建材秒知道
登录
建材号 > cas号 > 正文

醋酸镁的性质与用途

羞涩的小土豆
大力的钢笔
2022-12-31 17:30:51

醋酸镁的性质与用途

最佳答案
碧蓝的母鸡
能干的早晨
2025-12-04 05:06:18

中文名称: 乙酸镁

中文同义词: 无水醋酸镁乙酸镁盐水合乙酸镁醋酸镁乙酸镁

英文名称: Magnesium acetate

CAS号: 142-72-3

分子式: C4H6MgO4

分子量: 142.39

EINECS号: 205-554-9

乙酸镁 性质

熔点 72-75 °C(lit.)

折射率 n20/D 1.358

溶解度 H2O: 1 M at 20 °C, clear, colorless

化学性质 无色粉末。在323℃熔融,同时分解。相对密度1.42,易潮解,极易溶于水,溶于甲醇。

用途 用作分析试剂。对小鼠静脉注射LD50为18mg/kg。

用途 用于印染,也用作分析试剂

生产方法 由硝酸镁与乙酸共热而得。将硝酸镁与无水乙酸共同加热,反应终止后,溶液再煮沸20min。长时间放置后析出无水乙酸镁。抽滤,用少量无水乙醇洗涤,再用乙醚洗涤,在真空干燥箱中,于60℃干燥。结晶中含有游离的乙酸,应长时间干燥直至恒重。也可取四水合乙酸镁于134℃下加热至恒重,可得无水乙酸镁。

最新回答
文静的绿草
虚心的煎蛋
2025-12-04 05:06:18

标准号: WS-10001-(HD-0584)-2002

药品名称: 醋酸钠

药品英文名: Sodium Acetate

主要成分: 本品按干燥品计算,含醋酸钠(NaC2H3O2)应为99.0%~101.0%。

性状: 本品为无色结晶或白色结晶性粉末,微带醋酸味。本品在120℃失去结晶水,温度再高则分解。本品在水中易溶。

鉴别: 本品的水溶液显钠盐和醋酸盐的鉴别反应。

检查: (1)碱度取本品适量,用新沸放冷的水溶解并制成每1ml中含无水醋酸钠30mg 的溶液,依法测定pH值应为7.5~9.2。

(2)干燥失重取本品,在120℃干燥至恒重,减失重量应为38.0%~41.0%。

(3)水中不溶物取本品适量(相当于无水醋酸钠20g),加水150ml,煮沸后水浴上加热1小时,倒入经105℃干燥至恒重的G3垂熔漏斗,滤过,并用水洗涤3次,每次105℃干燥至恒重,遗留残渣不得过10mg(0.05%)。

(4)氯化物取本品适量(相当于无水醋酸钠0.2g),依法检查,与标准氯化钠溶液7.0ml制成的对照液比较,不得更浓(0.035%)。

(5)硫酸盐取本品适量(相当于无水醋酸钠10g)依法检查,与标准硫酸钾溶液5.0ml制成的对照液比较,不得更浓(0.05%)。

(6)钙盐和镁盐取本品适量(相当于无水醋酸钠0.2g),加水 20ml溶解,加 6mol/L氢氧化铵溶液2ml,草酸铵试液2ml,磷酸氢二钠溶液(12→100)2ml,在5分钟内不得发生浑浊。

(7)钾盐取本品适量(相当于无水醋酸钠3.0g),加水5ml溶解,加新制的酒石酸氢钠溶液(1→20)0.4ml,5分钟内不得发生浑浊。

(8)重金属取本品适量(相当于无水醋酸钠2.0g),加水23ml溶解,加稀醋酸2ml,依法检查,含重金属不得过百万分之十。

(9)砷盐取本品适量(相当于无水醋酸钠0.7g),加水25ml溶解,加盐酸5ml,依法检查,含砷盐不得过百万分之三。

含量测定: 取经120℃干燥至恒重的本品约60mg,精密称定,加冰醋酸25ml溶解,加结晶紫指示液2滴,用高氯酸滴定液(0.1mol/L)滴定至溶液显蓝色,并将滴定的结果用空白试验校正。每1ml的高氯酸滴定液(0.1mol/L)相当于8.203mg的C2H3NaO2。

类别: 酸碱度调节剂

贮藏: 密封保存。

有效期: 暂定2年

有魅力的歌曲
多情的凉面
2025-12-04 05:06:18
本醋液是生物质热解的主要副产品,成分比较复杂,难以处理,对环境也构成较大威胁,一直是生物质热解气化技术发展的瓶颈。实际上,木醋液是一种宝贵的资源。有广泛的用途,尤其可以制成醋酸钙镁盐(CMA)环保型融雪剂,取代氯盐融雪剂。 本书系统介绍了木醋液的组成、性质、精制分离技术及其利用技术,并以实例的方式全面介绍了作者及课题组所研究的将木醋液转化成醋酸钙镁盐(CMA)类环保型融雪剂的工艺方法(专利号:ZL 2005 1 0054964.5)以及日本在木醋液应用领域的研究开发成果。 本书可作为从事和关心生物质能开发工作的科研人员、工程技术人专院校师生的实用型技术读物或参考书。 目录 第l章 绪论 1.1 能源的种类及其特征 1.2 生物质能源的利用 1.2.1 国外对生物质能源的开发利用 1.2.2 国内对生物质能源的开发利用 1.3 生物质热解气化技术 1.4 我国开发利用木醋液的意义 第2章 木醋液的组成与性质分析 2.1 木醋液的种类和特征 2.1.1 不同木醋液的紫外一可见光谱特征 2.1.2 不同木醋液的组分特征 2.2 木醋液的化学成分分析 2.2.1 Gc/MS法测定木醋液的化学成分 2.2.2 木醋液中酚类物组分分析 2.3 木醋液的理化性质分析 2.4 精制木醋液的安全性 第3章 木醋液的精制分离技术 3.1 吸附法 3.1.1 吸附种类 3.1.2 吸附过程 3.1.3 常用吸附剂 3.1.4 吸附剂的基本特性 3.1.5 工业吸附对吸附剂的要求 3.2 有机络合萃取法 3.2.1 实验方法 3.2.2 不同萃取剂对木醋液中醋酸的萃取平衡影响 3.2.3 络合萃取历程的表征 3.3 其他方法 3.3.1 静置法 3.3.2 蒸馏法 3.3.3 过滤法 3.3.4 分配法 第4章 由木醋液制环保型融雪剂的工艺技术 4.1 由木醋液制环保型融雪剂的工艺方法 4.1.1 原理 4.1.2 工艺方案选择的基本原则 4.1.3 分析方法 4.2 常用设备 4.2.1 反应搅拌釜 4.2.2 过滤机 4.2.3 蒸发器 4.3 用活性炭作吸附剂的脱色工艺技术 4.3.1 脱色工艺方法 4.3.2 不同的脱色工艺对脱色效果的影响 4.3.3 木醋液吸附脱色动力学模型 4.3.4 木醋液(转化液)脱色的工业设计 4.3.5 木醋液脱色厂区设计 4.3.6 木醋液脱色工艺特点及注意事项 4.4 由木醋液制环保型融雪剂的干燥工艺技术 4.4.1 干燥基础理论 4.4.2 喷雾干燥的工艺流程 4.4.3 工艺计算 4.4.4 辅助设备选型设计 4.5 木醋液中醋酸钙(镁)盐的结晶方法 4.5.1 结晶过程的原理 4.5.2 木醋液(转化液)中结晶醋酸钙(镁)盐的工艺方法 4.6 由木醋液制CMA环保型融雪剂的性能及应用前景 4.6.1 最低融雪温度 4.6.2 融雪效率 4.6.3 腐蚀性与毒性 4.6.4 由木醋液制CMA环保型融雪剂的应用前景 第5章 木醋液的其他应用技术 5.1 从木醋液中制取醋酸 5.1.1 粗木醋液预蒸馏 …… 第6章 木醋液的研究开发新动向 参考文献 书摘插图 第1章 绪论 1.2 生物质能源的利用 1.2.2 国内对生物质能源的开发利用 我国对生物质能的应用技术研究,是从国家“六五”计划设立研究课题开始的,主要在生物质气化、固化、热解等方面进行了重点攻关。 (1)生物质气化技术生物质气化技术是利用农林生物质原料进行热解气化反应,产生的煤气供居民生活用气、供热和发电方面。中国林业科学研究院林产化学工业研究所从20世纪80年代初期开始研究开发木质原料和农业剩余物的气化和成型技术。先后承担了国家、部、省级重点项目和国际合作项目近10项,研究开发了以林业剩余物为原料的上吸式气化炉,已先后在黑龙江、福建等建成工业化装置,气化炉的最大生产能力达6.3×106kJ/h(消耗木片量为300kg/h)。产生的木煤气作为集中供热和居民家庭用气燃料,从原料计算气化热效率达到70%以上。同时在出热量达4.18×104kJ/h的中试装置中,进行了气化发电试验研究,电的转化率为13%左右。广州能源研究所开发了外循环流化床生物质气化技术,制取的木煤气作为干燥热源和发电,已完成了目前国内最大发电能力为1Mw的气化发电系统,为木材加工厂提供附加电源。辽宁能源所与意大利合作引进了一套下吸式气化炉发电装置,发电能力30kw。另外,北京农业机械化科学研究院、浙江大学热能工程研究所和大连市环境科学研究院等单位先后开展了生物质气化技术的研究工作。 (2)生物质固化技术 生物质固化技术是将纤维素生物质(锯末、木屑、稻壳、秸秆等)经压缩成型和炭化,加工成燃料的技术。……

体贴的日记本
留胡子的小懒虫
2025-12-04 05:06:18
【英文名称】 Acetic Acid

【英文别名】 Glacial acetic acidAcetic acid solutionacetic acid 50%acetic acid, of a concentration of more than 10 per cent, by weight, of acetic acidAcetic Acid Glacial BPNatural Acetic AcidAcetic acid (36%)Acetic acid,food gradeAcetic Acid GlacialGAA

【其他名称】 冰乙酸(100%的乙酸),醋酸(俗名); 乙酸冰醋酸酸(食品级)冰乙酸冰醋酸(食品级)乙酸,无水醋酸(食品级)乙酸,36%醋酸,36%

【分子式】 C2H4O2

【结构简式】 CH3COOH

【简写式】 HAc

【CAS编号】 64-19-7

【EINECS号】200-580-7

InChI=1/C2H4O2/c1-2(3)4/h1H3,(H,3,4)[1]

【分子量】 60.05

【相对密度】1.05

【挥发性】易挥发

冰醋酸

【适应症】该品不同浓度用以治疗各种皮肤浅部真菌感染,灌洗创面及鸡眼、疣的治疗。冰醋酸可用作腐蚀剂。

【药品分类】消毒防腐剂-冰醋酸

乙酸(acetic acid)分子中含有两个碳原子的饱和羧酸,是烃的重要含氧衍生物。官能团为羧基。因是食醋的主要成分,又称醋酸。例如在水果或植物油中主要以其化合物酯的形式存在;在动物的组织内、排泄物和血液中以游离酸的形式存在。普通食醋中含有3%~5%的乙酸。乙酸是无色液体 ,有强烈刺激性气味。熔点16 .6℃,沸点117 .9℃,相对密度1.0492(20/4℃)密度比水大,折光率1.3716。纯乙酸在16.6℃以下时能结成冰状的固体,所以常称为冰醋酸。易溶于水、乙醇、乙醚和四氯化碳。当水加到乙酸中,混合后的总体积变小,密度增加,直至分子比为1∶1 ,相当于形成一元酸的原乙酸CH3C(OH)3,进一步稀释,体积不再变化。

纯的无水乙酸(冰醋酸)是无色的吸湿性液体,凝固点为16.6 °C (62 °F) ,凝固后为无色晶体。 乙酸分子模型尽管根据乙酸在水溶液中的离解能力它是一个弱酸,但是乙酸是具有腐蚀性的,其蒸汽对眼和鼻有刺激性作用。乙酸是一种简单的羧酸,是一个重要的化学试剂。乙酸也被用来制造电影胶片所需要的醋酸纤维素和木材用胶粘剂中的聚乙酸乙烯酯,以及很多合成纤维和织物。

在所有化工产品中醋酸是唯一可以和石油化工竞争的煤化工产品。

编辑本段制备

乙酸的制备可以通过人工合成和细菌发酵两种方法。现在,生物合成法,即利用细菌发酵,仅占整个世界产量的10%,但是仍然是生产醋的最重要的方法,因为很多国家的食品安全法规规定食物中的醋必须是由生物制备的。75%的工业用乙酸是通过甲烷的羰基化制备,具体方法见下。空缺部分由其他方法合成。 其他方法

整个世界生产的纯乙酸每年大概有500万吨,其中一半是由美国生产的。欧洲现在的产量大约是每年100万吨,但是在不断减少。日本每年也要生产70万吨纯乙酸。每年世界消耗量为650万吨,除了上面的500万吨,剩下的150万吨都是回收利用的。

有氧发酵

在人类历史中,以醋的形式存在的乙酸,一直是用醋杆菌属细菌制备。在氧气充足的情况下,这些细菌能够从含有酒精的食物中生产出乙酸。通常使用的是苹果酒或葡萄酒混合谷物、麦芽、米或马铃薯捣碎后发酵。有这些细菌达到的化学方程式为:

C2H5OH + O2 →CH3COOH + H2O

做法是将醋菌属的细菌接种于稀释后的酒精溶液并保持一定温度,放置于一个通风的位置,在几个月内就能够变为醋。工业生产醋的方法通过提供氧气使得此过程加快。是现在商业化生产所用方法其中之一,被称为“快速方法”或“德国方法”,因为首次成功是在1823年的德国。此方法中,发酵是在一个塞满了木屑或木炭的塔中进行。含有酒精的原料从塔的上方滴入,新鲜空气从他的下方自然进入或强制对流。改进后的空气供应使得此过程能够在几个星期内完成,大大缩短了制醋的时间。

现在的大部分醋是通过液态的细菌培养基制备的,由Otto Hromatka和Heinrich Ebner在1949年首次提出。在此方法中,酒精在持续的搅拌中发酵为乙酸,空气通过气泡的形式被充入溶液。通过这个方法,含乙酸15%的醋能够在两至三天制备完成。

无氧发酵

部分厌氧细菌,包括梭菌属的部分成员,能够将糖类直接转化为乙酸而不需要乙醇作为中间体。总体反应方程式如下:

C6H12O6 →3 CH3COOH

更令工业化学感兴趣的是,许多细菌能够从仅含单碳的化合物中生产乙酸,例如甲醇,一氧化碳或二氧化碳与氢气的混和物。

2 CO2 + 4 H2 →CH3COOH + 2 H2O

2 CO + 2 H2 →CH3COOH

梭菌属因为有能够直接使用糖类的能力,减少了成本,这意味着这些细菌有比醋菌属细菌的乙醇氧化法生产乙酸更有效率的潜力。然而,梭菌属细菌的耐酸性不及醋菌属细菌。耐酸性最大的梭菌属细菌也只能生产不到10%的乙酸,而有的醋酸菌能够生产20%的乙酸。到现在为止,使用醋酸属细菌制醋仍然比使用梭菌属细菌制备后浓缩更经济。所以,尽管梭菌属的细菌早在1940年就已经被发现,但它的工业应用仍然被限制在一个狭小的范围。

甲醇羰基化法

大部分乙酸是通过甲基羰基化合成的。此反应中,甲醇和一氧化碳反应生成乙酸,方程式如下

CH3OH + CO →CH3COOH

这个过程是以碘代甲烷为中间体,分三个步骤完成,并且需要一个一般由多种金属构成的催化剂(第二步中)

⑴ CH3OH + HI →CH3I + H2O⑵ CH3I + CO →CH3COI⑶ CH3COI + H2O →CH3COOH + HI

通过控制反应条件,也可以通过同样的反应生成乙酸酐。因为一氧化碳和甲醇均是常用的化工原料,所以甲基羰基化一直以来备受青睐。早在1925年,英国塞拉尼斯公司的Henry Drefyus已经开发出第一个甲基羰基化制乙酸的试点装置。然而,由于缺少能耐高压(200atm或更高)和耐腐蚀的容器,此法一度受到抑制。直到1963年,德国巴斯夫化学公司用钴作催化剂,开发出第一个适合工业生产的办法。到了1968年,以铑为基础的催化剂的(cis?[Rh(CO)2I2])被发现,使得反映所需压力减到一个较低的水平并且几乎没有副产物。1970年,美国孟山都公司建造了首个使用此催化剂的设备,此后,铑催化甲基羰基化制乙酸逐渐成为支配性的孟山都法。90年代后期,英国石油成功的将Cativa催化法商业化,此法是基于钌,使用([Ir(CO)2I2]),它比孟山都法更加绿色也有更高的效率,很大程度上排挤了孟山都法。

乙醇氧化法

由乙醇在有催化剂的条件下和氧气发生氧化反应制得。

C2H5OH + O2=CH3COOH + H2O

乙醛氧化法

在孟山都法商业生产之前,大部分的乙酸是由乙醛氧化制得。尽管不能与甲基羰基化相比,此法仍然是第二种工业制乙酸的方法。

2CH3CHO+O2→2CH3COOH

乙醛可以通过氧化丁烷或轻石脑油制得,也可以通过乙烯水合后生成。当丁烷或轻石脑油在空气中加热,并有多种金属离子包括镁,钴,铬以及过氧根离子催化,会分解出乙酸。化学方程式如下:

2 C4H10 + 5 O2 →4 CH3COOH + 2 H2O

此反应可以在能使丁烷保持液态的最高温度和压力下进行,一般的反应条件是150℃和55atm。副产物包括丁酮,乙酸乙酯,甲酸和丙酸。因为部分副产物也有经济价值,所以可以调整反应条件使得副产物更多的生成,不过分离乙酸和副产物使得反应的成本增加。

在类似条件下,使用上述催化剂,乙醛能被空气中的氧气氧化生成乙酸:

2 CH3CHO + O2 →2 CH3COOH

也能被 氢氧化铜悬浊液氧化:

2Cu(OH)2+CH3CHO→CH3COOH+Cu2O↓+2H2O 

使用新式催化剂,此反应能获得95%以上的乙酸产率。主要的副产物为乙酸乙酯,甲酸和甲醛。因为副产物的沸点都比乙酸低,所以很容易通过蒸馏除去。

乙烯氧化法

由乙烯在催化剂(所用催化剂为氯化钯:PdCl2、氯化铜:CuCl2和乙酸锰:(CH3COO)2Mn)存在的条件下,与氧气发生反应生成。此反应可以看作先将乙烯氧化成乙醛,再通过乙醛氧化法制得。

丁烷氧化法

丁烷氧化法又称为直接氧化法,这是用丁烷为主要原料,通过空气氧化而制得乙酸的一种方法,也是主要的乙酸合成方法。

2CH3CH2CH2CH3 + 5O2=4CH3COOH + 2H2O

托普索法(合成气法)

低压甲醇羰基化法以甲醇,co是由天然气或水煤气获得,甲醇是重要化工原料其货源和价格波动较大。托普索法以单一天然气或煤为原料。第一步:合成气在催化剂下生成甲醇和二甲醚;第二部:甲醇和二甲醚(两者不需提纯)和co羰基化生成醋酸。也叫两步法。

编辑本段应用

【给药说明】

1.治疗甲癣,病甲清洁后以刀片将病甲削薄后用药,注意不要接触甲沟,指甲邻近皮肤可涂一薄层凡士林作保护。

2.面部癣病勿用该品治疗。

3.高浓度冰醋酸有腐蚀作用,除甲癣外,勿作其他癣病治疗。

4.治疗鸡眼和疣,用药前将病变部位清洁,并浸在热水中15~30分钟,邻近正常皮肤以凡士林涂抹保护,然后以药品滴上。

【用法与用量】

1.甲癣:以浸有30%冰醋酸溶液的棉花球放在病甲上,每日1次,1次10~15分钟,直至病甲去除,继续治疗2周。

2.手足癣:用10%冰醋酸溶液浸手足,每日1次,1次10分钟,连续10日,如未痊愈,隔1周可重复1次。

3.花斑癣:用5%冰醋酸溶液外涂,每日2次。

4.体癣:用5%~10%冰醋酸溶液外擦,每日2次。

5.鸡眼和疣:用30%冰醋酸溶液滴患处,每日1次。

6.灌洗创面:用0.5%~2%溶液。

【不良反应】可引起接触性皮炎。以30%的冰醋酸溶液治疗甲癣可引起化学性甲沟炎。也有刺痛或烧灼感。

【禁忌证】过敏和中耳炎穿孔者禁用。[2]

编辑本段历史

醋几乎贯穿了整个人类文明史。乙酸发酵细菌(醋酸杆菌)能在世界的每个角落发现,每个民族在酿酒的时候,不可避免的会发现醋——它是这些酒精饮料暴露于空气后的自然产物。如中国就有杜康的儿子黑塔因酿酒时间过长得到醋的说法。

乙酸在化学中的运用可以追溯到很古老的年代。在公元前3世纪,希腊哲学家泰奥弗拉斯托斯详细描述了乙酸是如何与金属发生反应生成美术上要用的颜料的,包括白铅(碳酸铅)、铜绿(铜盐的混合物包括乙酸铜)。古罗马的人们将发酸的酒放在铅制容器中煮沸,能得到一种高甜度的糖浆,叫做“sapa”。“sapa”富含一种有甜味的铅糖,即乙酸铅,这导致了罗马贵族间的铅中毒。8世纪时,波斯炼金术士贾比尔,用蒸馏法浓缩了醋中的乙酸。

文艺复兴时期,人们通过金属醋酸盐的干馏制备冰醋酸。16世纪德国炼金术士安德烈亚斯·利巴菲乌斯就描述了这种方法,并且拿由这种方法产生的冰醋酸来和由醋中提取的酸相比较。仅仅是因为水的存在,导致了醋酸的性质发生如此大的改变,以至于在几个世纪里,化学家们都认为这是两个截然不同的物质。法国化学家阿迪(Pierre Adet)证明了它们两个是相同的。

1847年,德国科学家阿道夫·威廉·赫尔曼·科尔贝第一次通过无机原料合成了乙酸。这个反应的历程首先是二硫化碳经过氯化转化为四氯化碳,接着是四氯乙烯的高温分解后水解,并氯化,从而产生三氯乙酸,最后一步通过电解还原产生乙酸。

1910年时,大部分的冰醋酸提取自干馏木材得到的煤焦油。首先是将煤焦油通过氢氧化钙处理,然后将形成的乙酸钙用硫酸酸化,得到其中的乙酸。在这个时期,德国生产了约10000吨的冰醋酸,其中30%被用来制造靛青染料。

编辑本段命名

乙酸既是常用的名称,也是国际纯粹与应用化学联合会(IUPAC)规定的官方名称。俗称醋酸(acetic acid),该名称来自于拉丁文中的表示醋的词“acetum”。无水的乙酸在略低于室温的温度下(16.7℃),能够转化为一种具有腐蚀性的冰状晶体,并且在较低温度下就可以挥发,故常称无水醋酸为冰醋酸,冰乙酸,冰形醋酸,乙酸冰。

乙酸的实验式(即最简式)为CH2O,化学式(即分子式)为C2H4O2。常被写为CH3-COOH、CH3COOH或CH3CO2H来突出其中的羧基,表明更加准确的结构。失去H后形成的离子为乙酸根阴离子。乙酸最常用的正式缩写是AcOH 或HOAc,其中Ac代表了乙酸中的乙酰基(CH3CO)。酸碱中和反应中也可以用HAc表示乙酸,其中Ac代表了乙酸根阴离子(CH3COO),但很多人认为这样容易造成误解。上述两种情况中,Ac都不应与化学元素中锕的缩写混淆。

编辑本段易错点

乙酸与“蚁酸”“己酸”不同

① 蚁酸(formic acid) = 甲酸(methanoic acid)

化学式:HCOOH(HCO2H)

相对分子质量:46.03

②羊油酸(caproic acid) = 己酸(hexanoic acid)

(百度小词典中译“乙酸”为“caproic acid”有误)

化学式CH3(CH2)4COOH

乙酸(acetic acid)

编辑本段物理性质

相对密度(水为1):1.050

英文名称:AceticAcid

其他名:冰醋酸,醋酸

适应症:本品不同浓度用以治疗各种皮肤浅部真菌感染,灌洗创面及鸡眼、疣的治疗。[3]

药品分类:消毒防腐剂-冰醋酸

凝固点(℃):16.7

沸点(℃):118.3

粘度(mPa.s):1.22(20℃)

20℃时蒸气压(KPa):1.5

外观及气味:无色液体,有刺鼻的醋酸味。

溶解性:能溶于水、乙醇、乙醚、四氯化碳及甘油等有机溶剂。

相容性材料:稀释后对金属有强烈腐蚀性,316#和318#不锈钢及铝可作良好的结构材料。

国家产品标准号:GB/T 676-2007

乙酸在常温下是一种有强烈刺激性酸味的无色液体。乙酸的熔点为16.6℃(289.6 K)。沸点117.9℃ (391.2 K)。相对密度1.05,闪点39℃,爆炸极限4%~17%(体积)。纯的乙酸在低于熔点时会冻结成冰状晶体,所以无水乙酸又称为冰醋酸。乙酸易溶于水和乙醇,其水溶液呈弱酸性。乙酸盐也易溶于水。

下为中华人民共和国关于工业乙酸的国家标准:

指标名称 指标

优等品 一等品 合格品

色度,Hazen 单位(铂- 钴色号)≤ 10 20 30

乙酸含量,% ≥ 99.8 99.0 98.0

水分,% ≤ 0.15 - -

甲酸含量,% ≤ 0.06 0.15 0.35

乙醛含量,% ≤ 0.05 0.05 0.10

蒸发残渣,% ≤ 0.01 0.02 0.03

铁含量(以Fe 计),% ≤ 0.00004 0.0002 0.0004

还原高锰酸钾物质, min ≥ 30 5 -

编辑本段化学性质酸性

羧酸中,例如乙酸的羧基氢原子能够部分电离变为氢离子(质子)而释放出来,导致羧酸的酸性。乙酸在水溶液中是一元弱酸,酸度系数为4.8,pKa=4.75(25℃),浓度为1mol/L的醋酸溶液(类似于家用醋的浓度)的pH为2.4,也就是说仅有0.4%的醋酸分子是解离的。

乙酸酸性的体现:CH3COOH<==>CH3COO- + H+

1、与指示剂作用:可使紫色石蕊试液变为红色,使甲基橙变为红色。

2、与碱反应:CH3COOH + NaOH = CH3COONa + H2O

2CH3COOH + Cu(OH)2=Cu(CH3COO)2 + 2H2O

3、与某些活泼金属反应:Mg + 2CH3COOH = Mg(CH3COO)2 + H2↑

Zn + 2CH3COOH = Zn(CH3COO)2 + H2↑

Fe + 2CH3COOH = Fe(CH3COO)2 + H2↑

4、与某些碱性氧化物反应:CaO + 2CH3COOH = (CH3COO)2Ca + H2O

MgO + 2CH3COOH = Mg(CH3COO)2 + H2O

PbO + 2CH3COOH = Pb(CH3COO)2 + H2O

5、与某些强碱弱酸盐反应:2CH3COOH + Na2CO3 =2CH3COONa + CO2 ↑+ H2O

2CH3COOH + Na2S = 2CH3COONa + H2S↑

2CH3COOH + Na2SiO3 =2CH3COONa + H2SiO3↓

CH3COOH + C6H5ONa =C6H5OH (苯酚)+ CH3COONa

二聚物

乙酸的二聚体,虚线表示氢键

乙酸的晶体结构显示,分子间通过氢键结合为二聚体(亦称二缔结物),二聚体也存在于120℃的蒸汽状态。二聚体有较高的稳定性,现在已经通过冰点降低测定分子量法以及X光衍射证明了分子量较小的羧酸如甲酸、乙酸在固态及液态,甚至气态以二聚体形式存在。当乙酸与水溶和的时候,二聚体间的氢键会很快的断裂。其它的羧酸也有类似的二聚现象。(两端连接H)

溶剂

液态乙酸是一个亲水(极性)质子化溶剂,与乙醇和水类似。因为介电常数为6.2,它不仅能溶解极性化合物,比如无机盐和糖,也能够溶解非极性化合物,比如油类或一些元素的分子,比如硫和碘。它也能与许多极性或非极性溶剂混合,比如水,氯仿,己烷。乙酸的溶解性和可混合性使其成为了化工中广泛运用的化学品。

化学反应

对于许多金属,乙酸是有腐蚀性的,例如铁、镁和锌,反应生成氢气和金属乙酸盐。虽然铝在空气中表面会形成氧化铝保护层,但是在醋酸的作用下,氧化膜会被破坏,内部的铝就可以直接和酸作用了。金属的乙酸盐也可以用乙酸和相应的碱性物质反应,比如最著名的例子:小苏打与醋的反应。除了醋酸铬(II),几乎所有的醋酸盐能溶于水。[3]

Mg(s)+ 2 CH3COOH(aq)→ (CH3COO)2Mg(aq) + H2(g)NaHCO3(s)+ CH3COOH(aq) →CH3COONa(aq) + CO2(g) + H2O(l)

乙酸能发生普通羧酸的典型化学反应,特别注意的是,可以还原生成乙醇,通过亲核取代机理生成乙酰氯,也可以双分子脱水生成酸酐。

同样,乙酸也可以成酯或氨基化合物。如乙酸可以与乙醇在浓硫酸存在并加热的条件下生成乙酸乙酯(本反应为可逆反应,反应类型属于取代反应中的酯化反应)。

CH3COOH + CH3CH2OH<==>CH3COOCH2CH3 + H2O

440℃的高温下,乙酸分解生成甲烷和二氧化碳或乙烯酮和水。

乙酸的典型化学反应:

乙酸与碳酸钠:2CH3COOH+Na2CO3==2CH3COONa+CO2↑+H2O

乙酸与碳酸钙:2CH3COOH+CaCO3→(CH3COO)2Ca+CO2↑+H2O

乙酸与碳酸氢钠:NaHCO3+CH3COOH→CH3COONa+H2O+CO2↑

乙酸与碱反应:CH3COOH+OH-=CH3COO- +H2O

乙酸与弱酸盐反应:2CH3COOH+CO32-=2CH3COO- +H2O+CO2↑

乙酸与活泼金属单质反应:Fe+2CH3COOH→(CH3COO)2Fe+H2↑

Zn+2CH3COOH→(CH3COO)2Zn +H2↑

2Na+2CH3COOH→2CH3COONa+H2↑

乙酸与氧化锌反应:2CH3COOH+ZnO→(CH3COO)2Zn+H2O

乙酸与醇反应:CH3COOH+C2H5OH→CH3COOC2H5+H2O(条件是加热,浓硫酸催化,可逆反应) 

鉴别

乙酸可以通过其气味进行鉴别。若加入氯化铁(III),生成产物为深红色并且会在酸化后消失,通过此颜色反应也能鉴别乙酸。乙酸与三氧化砷反应生成氧化二甲砷,通过产物的恶臭可以鉴别乙酸。

编辑本段生物化学

乙酸中的乙酰基,是生物化学中所有生命的基础。当它与辅酶A结合后,就成为了碳水化合物和脂肪新陈代谢的中心。然而,乙酸在细胞中的浓度是被严格控制在一个很低的范围内,避免使得细胞质的pH发生破坏性的改变。与其它长链羧酸不同,乙酸并不存在于甘油三酸脂中。但是,人造含乙酸的甘油三酸脂,又叫甘油醋酸酯(甘油三乙酸酯),则是一种重要的食品添加剂,也被用来制造化妆品和局部性药物。

乙酸由一些特定的细菌生产或分泌。值得注意的是醋菌类梭菌属的丙酮丁醇梭杆菌,这个细菌广泛存在于全世界的食物、水和土壤之中。在水果或其他食物腐败时,醋酸也会自然生成。乙酸也是包括人类在内的所有灵长类生物的阴道润滑液的一个组成部分,被当作一个温和的抗菌剂。

编辑本段环境影响

一、健康危害

侵入途径:吸入、食入、经皮吸收。

慢性影响:眼睑水肿、结膜充血、慢性咽炎和支气管炎。长期反复接触,可致皮肤干燥、脱脂和皮炎。

健康危害性评价:2,3, 2 阈限值(TLV):50

大鼠经口LD50:3530(mg/kg)

健康危害:吸入后对鼻、喉和呼吸道有刺激性。对眼有强烈刺激作用。皮肤接触,轻者出现红斑,重者引起化学灼伤。误服浓乙酸,口腔和消化道可产生糜烂,重者可因休克而致死。

二、毒理学资料及环境行为

毒性:属低毒类。

急性毒性:LD50:3530mg/kg(大鼠经口);1060mg/kg(兔经皮);LC50:5620ppm,1小时(小鼠吸入);人经口1.47mg/kg,最低中毒量,出现消化道症状;人经口20~50g,致死剂量。

亚急性和慢性毒性:人吸入200~490mg/m3×7~12年,有眼睑水肿,结膜充血,慢性咽炎,支气管炎。

致突变性:

生殖毒性:

危险特性:其蒸气与空气形成爆炸性混合物,遇明火、高热能引起燃烧爆炸。与铬酸、过氧化钠、硝酸或其它氧化剂接触,有爆炸危险。具有腐蚀性。

燃烧(分解)产物:一氧化碳、二氧化碳。

灭火方法: 用水喷射逸出液体,使其稀释成不燃性混合物,并用雾状水保护消防人员。灭火剂:雾状水、抗溶性泡沫、干粉、二氧化碳。[4]

醋酸是一种极为重要的化工产品,它在有机化工中的地位与无机化工中的硫酸相当。醋酸的主要用途有:

⑴醋酸乙烯。醋酸的最大消费领域是制取醋酸乙烯,约占醋酸消费的44%以上,它广泛用于生产维纶、聚乙烯醇、乙烯基共聚树脂、黏合剂、涂料等。

⑵溶剂。醋酸在许多工业化学反应中用作溶剂。

⑶醋酸纤维素。醋酸可用于制醋酐,醋酐的80%用于制造醋酸纤维,其余用于医药、香料、染料等。

⑷醋酸酯。醋酸乙酯、醋酸丁酯是醋酸的两个重要下游产品。醋酸乙酯用于清漆、稀释料、人造革、硝酸纤维、塑料、染料、药物和香料等;醋酸丁酯是一种很好的有机溶剂,用于硝化纤维、涂料、油墨、人造革、医药、塑料和香料等领域。

编辑本段环境标准

中华人民共和国国家职业卫生标准GBZ2.1-2007 工作场所有害因素职业接触限值化学有害因素。

乙酸正庚烷的时间加权平均容许浓度PC-TWA 10mg/m3 ,短时间接触容许浓度PC-STEL 20mg/m3。

编辑本段其他补充

中文名称:醋酸

别名:醋酸、冰醋酸

英文名称:ACETIC ACID,Ethanoic acid,Vinegar acid,mathane-carboxylic acid

英文缩写:联合国编号(UNNO):2789

化学式:CH3COOH

编辑本段危险性

闪点(℃):39 爆炸极限(%):4.0-17

静电作用:可能有聚合危害:

燃烧性:自燃温度:

危险特性:能与氧化剂发生强烈反应,与氢氧化钠与氢氧化钾等反应剧烈。稀释后对金属有腐蚀性。

消防方法:用雾状水、干粉、抗醇泡沫、二氧化碳、灭火。用水保持火场中容器冷却。用雾状水驱散蒸气,赶走泄漏液体,使稀释成为不燃性混合物。并用水喷淋去堵漏的人员。

编辑本段泄漏处理

污染排放类别:Z

泄漏处理:切断火源,穿戴好防护眼镜、防毒面具和耐酸工作服,用大量水冲洗溢漏物,使之流入航道,被很快稀释,从而减少对人体的危害。

编辑本段急救

皮肤接触:皮肤接触先用水冲洗,再用肥皂彻底洗涤。

眼睛接触:眼睛受刺激用水冲洗,再用干布拭擦,严重的须送医院诊治。

吸入:若吸入蒸气得使患者脱离污染区,安置休息并保暖。

食 入:误服立即漱口,给予催吐剂催吐,急送医院诊治。

编辑本段防护措施

呼吸系统防护:空气中深度浓度超标时,应佩戴防毒面具。

眼睛防护:戴化学安全防护眼镜。

手防护:戴橡皮手套。

其它:工作后,淋浴更衣,不要将工作服带入生活区。

编辑本段储运

适装船型:3

适装舱型:不锈钢舱

储运注意事项:注意货物温度保持在20-35℃,即货物温度要大于其凝固点16.7℃防止冻结。装卸货完毕时要尽量排尽管系中的残液。

乐观的溪流
强健的小海豚
2025-12-04 05:06:18
能。是种新发明技术。

氢氧化镁是一种无机物,化学式为Mg(OH)2,白色无定形粉末或无色六方柱晶体,溶于稀酸和铵盐溶液,几乎不溶于水,溶于水的部分完全电离,水溶液呈弱碱性。 加热到350℃失去水生成氧化镁,氢氧化镁的天然矿物水镁石,可用于制糖和氧化镁等。因氢氧化镁在大自然含量比较丰富,而其化学性质和铝较相近,因此使用者开始用氢氧化镁来取代氯化铝用于香体产品。用做分析试剂,还用于制药工业。

中文名

氢氧化镁[4]

外文名

magnesium dihydroxide[4]

化学式

Mg(OH)2

分子量

58.320[4]

CAS登录号

1309-42-8[4]

基本信息

中文名称:氢氧化镁

英文名称:magnesium dihydroxide

CAS号:1309-42-8

EINECS号:215-170-3

化学式:Mg(OH)2

分子量:58.31970

精确质量:57.99050

PSA:40.46000[2]

理化性质

物理性质

密度:2.36 g/cm3

熔点:350ºC(分解)

外观:白色无定形粉末或无色六方柱晶体

化学性质

氢氧化镁为中强碱(氢氧化镁溶解度很小,溶液碱性很弱,有时作为弱碱处理),加热至623K(350℃)即脱水分解:Mg(OH)2 →MgO+H2O,易溶于酸或铵盐溶液。与氧化镁一样易吸收空气中的二氧化碳,逐渐形成组成为 5MgO·4CO2·xH2O 的碱式碳酸盐。在高于350℃时分解为氧化镁和水,但只有在1800℃以上才能完全脱水。[2]

计算化学数据

1.疏水参数计算参考值(XlogP):0

2.氢键供体数量:2[4]

3.氢键受体数量:2[4]

4.可旋转化学键数量:0[4]

5.互变异构体数量:0

6.拓扑分子极性表面积:2[4]

7.重原子数量:3[4]

8.表面电荷::0[4]

9.复杂度:0[4]

10.同位素原子数量:0[4]

11.确定原子立构中心数量:0[4]

12.不确定原子立构中心数量:0[4]

13.确定化学键立构中心数量;0[4]

14.不确定化学键立构中心数量:0[4]

15.共价键单元数量:3[4]

安全信息

·危险类别码:R36/37/38

·安全说明:S26S36S37/39

·RTECS号:OM3570000

·危险品标志:Xi[2]

毒理学数据

急性毒性

大鼠口经LD50:8500mg/kg;

大鼠引入腹膜LD50:2780mg/kg;

小鼠口经LD50:8500mg/kg;

小鼠引入腹膜LD50:815mg/kg。

制备方法

(一)工业上常以海水与廉价的氢氧化钙溶液(石灰乳)反应,可得氢氧化镁沉淀。

卤水-石灰法:将预先经过净化精制处理的卤水和经消化除渣处理的石灰制成的石灰乳在沉淀槽内进行沉淀反应,在得到的料浆中加入絮凝剂,充分混合后,进入沉降槽进行分离,再经过滤、洗涤、烘干、粉碎,制得氢氧化镁成品。其化学反应方程式为:

MgCl2+Ca(OH)2→CaCl2+Mg(OH)2↓

卤水-氨水法:以经净化处理除去硫酸盐、二氧化碳、少量硼等杂质的卤水为原料,以氨水作为沉淀剂在反应釜中进行沉淀反应,在反应前投入一定量的晶种,进行充分搅拌。卤水与氨水的比例为1:(0.9~0.93),温度控制在40℃。反应终了后添加絮凝剂,沉淀物经过滤后,洗涤、烘干、粉碎,制得氢氧化镁成品。其化学反应方程式为:

MgCl2+2NH3·H2O→Mg(OH)2↓+2NH4Cl

该试验方法有待提高收率,缩短洗涤周期,改进并完善生产工艺。菱苦土-盐酸-氨水法菱镁矿石与无烟煤或焦炭在竖窑内煅烧,生成氧化镁和二氧化碳。苦土粉用水调成浆状后与规定浓度的盐酸反应制备氯化镁溶液。其氯化镁溶液与一定浓度的氨水在反应器中进行反应,生成物经洗涤、沉降、过滤分离、干燥、粉碎,得到氢氧化镁产品。根据需要可添加表面处理剂进行表面处理。

(二)白云石制备氢氧化镁新工艺

将白云石在950℃下煅烧2.5小时,消化比例1:40,消化温度70℃,消化时间为50min;一次酸浸时盐酸用量与钙离子的摩尔比为2:1,二次酸浸时的硫酸用量与镁离子的摩尔比为1:1;沉淀过程溶液的pH值为11。以此工艺条件可得氢氧化镁的最大收率,总收率达到85.20%以上,并且得到纯度一般,分散度一般的片状氢氧化镁。碳化法工艺在最优化条件下,钙镁分离过程镁的提取率达到90.02%,氢氧化镁制备过程产品收率88.21%,所选碳化温度30℃,沉淀剂为氨水,能够得到纯度较好,分散性较好,且为片状的氢氧化镁产品。[1]

应用

氢氧化镁是塑料、橡胶制品优良的阻燃剂。在环保方面作为烟道气脱硫剂,可代替烧碱和石灰作为含酸废水的中和剂。亦用作油品添加剂,起到防腐和脱硫作用。另外,还可用于电子行业、医药、砂糖的精制,作保温材料以及制造其他镁盐产品。

相关药品

药品名称

氢氧化镁

英文名称

Magnesium Hydroxide

分类

消化系统药物>促泻药物[2]

剂型

含氢氧化镁8%;粉剂。

药理作用

氢氧化镁为盐类泻药,并有抗酸作用。

药代动力学

用药后约6h产生效应。[2]

适应证

用于导泻。

用法用量

镁乳15mL或粉剂2~4g/次,加250mL开水同服。[2]

急救措施

吸入: 如果吸入,请将患者移到新鲜空气处。

皮肤接触: 脱去污染的衣着,用肥皂水和清水彻底冲洗皮肤。如有不适感,就医。

眼晴接触: 分开眼睑,用流动清水或生理盐水冲洗。立即就医。

食入: 漱口,禁止催吐。立即就医。[1]

消防措施

灭火剂:用水雾、干粉、泡沫或二氧化碳灭火剂灭火。避免使用直流水灭火,直流水可能导致可燃性液体的飞溅,使火势扩散。

灭火注意事项及防护措施:消防人员须佩戴携气式呼吸器,穿全身消防服,在上风向灭火。尽可能将容器从火场移至空旷处。处在火场中的容器若已变色或从安全泄压装置中发出声音,必须马上撤离。隔离事故现场,禁止无关人员进入。收容和处理消防水,防止污染环境。[1]

泄露应急处理

作业人员防护措施、防护装备和应急处置程序:建议应急处理人员戴携气式呼吸器,穿防静电服,戴橡胶耐油手套。禁止接触或跨越泄漏物。作业时使用的所有设备应接地。尽可能切断泄漏源。消除所有点火源。根据液体流动、蒸汽或粉尘扩散的影响区域划定警戒区,无关人员从侧风、上风向撤离至安全区。

环境保护措施:收容泄漏物,避免污染环境。防止泄漏物进入下水道、地表水和地下水。

泄漏化学品的收容、清除方法及所使用的处置材料:

小量泄漏:尽可能将泄漏液体收集在可密闭的容器中。用沙土、活性炭或其它惰性材料吸收,并转移至安全场所。禁止冲入下水道。

大量泄漏:构筑围堤或挖坑收容。封闭排水管道。用泡沫覆盖,抑制蒸发。用防爆泵转移至槽车或专用收集器内,回收或运至废物处理场所处置。

活性炭的制备方法

1 制备原料

活性炭几乎可以用任何含炭材料来制造,煤炭、石油焦、木质素、塑料类等多种多样的含碳材料均可用做制备活性炭的原料。由于煤炭资源储量丰富、便宜易得,在相当长的一段时期内,煤炭资源是我国制备活性炭的主要原料。但是煤炭是一次能源,不可再生,随着能源危机的加剧,使人们认识到可能再生资源的重要性,科研工作者利用棉花杆为原料化学活化法制备活性炭、利用竹子为原料磷酸为活化剂制备活性炭利用小麦秸秆为原料制备炭黑,还有研究者利用湿地水生植物为原料制备活性炭。

生物质资源是一种理想活性炭制备原料,它具有可再生、低污染、二氧化碳零排放等优点,同时价格较低、灰分少,且与煤炭资源相比,生物质资源形成时间短,结构疏松,具备天然的优势,因此,在燃烧和热解过程中具有自身的特点,易于形成发达的微孔,是制备活性炭的优良材料,是今后环境友好材料新技术应用的发展方向,值得进行深入研究。

生物质类资源的主要成分是纤维素、半纤维素和木质素。在热解过程中会发生分子键断裂、异构化和小分子聚合等复杂的热化学反应。纤维素在52 °C时开始热解,随着温度的升高,热解反应速度加快,到350–370 °C生物质热解分解为低分子产物;半纤维素结构上带有支链,是木材中最不稳定的组分,比纤维素更易热分解,温度为225–325°C内分解,其热解机理与纤维素基本相似。根据生成产物的不同,热解过程可以分为干燥阶段、预热解阶段、固体分解阶段和煅烧阶段:

(1)干燥阶段:该阶段温度为120—150°C,生质中的水分开始挥发,其化学组成保持不变,为吸热阶段。

(2)预热解阶段:该阶段的温度为150~275 °C,生物质发生明显的热分解反应。其化学组成开始发生变化,内部结构发生重组,如脱水、断键和自由基出现等,生物质中不稳定组分分解生成小分子化合物,如二氧化碳、一氧化碳和水等气体。该阶段也为吸热反应阶段。

(3)固体分解阶段:该阶段的温度为275~475 °C,是热解过程的主要阶段,生物质各组分发生剧烈的解聚反应,分解成单体或单体衍生物并生成大量的分解产物;其中,液体产物中含有醋酸、木焦油和甲醇等,气体产物中有CO2、CO、CH4和H2等,释放出大量的热量。

(4)焦炭分解阶段:该阶段的温度为450~475 °C,得到的产物依靠外部供给的热量继续进行燃烧,C-O和C-H键进一步断裂,释放出挥发分,使其挥发性物质继续减少,固定碳含量增加。上述的四个阶段的反应过程会相互交叉进行,界限难以明确清楚划分。

2.2活化方法

选择合适的前体材料,精确控制炭化和活化工艺步骤,即可根据特定用途调整孔结构。活性炭制备活化方法包括物理活化法和化学活化法两种,其不同之处在于制备过程中是否引入化学试剂。

物理活化法又称为气体活化法,即在973~1273 K下,水蒸气、二氧化碳和氧气等氧化性活化剂与炭化料活性点上的碳原子发生如下的水煤气反应:

一般认为,碳和水发生水煤气反应的过程机理如下:

其中,C*表示位于活性点上的碳原子,()表示处于吸附状态。

由以上反应式可看出,由于部分碳原子被刻蚀,于是形成了更多的孔隙结构,从而具有较大的比表面积。由于没有引入化学活化剂,物理活化法环境污染小,但是制备过程中,加热温度高且所需时间长,因此存在原料得率低,均匀性不好,产品吸附能力较小等缺点。

化学活化是制备活性炭广泛使用的一种方法。化学活化法是先将原料粉碎后,把活化剂与原料按照一定比例混合均匀,根据活化剂的不同,可选择性的在惰性气氛保护下加热,同步完成炭化和活化的一种方法。采用的活化剂主要有氯化锌,磷酸、碱(如氢氧化钾、氢氧化钠)、碱金属的碳酸盐等。这些化学活化剂在炭化活化过程中所起的作用目前尚不明确,普遍认为活化剂一方面作为反应物参加与原料的化学反应;另一方面,活化剂的催化作用也很重要。尽管这些活化剂在活化过程中发挥的作用可能不同,但这些活化剂可降低活化温度,具有的脱水作用可显著降低炭化活化温度。

ZnCl2法是最早的一种制备活性炭的化学活化方法,它的强脱水作用使木质素 炭化活化温度显著降低至150~300°C,并改变木质素热分解过程,抑制焦油的生成,有利于孔隙的生成。氯化锌与原料混合后,在较低温度下(200°C)会使木质纤维素润胀,并侵蚀到木质内部。由于ZnCl2沸点为732 °C,熔点为263 °C,在木质素炭化温度下(450°C)呈液态存在,因此,ZnCl2在炭内均匀分布,当用水把氯化锌洗涤去除后,就形成了发达的微细孔,但是制备过程中氯化锌的挥发,易造成严重环境污染,很多国家已经禁止利用氯化锌制备活性炭。

碱活化法是采用氢氧化钾、氢氧化钠等碱类物质,该方法最初主要是针对石油焦,但对其他如煤和果壳类作为前驱物生产活性炭也同样有效。这种方法中将碱按照一定的混合比例加入到原料中,经研磨混合均匀后,在惰性气体或者封闭系统加热至700-800 °C炭化活化,能得到比表面积在3000 m2/g左右的具有大量笼状微孔结构活性炭。碱法的活化机理,以KOH为例,可用以下反应方程式表示:

式中碱的脱水反应在500°C以下发生,水煤气反应及水煤气转移反应,都是在氧化钾作为催化剂下发生的反应。产生的二氧化碳与K2O固定为碳酸盐,因此产生的气体主要是氢气、少量的CO、CO2、CH4和焦油等。一般认为,活化过程中消耗掉的碳主要生成了碳酸钾,使产物具有较多的微孔结构九。氧化钾继续被氢气或碳还原生成K单质,金属钾的沸点为762 °C,因此在800°C左右活化时,钾单质的蒸气不断挤入碳原子所构成的层与层之间继续活化炭料。虽然碱法是制备高比表面积活性炭常用的方法,但是炭化活化温度较高,需要在惰性气体保护下进行。除碱本身对设备的腐蚀性强、回收困难外,还存在活化温度高、能量消耗大、生产成本高等缺点,因此实现大规模工业化生产还存在较多困难。

H3P04活化法是制备活性炭比较成熟的工艺,活化机理与氯化锌法类似,能够促进热解反应过程,降低活化温度,磷酸分布在原料内,占据了一定的位置,阻止了高温条件下颗粒的收缩,避免了焦油的形成,洗涤除去磷酸盐后,就可以得到具有发达孔隙结构的活性炭。磷酸活化法制备的产品孔径分布较宽,中孔发达,应用范围较广。磷酸法对环境污染较小,炭化活化温度低,与碱法相比对设备的要求相对较低,生产出的活性炭产品均匀稳定,沉降性能良好,可作为优良的液相吸附材料。目前,国内磷酸活化法制备木质活性炭研究重点是:(1)利用各种废弃物为原料特别是以农业废弃物如农产品加工过程中的废渣、秸杆等为原料,制备出满足不同应用需求的活性炭产品,同时实现废弃物的综合利用;(2)优化制备工艺参数,提高活性炭的质量,如添加催化剂、控制活化时间等;(3)严格控制生产过程中外来杂质的含量,以降低活性炭的灰分,如控制原料的杂质、降低水分的硬度和定期对循环磷酸进行处理。

3 加热方法

常规加热是在外部温度梯度的推动下,经过热源的传导、媒介的热传递、容器壁的热传导、样品内部的热传导等过程来完成的。因此,常规加热法存在能耗大、加热效率低和加热不均匀等缺点。微波是频率为300MHz~3000GHz的电磁波。在加热过程中,样品内的极性分子吸收微波后做震荡运动,分子之间的相互摩擦产生了热量。与常规加热方法相比,微波加热具有许多优点:选择性加热、升温速度快、加热效率高、缩短加热时间、降低能量消耗、受热加热均匀等。利用微波的加热特性,可研发出在常规加热条件下无法实现的新技术、新工艺和新产品,并实现加热过程的高效、节能。目前微波加热技术已经广泛应用于家庭、环保、材料、冶金、化工、石油和国防等领域。

基于微波加热的突出优势,许多研究者利用微波加热法制备活性炭。石河子大学的邓辉课题组对于微波法制备活性炭开展研究,取得了一系列的成果。邓辉,张根林等以棉杆为原料,磷酸为活化剂,通过微波加热法制备活性炭,在辐射时间为8 min,辐射功率为400 W时可制备出比表面积为652.8 m2/g的活性炭产品。樊希安等以椰壳炭化料为原料,水蒸气活化法,在微波加热下制备颗粒活性炭,研究发现微波功率是影响活性炭性质的最大因素,最佳制备工艺条件为辐射功率为 700 W,辐射时间为3 min,所得活性炭具有发达的微孔结构,且微孔分别均匀,制备的活性炭得率为60.8%,碘吸附值为1031 mg/g,亚甲基蓝吸附值为10.0 mL/0.1g,所需时间是传统加热方法的1/60,得率是传统方法的2倍。