建材秒知道
登录
建材号 > 乙酸 > 正文

分离和预富集

直率的魔镜
失眠的学姐
2022-12-31 17:46:50

分离和预富集

最佳答案
有魅力的书本
追寻的保温杯
2025-12-04 01:18:03

铟的分离和预富集常采用溶剂萃取、离子交换与吸附、液膜分离、沉淀分离、蒸馏分离等方法。

62.3.2.1 溶剂萃取法

(1)卤化物的萃取

矿石中铟的含量甚微,实际工作中常以溶剂萃取法进行富集。应用卤化物萃取,可使铟与许多元素分离。许多含氧有机溶剂都能很好地萃取碘化铟,而溴化铟次之,氯化铟最差。

在6mol/LHCl中,乙醚经两次萃取能定量地萃取镓(Ⅲ)和铁(Ⅲ),金(Ⅲ)、铊(Ⅲ)、锑(Ⅴ)、钼(Ⅵ)等也被一起萃取,而铟不被萃取。

从氢溴酸介质中,用乙醚萃取铟是经常采用的方法,铟的萃取率在4mol/LHBr中为99%,而在3mol/LHBr中则为89.3%。在3.2mol/L、4.2mol/L、5.5mol/L和6mol/LHBr介质中,铟的萃取分配系数分别为1、10、100和30~40。通常是在4~6mol/LHBr中萃取铟,与铟一起被萃取的有铁(Ⅲ)、镓、锑(Ⅴ)、铊(Ⅲ),以及金(Ⅲ)、钼(Ⅵ)、铼(Ⅶ)和少量锌、碲(Ⅳ)。在5mol/LHBr中,以碘化钾还原铁(Ⅲ),用乙醚或乙酸丁酯萃取铟,除镓、铊(Ⅲ)、金(Ⅲ)同时定量地被萃取外,大量铁、铜、钼、锌、镉、镍以及汞等只有微量被萃取入有机相有机相经萃洗后,再用含有过氧化氢的6mol/LHCl反萃取铟,则镓、铊(Ⅲ)、金仍留于有机相中,既达到铟、镓、铊的彼此分离,又可利用此分离方法进行铟、镓、铊的连续测定。萃取时亦可用三氯化钛还原铁(Ⅲ),此时铊与金也被还原成低价或单质状态,只有镓与铟一起被萃取。亦可用溴化钠-硫酸介质替代氢溴酸介质,因其中含有大量硫酸钠作盐析剂,降低乙醚在水相中的溶解度,有助于提高萃取率。

在0.5~2.5mol/LHI介质中,用乙醚或类似含氧溶剂可定量萃取铟。例如在1.5mol/LHI中,铟的浓度在0.026~5.4×10-6mol/L范围内,其萃取率均达99%。与铟一起被萃取的有锡(Ⅱ)、镉、铊(Ⅲ,Ⅰ)、镓、铁(Ⅱ),铝和铍等不被萃取,铋、铜、锌、汞和锑部分被萃。氟化物、磷酸盐、柠檬酸盐和氰化物等的存在不影响萃取,但大量氯化物的存在会降低铟的萃取率。氢碘酸介质也可用碘化钾-硫酸介质替代。为使铟进一步与其他元素分离,可用水再从有机相中反萃取铟,但选择性仍不如氢溴酸介质。

不同有机溶剂对卤化铟的萃取效果是:3-甲基丁酮-[2]>4-甲基戊酮-[2]>乙酸乙酯>乙醚>异戊醇。

实际工作中通常采用乙醚或乙酸丁酯。用乙醚萃取铟通常需要萃取两次,而用乙酸丁酯则一次就能将铟定量萃取。有盐析剂存在时,乙醚萃取也只需一次就可以。

(2)非有机溶剂萃取

在25mL体积中,pH2.6~4.6,用5mL(3+7)Tween80和20g(NH4)2SO4萃取In3+,其萃取率可保持在95%以上。以聚乙烯醇缩对甲酰基偶氮-8羟基喹啉为显色剂,对20μgIn3+,3gNa+、K+、Cl-、NO-3、CO2-3、SO2-4,50μgCa2+、Mg2+,40μgCd2+、Zn2+、Ti4+、Sn4+、La3+、Bi3+、Ce3+、Pb2+、Cu2+,20μgCr3+、Nb5+、Mo6+、Ni2+、Pb2+、Fe3+不干扰测定。Mn2+、Al3+、V5+、Co2+等有干扰。采用50g/L硫脲-100g/L柠檬酸钠5mL混合掩蔽,可允许100μgFe3+,500μgCu2+,200μgAl3+,200μgTi4+,500μgSn4+。方法实现了In3+和Al3+等离子的定量分离。

(3)P204、P507萃取分离

P204:2-(2-乙基己基)磷酸,P507:2-(2-乙基己基)磷酸单酯。均以200#溶剂油作稀释剂,浓度(1+4),相比(1+1),萃取率都随酸度增大而减小在同一酸度下,P507萃取铟的能力小于P204,两者均需在较低的酸度下进行P507萃取酸度在pH0.5~2.0,铟的萃取率>95%,P204萃取酸度在pH0.3~2,铟可被完全萃取。反萃取铟时,P204需用6mol/LHCl,而P507仅用2~3mol/LHCl。用P204萃取铟,基本上可完全分离Zn、Cu、Cd、As、Sb、As、Sb、Na等金属少量Fe3+进入有机相,可预先用还原剂亚硫酸钠、铁屑或铜屑等处理。

(4)N503萃取分离

N503:N,N-二(1-甲基庚基)乙酰胺,以200#溶剂油作稀释剂,浓度(4+6),相比(1+3)~(1+4)。在2.6~2.8mol/LHCl中,铟可被定量萃取,萃取率>98%。用1mol/LHCl反萃取铟,0.1mol/LHCl可反萃取锡,工业上可用于铟锡分离。

(5)苯并-15-冠-5萃取分离

以1,2-二氯乙烷作稀释剂,在1mol/LKI-0.04mol/L抗坏血酸存在下,0.01mol/L苯并-15-冠-5可完全萃取In3+。0.02mol/LHCl反萃取5min,反萃取率>99%。100倍Zn2+、Ni2+、Mg2+、Fe2+,50倍Cr3+(对100μgIn3+),基本上不干扰In3+的PAR光度法测定。

(6)N1923萃取分离

N1923:长碳链烷基伯胺,在硫酸介质中,随着酸度的增加,N1923对Ga、In、Tl的萃取率明显下降,其萃取能力大小顺序为Tl>In>Ga当H2SO4酸度为0.05mol/L时,(1+9)N1923-乙苯对In、Tl能定量萃取,而当H2SO4酸度≤0.05mol/L时,Ga才能有较高的萃取率。由于Ga易水解,一般以0.05mol/LH2SO4为宜。在此萃取体系下,Al3+、Zn2+、Cd2+、Cu2+、Fe2+、Co2+、Ni2+、As3+等不被萃取,碱土金属和碱金属也不能被萃取。3mol/LH2SO4可完全反萃取In,0.5~1.0mol/LHCl可反萃取Ga,反萃率≥95%。

8-羟基喹啉铟在微酸性介质中(pH4.0)可被三氯甲烷萃取,而与一些元素分离。

在酸性介质中用三氯甲烷可萃取铁、镓与铜铁试剂生成的螯合物,而铟不被萃取。

62.3.2.2 离子交换与吸附法

(1)阳离子交换树脂分离富集

铟在pH1~pH3的盐酸介质中能定量地吸附在阳离子交换树脂上,在含有脂肪醇、丙酮等有机溶剂的盐酸溶液中,分配系数增大,可与许多元素分离。可用(3+1)丙酮+0.1mol/L盐酸先洗提铋、镉,再以(1+1)丙酮+0.04mol/L盐酸洗提铟。铁(Ⅲ)、锌、镓、铅、锰、铀(Ⅵ)、铜(Ⅱ)、钒(Ⅳ)等均留在柱上。

铟也可在低浓度氢溴酸介质中被阳离子交换树脂吸附,可用0.5mol/L盐酸-(3+7)丙酮溶液洗提铜、锌、镓、铁、钛、锰、铀、铅、钠、镍、钴等,再用0.2mol/L氢溴酸+(1+1)丙酮溶液洗提镉、铋、金、铂、铝、钼和锡,最后洗提铟。

(2)巯基棉分离富集

在pH4.0时,巯基棉可定量富集痕量In3+,饱和吸附量为181μg/g,In3+可被0.8mol/LHNO3定量洗脱。于石墨炉原子吸收光谱法测定,对5μgIn3+,经富集后,部分离子允许量为:Al3+(500mg),Cu2+、Zn2+(50mg),K+、Na+、Mg2+(20mg),Ca2+、Fe3+(10mg),方法回收率92.8%~100.6%。

(3)巯基葡聚糖凝胶分离富集

巯基葡聚糖凝胶pH5.0以上时,In3+可定量吸附,1.0mol/LHCl可定量洗脱。于微乳液介质中[(溴化十六烷基吡啶+正丁醇+正庚烷+水)的质量比例为(1+0.1+0.1+0.97)],三甲氧基苯基荧光酮显色光度法测定铟,100倍的Pb2+、Co2+、Ni2+、Sb3+、W6+、Mo6+和Ga3+,200倍的Cu2+、Sn4+、Ag+、Al3+、Fe3+和Cr3+不干扰测定。

(4)色谱分离

a.TBP色谱柱分离。以聚三氟氯乙烯载体、负载磷酸三丁酯(TBP)为固定相的萃取色谱柱,铟可在0.8mol/LHBr中被定量萃取吸附,金、银、铊和镉也被萃取,铁(Ⅲ)、锰(Ⅱ)、铜、锌、钙、镍、镓、铝、镁、铅等不被萃取。用水洗脱铟,镉被洗脱,金、银、铊不被洗脱,洗脱液中可能尚有微量铅或铜残留。

b.P507色谱柱分离。将200g/LP507涂载于硅烷化硅球(150~200目)上作为固定相,上柱液为pH1.5的硫酸-氨基乙酸溶液,只有铟、镓、铝、铋留于柱上。先用0.5mol/LH2SO4淋洗出镓和铝,再用1mol/LH2SO4淋出铋,最后用1mol/LHCl淋洗出铟。

c.P350色谱柱分离。在1mol/LHBr中,In3+被定量吸附,以水作解脱剂,可将In3+全部解脱,富集0.2μg铟,100mg的Fe3+、Cu2+、Mg2+、Na+,50mgAl3+,40mgK+,10mg的Ti4+、Cu2+、Pb2+、Zn2+、Cd2+,经色层柱分离后,均不干扰石墨炉原子吸收光谱法测定铟,方法检出限(3σ)为0.022μg/g。

d.CL-N235萃取色谱柱分离。萃铟余液中In、Ge的分离,以N235为萃取剂,酒石酸为配位剂,在流动相pH1.5~2.5,线性流速0.46mL/min条件下,锗的吸萃率可达98%以上可用4mol/LH2SO4反洗锗,流速0.5mL/min。Zn、Fe、Cu、Cd、的存在对锗的吸萃无影响。

62.3.2.3 液膜分离法

以P291为流动载体液膜富集铟,最优条件为:膜相由P291-L113A-液体石蜡油+煤油(5+4+4+87)组成,内相为0.2mol/LH2SO4和硫酸肼水溶液,外相试液为pH3~4介质,富集温度15~36℃,富集时间8min,油内比为1+1,乳水比为20+100。In3+的迁移富集率达99.5%~100.4%。对200μg的铟,在DLC、酒石酸、NaF、抗坏血酸和硫脲存在下,500mgFe3+、Al3+、Mg2+、Ba2+、Sr2+、Ca2+、Cu2+、Pb2+、Cd2+、Sn4+、Zr4+、Ti4+、Cr3+、Bi3+、Hg2+、Zn2+、Mn2+、Mo6+、∑REE3+、K+、Na+、NH+4、Cs+等都不迁移透过此液膜,大量F-、Cl-、ClO-4、NO-3、SO2-4、SiO2-3也不影响分离富集In3+。

62.3.2.4 沉淀分离法

(1)单宁沉淀分离

在草酸存在下的微酸性盐酸介质中(甲基红刚呈红色),锡、锑、铋可被单宁沉淀分离,铟留于滤液中,用氢氧化铵中和并补充一些单宁可沉淀回收铟。

(2)氢氧化铟沉淀分离

分离大量铅,可将它们的硝酸盐溶液用稀氢氧化铵中和至出现微弱浑浊,加入大量乙酸铵溶解铅,然后加入适量六次甲基四胺并煮沸,铟以氢氧化铟沉淀析出。必要时用硝酸溶解沉淀,重复沉淀一次。

在沸腾的含有硝酸铵的溶液中,小心滴加氢氧化铵至甲基红指示剂刚变橙色,氢氧化铟沉淀即析出,可与镉、锌、铜、镍、钴、锰分离。必要时用硝酸溶解沉淀,重复沉淀一次。

(3)硫化沉淀分离

于0.025mol/LHCl中,不断通入硫化氢并加热至70℃保温2h,则In2S3沉淀即析出,可与锰、铝、铁分离。或在氨性酒石酸盐介质中,以铍为载体用磷酸盐将铟沉淀,也可和锰、铝、铁分离。

铟、锡最佳分离条件,以H2S为沉淀剂,温度50℃,反应时间20min在1mol/LH2SO4中,锡完全沉淀,而铟损失率仅为0.47%。

(4)其他

在微酸性冷溶液中,可用锌屑还原沉淀单质铟,镓因不被还原而得以分离。溶液需保持微酸性,以免镓生成碱式盐沉淀,最好是用乙醚萃取氯化镓,铟不被萃取。

当有碘化物存在时,痕量铟可与次甲基蓝等碱性染料生成沉淀,可与一些金属离子分离。

在盐酸介质中,可用蒸馏法将铟与砷分离。用碘化钾还原砷(Ⅴ)至砷(Ⅲ),蒸发至干,反复加盐酸、蒸干至砷完全挥发为止。

最新回答
笑点低的纸鹤
贪玩的大白
2025-12-04 01:18:03

铟有1、2、3三种价态,三价最为常见,三价的铟在水溶液中是稳定的,而一价化合物受热通常发生歧化反应。常温下金属铟不被空气氧化,在100℃左右时铟开始氧化,在强热下(温度高于800℃)铟发生燃烧生成氧化铟,火焰为蓝红色。加热时铟能与卤素、硫、磷以及砷、锑、硒、碲反应,铟能与汞形成汞齐,铟与大多数的金属生成合金并伴随着明显的硬化效应。

铟能溶于硫酸、盐酸、草酸和醋酸中。

原子序数49,主要化合价+3。不能分解水。在空气中稳定。燃烧时发生鲜紫色的火焰。

彩色的芹菜
热心的板凳
2025-12-04 01:18:03
楼上连相对原子质量都写上了,所以元素表我就不写了下面帮你总结文字表达式点燃

(1)镁+氧气——>氧化镁

点燃

(2)铁+氧气——>四氧化三铁

加热

(3)铜+氧气——>氧化铜

点燃

(4)铝+氧气——>氧化铝

点燃

(5)氢气铝+氧气——>水

点燃

(6)红磷+氧气——>五氧化二磷

点燃

(7)硫+氧气——>二氧化硫

点燃

(8)碳+氧气——>二氧化碳

点燃

(9)碳+氧气——>一氧化碳

点燃

(10)氧化碳+氧气——>二氧化碳

点燃

(11)甲烷+氧气——>二氧化碳+水

点燃

(12)酒精+氧气——>二氧化碳+水

点燃

(13)汞+氧气——>氧化汞

点燃

(14)高锰酸钾 ——>氧气+锰酸钾 +二氧化锰

二氧化锰

(15)过氧化氢 ——>氧气+水初中化学方程式一、 氧气的性质:

(1)单质与氧气的反应:(化合反应)

1. 镁在空气中燃烧:2Mg + O2 点燃 2MgO

2. 铁在氧气中燃烧:3Fe + 2O2 点燃 Fe3O4

3. 铜在空气中受热:2Cu + O2 加热 2CuO

4. 铝在空气中燃烧:4Al + 3O2 点燃 2Al2O3

5. 氢气中空气中燃烧:2H2 + O2 点燃 2H2O

6. 红磷在空气中燃烧(研究空气组成的实验):4P + 5O2 点燃 2P2O5

7. 硫粉在空气中燃烧: S + O2 点燃 SO2

8. 碳在氧气中充分燃烧:C + O2 点燃 CO2

9. 碳在氧气中不充分燃烧:2C + O2 点燃 2CO

(2)化合物与氧气的反应:

10. 一氧化碳在氧气中燃烧:2CO + O2 点燃 2CO2

11. 甲烷在空气中燃烧:CH4 + 2O2 点燃 CO2 + 2H2O

12. 酒精在空气中燃烧:C2H5OH + 3O2 点燃 2CO2 + 3H2O

(3)氧气的来源:

13.玻义耳研究空气的成分实验 2HgO 加热 Hg+ O2 ↑

14.加热高锰酸钾:2KMnO4 加热 K2MnO4 + MnO2 + O2↑(实验室制氧气原理1)

15.过氧化氢在二氧化锰作催化剂条件下分解反应: H2O2 MnO22H2O+ O2 ↑(实验室制氧气原理2)

二、自然界中的水:

16.水在直流电的作用下分解(研究水的组成实验):2H2O 通电 2H2↑+ O2 ↑

17.生石灰溶于水:CaO + H2O == Ca(OH)2

18.二氧化碳可溶于水: H2O + CO2==H2CO3

三、质量守恒定律:

19.镁在空气中燃烧:2Mg + O2 点燃 2MgO

20.铁和硫酸铜溶液反应:Fe + CuSO4 === FeSO4 + Cu

21.氢气还原氧化铜:H2 + CuO 加热 Cu + H2O

22. 镁还原氧化铜:Mg + CuO 加热 Cu + MgO H

1.0079 化学元素周期表 2 He

4.0026

3 Li

6.941 4 Be

9.0122 固态 液态 气态 人造元素

5 B

10.811 6 C

12.011 7 N

14.007 8 O

15.999 9 F

18.998 10 Ne

20.17

11 Na

22.9898 12 Mg

24.305 13 Al

26.982 14 Si

28.085 15 P

30.974 16 S

32.06 17 Cl

35.453 18 Ar

39.94

19 K

39.098 20 Ca

40.08 21 Sc

44.956 22 Ti

47.9 23 V

50.9415 24 Cr

51.996 25 Mn

54.938 26 Fe

55.84 27 Co

58.9332 28 Ni

58.69 29 Cu

63.54 30 Zn

65.38 31 Ga

69.72 32 Ge

72.5 33 As

74.922 34 Se

78.9 35 Br

79.904 36 Kr

83.8

37 Rb

85.467 38 Sr

87.62 39 Y

88.906 40 Zr

91.22 41 Nb

92.9064 42 Mo

95.94 43 Tc

99 44 Ru

161.0 45 Rh

102.906 46 Pd

106.42 47 Ag

107.868 48 Cd

112.41 49 In

114.82 50 Sn

118.6 51 Sb

121.7 52 Te

127.6 53 I

126.905 54 Xe氙

131.3

55 Cs

132.905 56 Ba

137.33 57-71

La-Lu

镧系 72 Hf

178.4 73 Ta

180.947 74 W

183.8 75 Re

186.207 76 Os

190.2 77 Ir

192.2 78 Pt

195.08 79 Au

196.967 80 Hg

200.5 81 Tl

204.3 82 Pb

207.2 83 Bi

208.98 84 Po

(209) 85 At

(201) 86 Rn

(222)

87 Fr

(223) 88 Ra

226.03 89-103

Ac-Lr

锕系 104

Rf

(261) 105

Db

(262) 106

Sg

(263) 107

Bh

(262) 108

Hs

(265) 109

Mt

(266) 110

Uun

(269)

111

Uuu

(272)

112

Uub

(277) 113

Uut 114

Uuq

が心ら馨 回答采纳率:0.0% 2008-08-30 14:08 检举

提问人 对 が心ら馨 的感言:

谢谢

您觉得这个答案好不好?

好(1)不好(0) 1 H

1.0079 化学元素周期表 2 He

4.0026

3 Li

6.941 4 Be

9.0122 固态 液态 气态 人造元素

5 B

10.811 6 C

12.011 7 N

14.007 8 O

15.999 9 F

18.998 10 Ne

20.17

11 Na

22.9898 12 Mg

24.305 13 Al

26.982 14 Si

28.085 15 P

30.974 16 S

32.06 17 Cl

35.453 18 Ar

39.94

19 K

39.098 20 Ca

40.08 21 Sc

44.956 22 Ti

47.9 23 V

50.9415 24 Cr

51.996 25 Mn

54.938 26 Fe

55.84 27 Co

58.9332 28 Ni

58.69 29 Cu

63.54 30 Zn

65.38 31 Ga

69.72 32 Ge

72.5 33 As

74.922 34 Se

78.9 35 Br

79.904 36 Kr

83.8

37 Rb

85.467 38 Sr

87.62 39 Y

88.906 40 Zr

91.22 41 Nb

92.9064 42 Mo

95.94 43 Tc

99 44 Ru

161.0 45 Rh

102.906 46 Pd

106.42 47 Ag

107.868 48 Cd

112.41 49 In

114.82 50 Sn

118.6 51 Sb

121.7 52 Te

127.6 53 I

126.905 54 Xe氙

131.3

55 Cs

132.905 56 Ba

137.33 57-71

La-Lu

镧系 72 Hf

178.4 73 Ta

180.947 74 W

183.8 75 Re

186.207 76 Os

190.2 77 Ir

192.2 78 Pt

195.08 79 Au

196.967 80 Hg

200.5 81 Tl

204.3 82 Pb

207.2 83 Bi

208.98 84 Po

(209) 85 At

(201) 86 Rn

(222)

87 Fr

(223) 88 Ra

226.03 89-103

Ac-Lr

锕系 104

Rf

(261) 105

Db

(262) 106

Sg

(263) 107

Bh

(262) 108

Hs

(265) 109

Mt

(266) 110

Uun

(269)

111

Uuu

(272)

112

Uub

(277) 113

Uut 114

Uuq

参考资料: http://zhidao.baidu.com/question/31880227.html?si=8

幽默的酸奶
心灵美的薯片
2025-12-04 01:18:03
铟,原子序数49,原子量114.82。1863年赖西和里希特研究闪锌矿的铊光谱时,发现一条靛蓝色光谱,认为是一种新元素,并命名为铟,意思是“靛蓝色”,同年分离出金属铟。铟在地壳中的含量约十万分之一,没有独立矿物,广泛分布于闪锌矿中,含量在0.1%以下。

铟为银白略带淡蓝色的金属,熔点156.61°C,沸点2080°C,密度7.3克/厘米³;延展性好,比铅还软。

铟在空气中的氧化作用很慢;加热时与氧、卤素、硫、硒、碲、磷作用;大块金属铟不与水和碱反应,但粉末状铟可与水反应,生成氢氧化铟;铟与冷的稀酸作用缓慢,易溶于热的或浓的矿物酸和乙酸、草酸;氧化铟是黄色晶体,能溶于酸但难溶于碱。

铟主要作为包复层或与其它金属制成合金,以增强耐腐蚀性;铟有优良的反射性,可用来制造反射镜;铟合金可作反应堆控制棒;在无线电和半导体技术中,铟及铟的化合物也有重要用途。

年轻的乐曲
洁净的冬日
2025-12-04 01:18:03
1863年德国学者 F. Reich 和 H. Richter,在用光谱法分析闪锌矿时发现铟(Indium)时,做梦也没想到她将具有如此广阔的应用前景。 1924年全世界仅生产出1公斤的铟来。到1980年全球铟产量达45.5吨,1990年达133吨,1999年235吨,目前全球产量也只有300吨左右。 铟的价格最初只有几十美元/千克,1980年曾达645美元/千克,原因是由于原子能控制设施大量应用。此后价格一直萎靡不振,1994年5月18日为100-130美元/千克,1995年1月到2003年3月期间的平均价格是231美元/千克,1998年之前一直在270美元/千克之上。特别是IT泡沫破灭时的2001年10月--2002年9月份,价格竟然低达55-66美元/千克。之后缓慢回升,2003年5月初,铟价格达到125-170美元/千克;2003年6月140-170美元/千克;2004年却大幅攀升,从年初的300美元/千克升到年末的800美元/千克,涨了近3倍。2005年3月已达1010-1070美元/千克。之后缓慢高位调整,价格在800-870美元/千克之间,2006年3月16日为 930/990美元/千克,2006年4月1日达 1000/1060 美元/千克。有人乐观地估计铟价将达到1400美元/千克。 铟何以备受人们的追捧呢?这要从她的身世说起。 铟是元素周期表中的第三族元素,硼、铝、镓、铟、铊系列的第四位,原子序数为49,原子量为114.82。铟属于分散元素,在地壳中含量非常低,其丰度与银的丰度相近,为0.05×10-6。目前发现的铟独立矿物只有8种,且极其少见,绝大部分的铟均以杂质成分存在于其它矿物中,一般多分布于铅锌矿及锡矿中。铟的提炼很困难, 目前只有铅锌冶炼厂和锡冶炼厂以副产品回收铟。绝大部分铟是从湿法炼锌的浸出渣中回收的,矿渣经化学处理后,可用溶剂萃取法得到铟。用锌片还原矿渣浸出液,也可得到铟。进一步用电解精炼,可得纯度为99.97%的金属铟。纯度为99.9999%的高纯铟,仍需利用电解法提纯。因此,目前全球的铟产量只有300吨左右,且其产能不会急剧增长。据估计,目前全球铟资源的探明储量大约为13万吨。 “物以稀为贵”,铟价居高不下。但这只是问题的一个方面,更为重要的是其独特的物理和化学性质,才使得这只丑小鸭成为了美丽的白天鹅。 其一:铟金属显银白略带淡蓝色,光泽亮丽,在弯曲时会发出鸣音。其与铜银金的合金制作假牙。 其二:铟具有熔点低(156.61°C),沸点高(2080°C),传导性好,延展性好,比铅还软,能用指甲刻痕;可塑性强,可压成极薄的金属片。其氧化物能形成透明的导电膜等特性,近年在铟锡氧化物(ITO)、半导体、低熔点合金等方面得到广泛应用。特别是由于铟锡氧化物(ITO)具有可见光透过率95%以上、紫外线吸收率≥70%、对微波衰减率≥85%、导电和加工性能良好、膜层既耐磨又耐化学腐蚀等优点,作为透明导电膜已获得广泛应用。随着IT产业的迅猛发展,用于笔记本电脑、电视和手机等各种新型液晶显示器(LCD)以及接触式屏幕、建筑用玻璃等方面,作为透明电极涂层的ITO靶材(约占铟用量的70%)用量的急剧增长,使铟的需求正以年均30%以上的增长率递增。世界市场上平面显示器的快速增长成为全世界铟的生产的最主要的最终用户,包括平面电视、台式计算机显示器、可上网的笔记本电脑、手机等主要的平面显示器的快速发展和应用,使得国际市场对铟的需求急剧增长,而且目前还没有新的用于替代ITO的材料研究出来。 其三、从常温到熔点之间,铟与空气中的氧作用缓慢,表面形成极薄的氧化膜,温度更高时,与氧、卤素、硫、硒、碲、磷作用。铟在空气中的氧化作用很慢;大块金属铟不与沸水和碱反应,但粉末状的铟可与水作用,生成氢氧化铟。铟与冷的稀酸作用缓慢,易溶于浓热的无机酸和乙酸、草酸。铟可作为包复层或与其它金属制成合金,以增强发动机轴承耐腐蚀性;铟有优良的反射性,可用来制造反射镜;银铅铟合金可作高速航空发动机的轴承材料。易熔的伍德合金中每加1%铟,可降低熔点1.45℃。铟化合物半导体有锑化铟(通迅激光光源、太阳能电池),磷化铟和锑化铟(红外检测、光磁器件、太阳能转换器等)。 其四:铟合金可作反应堆控制棒,能够敏感地检测中子幅射;可用于登陆舱,着陆时不脆化、不开裂。

欣慰的泥猴桃
甜美的雨
2025-12-04 01:18:03
铟(Indium)是一种原子序数为49的化学元素,化学符号是In,是一种柔软的银白色并略带淡蓝色的金属。 铟的可塑性强,有延展性,可压成片,金属铟主要用作制造低熔合金、轴承合金、半导体、电光源等的原料。铟无毒,但有微弱的放射性,应避免与皮肤接触和食入。

物理性质

铟是一种银灰色,质地极软的易熔金属。熔点156.61℃。沸点2060℃。相对密度d7.30。液态铟能浸润玻璃,并且会粘附在接触过的表面上留下黑色的痕迹。

铟有微弱的放射性,天然铟有两种主要同位素,其一为In-113为稳定核素,In-115为β-衰变。因此,在使用中尽可能避免直接接触。

铟金属可提高二硼化镁超导临界电流密度:

在超导体二硼化镁里添加铟金属粉末,大大提高了二硼化镁超导临界电流密度,向实用化又前进了一步。通过超导体的电流密度在超过某一数值时,超导体就失去了超导性,这一数值就是超导临界电流密度。它是衡量超导体性能的一个重要指标。向二硼化镁里添加铟金属粉末,在2000摄氏度下热处理后加工成为电线,其超导临界电流密度比不添加铟提高了4倍,达到每平方厘米10万安培。这是铟金属渗透在二硼化镁的晶粒之间,从而改善了它的结合性。

化学性质

从常温到熔点之间,铟与空气中的氧作用缓慢,表面形成极薄的氧化膜(In2O3),温度更高时,与活泼非金属作用。大块金属铟不与沸水和碱溶液反应,但粉末状的铟可与水缓慢的作用,生成氢氧化铟。铟与冷的稀酸作用缓慢,易溶于浓热的无机酸和乙酸、草酸。铟能与许多金属形成合金(尤其是铁,粘有铁的铟会显著的被氧化)。铟的主要氧化态为+1和+3,主要化合物有In2O3、In(OH)3、InCl3,与卤素化合时,能分别形成一卤化物和三卤化物。

铟的配位聚合物:

1. In(Ⅲ)与刚性的二羧酸(1,3-间苯二甲酸和1,4-萘二酸),在不同的溶剂中得到了四个化合物[In_2(OH)_2(1,3-BDC)_2(2,2’-bipy)2](1),HIn(1,3-BDC)_2·2DMF (2),In(OH)(1,4-NDC)·2H_2O (3)和HIn(1,4-NDC)_2·2H_2O·1.5DMF (4)。化合物1是1D链状结构,化合物2是2D层状结构,它们分别通过π-π相互作用最终形成了3D超分子结构。化合物3和4都是无限的3D网络结构,虽然用的是同一羧酸配体,但是由于所用溶剂的不同,化合物3形成的是SrAl2拓扑结构,而化合物4形成的是2-重穿插的dia拓扑结构。化合物1-4的合成,充分证明了溶剂在配位聚合物的合成过程中起到的重要作用。

2. In(Ⅲ)与柔性的二羧酸(1,4-苯二乙酸,反式-1,4-环己二酸和4,4’-二苯醚二甲酸),在不同的溶剂热条件下,得到了三个化合物(Me_2NH_2)[In(cis-1,4-pda)2](5), In(OH)(trans-1,4-chdc)(6)和In(OH)(oba)·DMF·2H_2O (7)。化合物5是In~(3+)与cis-1,4-pda~(2-)形成的1D非共面的双链结构,化合物6和7则都是由–In-OH-In-OH–棒状次级结构基元形成的无限的3D网络结构。化合物5-7的合成主要是考察了柔性不同的二羧酸配体对产物结构的影响。

3. In(Ⅲ)与旋光性的D-樟脑酸(D-H_2Cam),在溶剂热的条件下合成了一个3D具有单一手性结构的铟配位聚合物InH(D-C_(10)H_(14)O_4)_2(8)。经拓扑分析可得,化合物8具有dia拓扑结构。 4. In(Ⅲ)与含氮杂环羧酸(2-吡啶羧酸和2,3-吡嗪二羧酸),在溶剂热条件下合成了两个化合物In_2(OH)_2(2-PDC)_4(9)和HIn(2,3-PDC)_2(10)。其中化合物9是由双核分子In_2(OH)_2(2-PDC)_4通过π-π相互作用形成的1D波浪形的链状结构;化合物10形成的是3D的nbo拓扑结构。