽油的辛烷大小.辛烷值越高,表示汽油的抗爆震性能越好,耗油也越省。

2,车用汽油由直馏汽油、催化裂化汽油、催化重整汽油和烷基化汽油等组分调合而成,其中还可以加入适量的抗爆剂、抗氧剂、金属钝化剂和清净剂等添加剂。

3,一般来说:直馏汽抽的辛烷值只有40到50,为达到国家规定的要求,汽油中还需掺入催化裂化、抗爆剂、抗氧剂、金属钝化剂和清净剂等添加剂.换句话说,汽油为了提高辛烷值,通常要加入一定数量的四乙基铅(金属铅).四乙基铅有剧毒,所以人们使用汽油时要加小心,千万不要用嘴吸取汽油。

4,所谓的“无铅汽油”同样含有四乙基铅(金属铅);只不过含铅量较少罢了:

现在,国家制定了新的车用无铅汽油标准.新标准2000年7月1日首先在北京、上海、广州三大城市执行.新标准对车用汽油中可能产生有害气体的组分做了严格的规定,其中:车用汽油中硫含量不大于0.08(m/m)铅含量不大于0.005g/L;苯含量不大于2.5%(v/v);芳烃含量不大于40%(v/v);烯烃含量不大于35%(v/v)等。

5,车用无铅汽油英文名为:Unleaded gasolines for motor vehicles,

给你列个公式,你就明白了:

汽油中的金属钝化剂=四乙基铅(金属铅)=剧毒、高致癌物=“ 燃烧后”=leaded=石墨铅=积炭。

无铅汽油因为含四乙基铅(金属铅)较少,对人体伤害较小,能保证发动机运转平稳、燃烧完全、积炭少;具有较好的安定性,在贮运和使用过程中不易出现早期氧化变质,对发动机部件及储油容器无腐蚀性。

无铅汽油不等于无害汽油

汽车尾气对人的危害程度受汽油成分的直接影响,汽油的主要成份为辛烷.为提高汽油的抗爆性,人们通常在汽油中添加一定量的四乙基铅.因此,人们常把添加铅的汽油称为含铅汽油,而不含铅的汽油叫做无铅汽油。

通过数十年的研究,人们已经知道,使用含铅汽油的汽车尾气中含铅,它是一种有毒有害的重金属,随空气被人们吸入体内;对健康造成危害,尤其是儿童,可影响他们的智力发育。

为了净化汽车尾汽,减少大气污染,保障人群健康,无铅汽油正逐步取代有铅汽油。

但目前使用的无铅汽油中常用芳烃、烯烃、含氧化合物以及异构烷烃替代四乙基铅,这些成分中含芳香烃类物质,如苯、苯是一种致癌物质,它与急性髓细胞白血病有一定的关系.因此,国外工业发达国家普遍将汽油中的含苯量限制在5%以内,美国、日本等国还分别限制在1%、3%以内。

无铅汽油中所含的甲基叔丁基醚,可增加汽油的辛烷值、氧含量,还能减少汽油的一氧化碳及其它有害物质排放.但有些人接触它后,会出现头疼、眩晕、恶心等症状.有的无铅汽油中含有羰基锰,亦具抗爆性,增加汽油的辛烷值,但锰亦为神经性毒物,故有些工业国家禁止使用谈基锰。

总之,使用无铅汽油并不等于用的是无害汽油。