建材秒知道
登录
建材号 > 光伏 > 正文

如何求解光伏发电四大难题

清脆的眼神
感性的老鼠
2022-12-31 17:25:20

如何求解光伏发电四大难题

最佳答案
爱听歌的老虎
清秀的跳跳糖
2025-12-04 07:13:32

国内分布式光伏发电项目普遍面临屋顶落实难、贷款融资难、并网接入难、电费回收难等四大难题。四大难题紧紧拖住分布式光伏应用的后腿,也让投资商叫苦不迭。浙江嘉兴以政府为主导、企业为主体的推广模式,能否扼住四大难题的要害,求得正解呢?

屋顶落实难?政府当裁判

我家屋顶为什么要给你来用?对屋顶造成破坏谁负责?出现了问题找谁说理?当屋顶资源所有者面对寻上门的屋顶光伏投资者时,普遍存在上述疑问。怕扯皮的心理让他们普遍望而却步。

让屋顶所有者自己建光伏?一不懂技术,二需要投资,三是嫌麻烦,除非是光伏产品生产企业和个别“环保斗士”,否则没有几户人家愿意动这个脑筋。

“屋顶那么大,可用的却没有几个。”成了当前分布式光伏发电推广应用面临的第一道难题。

“企业的现有屋顶,绝大部分没有考虑到光伏发电的要求,承重、防漏、安保都有不少问题;10万平方米屋顶的大型企业,通过出让屋顶获得的电价节省每年不超过70万元。如果不考虑社会责任和政府推动,衡量得失,许多企业不愿意提供屋顶。”浙江省政府有关部门的领导对屋顶落实难深有体会。

嘉兴市政府扩大分布式光伏发电规模开发和市场应用,率先从落实屋顶资源上寻求突破。嘉兴市政府有关政策特别规定:新增建筑屋顶面积达到一定规模的,必须按照光伏建筑一体化的标准同步设计、同步建设屋顶光伏电站。

作为嘉兴光伏发电“先锋军”的光伏高新技术产业园,对屋顶资源采取了统一规划、统一收储、统一标准、统一管理的“四统一”模式,组织开展屋顶资源前期摸排,逐步建立可建分布式光伏电站屋顶资源数据库,统一收储屋顶资源。

“园区内屋顶资源多元化,有工业建筑、居民住宅、市政、科技园区、商业楼宇等。目前,我们对已建建筑划分出12个3~6兆瓦装机容量的集中连片区,提前与屋顶业主签订安装协议,统一屋顶租赁和电价优惠及合同能源管理政策标准,这样政府就掌握了相当数量的屋顶资源。”嘉兴市光伏高新技术产业园区管委会徐凯平告诉记者。

在光伏发电项目投资者与屋顶资源所有者之间签订协议书,政府也不做旁观者,而是作为“丙方”全程参与和见证项目建设过程。

记者在园区管委会看到嘉兴市晶科能源发展有限公司作为开发运营商,与上海交大科技园(嘉兴)有限公司签署的光伏示范应用项目协议书中,嘉兴市光伏高新技术产业园区管委会就作为丙方出现在协议书上。三方协议书对丙方权利和义务的规定包括:督促甲乙双方各自义务的履行,支持甲乙双方各自权利的实现;对乙方办理政府许可文件、环评批复和电网接入批复、组织调试及验收等在合法、合理的情况下提供必要的协助;甲乙双方发生争议时,根据甲、乙一方或双方的请求,丙方参与调解。

“有了政府出面担保,大大增加了投资和业主双方的信任度,这样就不担心出了纠纷没地方投诉了。没有后顾之忧,光伏发电项目的推进自然大大加快了。在光伏高新技术产业园区内,除了不适宜安装的屋顶,大部分屋顶都已安装或将安装光伏。”在上海交大产业园研发楼的楼顶,嘉兴市光伏行业协会副秘书长徐韶指着满眼可见的屋顶光伏组件时对记者说道。

“没有三方协议和相关规定之前,有些屋顶企业随意要价,临时反悔租赁合同的现象十分普遍,对我们投资商的利益损害非常大。自从有了政府的介入,我们深深感到利益得到了保障。”浙江优太新能源有限公司嘉兴分公司总经理何以平也对记者表示。

据记者了解,担当第三方的园区管委会,不仅担当纠纷处理的裁判,还统筹安排屋顶资源,平衡分布式电站建设中“好”屋顶与“差”屋顶的分配,避免投资商为抢夺资源而出现恶性竞争,成为关键的“第三方”。

为进一步规范屋顶资源市场,园区管委会还制定了两个范本的屋顶租用方式:一是屋顶资源所有者直接出租,投资者按照一年6元/平方米的租金支付,之后所发电量所得全部由投资者所有;二是光伏电站所发电量首先供屋顶业主使用,余电上网,屋顶业主按市电价格的9折电价向投资者支付电费。

两种方式都实现了投资者和业主双方均得益的结果。

贷款融资难?政策出奇招

金融机构往往会选择还款信誉好、背景雄厚、投资回报稳定的企业作为贷款发放对象。他们认为,分布式光伏电站投资回报预期不确定、时间长、存在较大风险,因而严格控制对光伏项目的贷款发放,特别是一些中小型企业很难获得银行贷款。融资难,成为分布式光伏发电的又一桎梏。

“针对金融机构在光伏发电应用的收益权保证、运营风险控制等方面存在的顾虑,嘉兴市政府积极探索建立与分布式光伏发电项目相适应的信贷方式,力求形成当光伏发电应用出现金融、保险、投资方、屋顶业主及系统质量等各种风险时的抗风险机制,并积极争取金融机构的支持。”嘉兴市委副书记、市长肖培生介绍嘉兴经验时说。

为强化融资保障,嘉兴市政府鼓励支持在嘉兴光伏高新技术产业园区内设立专业金融机构,大力引进各类光伏产业投资基金,探索建立光伏企业公开发行债券融资新机制,进一步创新金融体制,拓展融资渠道。

建立政银企沟通机制,要求金融机构加强对嘉兴光伏企业及发电项目给予信贷支持,对嘉兴光伏产业重点扶持企业及项目所贷款项执行国家基准利率不上浮,不增加额外融资条件和项目。

徐凯平介绍说,园区管委会已与多家银行接洽,并为他们在全区内开设分支机构预留了地点,以政府的诚信换取金融机构的支持。目前,已有多家银行到全区进行了考察,并制定在园区落户的方案。其中,国家开发银行、民生银行等银行给予了嘉兴市重点光伏应用项目和企业很大的信贷支持。

在取得金融机构贷款支持的同时,嘉兴市政府还谋划从多角度进一步为企业融资铺平道路。

一是提供贷款担保和贴息。即政府出资,并吸纳社会资本,成立贷款担保基金,优先向重点光伏企业提供流动资金贷款担保,对光伏产业基础设施建设贷款,优先提供财政贴息。

二是设立光伏产业创业(风险)投资引导资金。在市创业(风险)投资引导资金中,专门设立光伏产业创业(风险)投资引导资金,其金额不小于市创业(风险)投资引导资金总额的35%,专项用于引导各类创业投资机构投资光伏企业。

三是支持上市融资。助推光伏企业进行股份制改造,在资产重组、优化配置、财务管理、辅导上市等方面提供协调服务,一企一策,予以上市政策扶持。帮助企业做好与资本市场及有关机构的沟通衔接,扶持企业在海内外市场特别是境内市场发行上市。

稳定的经济回报,是解决投资商与金融部门各方面顾虑的关键。在提供融资支持的基础上,嘉兴市政府和有关研究机构积极探索融资模式。创建电付通平台和保证金池(或基金池)正是嘉兴融资模式探索的产物。

“通过一系列的举措来收取用电企业的电费,并存入平台,平台提取一定的比例(大约10%)存入保证金池,当电费收取遇到特殊情况,暂时可以从保证金池中提取,保证各方利益,解决融资难的问题。”徐凯平向记者介绍了他们的设想。

保险是否健全在某种程度上也决定着融资成功与否。“投资方投资光伏电站的投资回报主要来源就是发电收入,以及各级政府发放的度电补贴。光伏电站投入使用后,在长达25年使用期内,年发电量能否达到理论上预期的水平,还会受到实际光照等气象条件、电站组件性能、以及其它意外事故的影响和制约,因而存在风险。有风险就会影响融资。”徐凯平说,目前他们正在与中国人保财险、安邦保险、太平洋保险、英达财险等商业保险机构,探讨光伏电站保险保障的可行性。嘉兴市光伏高新技术产业园提前制定的《分布式光伏应用创新保险模式试点方案》,从电站施工期建议承包险种,电站运行维护期间建议承保险种等给保险机构提供了很好的参考。

8月13日,安邦保险在嘉兴光伏高新技术产业园区内举行了现场交流会,探讨“太阳能光伏电站综合运营保险条款”。记者看到,在这份还未实行的条款总则中规定:“本条款由电站运营期一切险、太阳辐射发电指数保险、营业中断电费收入损失保险和通用条款组成。”从各个角度为光伏电站提供保障的保险,正呼之欲出。

并网接入难?技术来保障

“与集中式地面光伏电站相比,分布式光伏发电是具有不确定性的,并网后,势必会对电网造成影响。国家电网公司要求所有分布式光伏都要并网,电网安全运行、调度、检修都是新的课题。”国网嘉兴供电公司副总经理王坚敏对记者说。

并网接入难是个不可否认的难题。并网难,说到底不是政策问题,而是技术问题。在嘉兴,有了政府的主导和供电公司的配合,难题不再难。

在工作之初,嘉兴市政府就将重点企业研究院作为推进光伏产业技术创新的核心载体,并以市场化运作为导向,推进光伏产业科研体制创新,在嘉兴光伏高新技术产业园区内建设了包括分布式光伏并网技术研究院、光伏装备与智能控制研究院、光伏能源应用技术研究院等四大重点研究院,对光伏并网相关技术进行深入研究。

“我们研究院重点以光伏并网系统设计和区域智能电网研究为主攻方向,承担光伏发电并网、上网技术研发和产业化研究,为大型集中式光伏发电系统、分布式微网系统、小型家用光伏发电系统及光伏发电运行监管、区域智能电网管理、增值服务、通信信息等提供技术支撑。”浙江分布式光伏并网技术研究院院长王越超告诉记者。

光伏装备与智能控制研究院和光伏能源应用技术研究院也分别有研究与并网相关的课题。前者对智能电网接入控制设备、光伏逆变器进行重点攻克;后者则完成了掌控并网运行模式下为微网运行策略的灵活切换技术、开发出了微网监测平台等重点技术。在研究机构的技术支撑下,一个一个并网难题被攻克。

如果光伏系统本身质量不过关,并网后对电网运行安全的危害是难以估量的,这曾经是电网公司顾虑的原因之一。“分布式光伏是新鲜事物,我们对客户自行安装的屋顶光伏系统既不具有监测评估的资格,也不具有评估的能力。”嘉兴供电公司营销部寿江云说。

于是,嘉兴市在建设安装标准上求突破,由政府部门会同相关企业技术人员,从产品选型、屋顶承载、建设布局,到竣工验收、运营维护,制定了一系列技术标准,特别是规范产品的技术参数,鼓励高效电池组件、新型逆变器等新技术的应用,明确光伏方阵场、光伏系统输配电与控制缆线等布局要求。同时,引入北京鉴衡认证中心作为分布式光伏发电项目的第三方检测机构,负责项目验收。

在嘉兴市政府的领导下,嘉兴供电公司密切配合,在并网接入规范上求突破,出台了《嘉兴电网分布式光伏保护配置及整定技术规范(试行)》、《分布式电源接入配点网继电保护配置及整定技术规范(试行)》等5项技术规定,以及《10千伏发电项目接入系统典型设计》、《居民光伏接入系统典型设计和典型方案》。

同时,优化并网服务,由电力部门牵头,构建制度保障、服务保障、电网规划、技术支持、运营监控、电量结算六大体系,出台了《分布式光伏发电并网服务管理办法》、《居民家庭并网服务规定》、《调度运行规定》等分布式光伏发电并网接入制度,建立电力部门“一个口子”对外并网服务和全称负责体系。

在一系列技术规范和制度的保证下,嘉兴供电公司实现了并网申请全部按时限要求受理,符合要求的分布式光伏项目全部按时限并网。

在嘉兴供电公司向政府有关部门呈报的7月25日至8月1日 《光伏发电并网服务周报》中,记者看到:全市已累计受理光伏项目总计200个,总装机容量254.12兆瓦,已并网运行光伏发电项目总计111个,总并网容量158.50兆瓦,并网装机容量占全市受理装机容量的62.37%。周报对因为并网验收不通过或客户自己原因造成的未并网情况也做了详细说明。

电费回收难?合力同应对

电费回收难,难在哪里?难在使用别人的屋顶作为发电场地,一旦遇到屋顶资源所有者拖欠电费,电站运营商作为一个普通企业,并没有好的办法处理,将面临巨大的电费回收风险。

其实,电费回收对像国家电网公司这样的大型央企来说,也是个难题。国家电网公司采取以优质服务感动用户的方法,加上《按照电力法》强制拉电的方式,也不能完全回收到位,对于员工数目不多的中小民营企业来说,更是难上加难。

浙江优太新能源有限公司嘉兴分公司总经理何以平就向记者谈出了他们的无奈:“我们负责电费回收的只有两三个人,分布式光伏的业主非常分散,我们没有人力天天上门催缴;我们也不能像电网公司可以直接拉电,拉了光伏电,业主还是可以用市电,对用户不会有任何影响,但我们的损失就大了。”虽然她所在企业因为刚进入电费回收期,还没有碰到过这样的事,但对别的投资商遭遇拖欠电费的事也有所耳闻,并有所担忧。

作为一家有丰富海外光伏投资经验的公司,浙江优太新能源有限公司习惯用法律武器保护自己。公司作为受电方与屋顶资源所有者之间实现签订购受电协议时,都会明确规定电能计量方式、电量结算期、结算依据、结算方式、结算时间以及争议解决方式。“如果遇到恶意拖欠电费,我们会采取法律手段,除非是破产倒闭企业,相信我们的电费是能够追回来的。”何以平对记者说,当然,公司在选择屋顶业主时也会非常谨慎。

作为园区管委会工作人员的杨建平,对于管委会投资的沙家浜社区的电费回收却一点也不担心。

“我们的电费是从给屋顶所有者的屋顶资源租金中扣除的,租金每年年底时付给居民用户,居民也是先用电,到年底结算电费。通常情况下,电费金额肯定小于租金,这样,付租金时扣除电费就可以了。”杨建平说。

虽然在记者的采访中,并没有感到嘉兴电费回收是个很大的难题,但嘉兴市政府却未雨绸缪,制定政策防止电费回收难的发生。

据介绍,目前嘉兴电费的收取途径有四个:一是由银行负责托收;二是在银行收不到的情况下,由政府委托的第三方运维公司进行电费收取;三是在运维公司收不到电费的情况下,由政府进行协调;四是在政府协调无果的情况下,采取相关法律手段解决。

嘉兴光伏高新技术产业园同时还在探索光伏发电全额上网,由电网公司按照脱硫标杆电价先付给电站运营方的方式。

“电网公司肯定不会拖欠电费,光伏发电计量结算效率会大大提高。”徐凯平说。但他同时表示,这只是他们的初步想法,还需要和有关单位协商。

“不断拓宽融资渠道,创新融资平台,积极探索电费结算交易、电量就近消纳等机制,健全完善扶持政策,进一步提高投资商的积极性。真正使光伏制造企业有效益,光伏发电投资开发企业有盈利、光伏发电投资公司的商业模式创新可持续。”8月4日,嘉兴分布式光伏发电交流会上,肖培生市长的话掷地有声。

最新回答
耍酷的红酒
感动的荷花
2025-12-04 07:13:32

一、项目概括

1.1项目简介及选址

本项目电站选址地位于湖南省湘潭市雨湖区的响塘学校屋顶上,经过去现场实地的了解和勘测后,此学习周围无森林无高大树木,附近也无任何其他房屋,距离其最近的房屋也有数十米的距离,该屋顶无女儿墙无其他建造物,是一个平面的屋顶,其屋长为43米,宽为32米。

本项目将在此学校屋顶上建造一个100kw的并网型光伏电站,实施全额上网措施。选址卫星图如图1-1所示,选址平面图如图1-2所示。

图1-1 选址地卫星图

图1-2 选址平面图

1.2 项目位置及气象情况

经过百度地图的计算,得出了此地经纬度为:北纬27.96,东经为112.83,是属于亚热带温湿气候区,典型的冬冷夏热气温,年降雨量充足达1450毫米,最高气温为夏季的41.8度,最低气温为冬季的-12.1度,年均气温17度。该项目所在地最高海拔为793米,最低海拔达30.7米,总的平均海拔为48.2米。该地年总辐射量经过PVsyst软件的计算后,得出了1116.6的值,不是特别高,属于第三类资源区,但建设一个电站也不是特别亏。湘潭市地理位置图如图1-3所示。

图1-3湘潭市地理位置

图1-4年均总辐射值

1.3项目设计依据

本项目设计依据如下:

《光伏发电站设计规范》GB50794-2012

《电力工程电缆设计规范》GB50217-1994

《光伏系统并网技术要求》GB/T19939-2005

《建筑太阳能光伏系统设计与安装》10J908-5

《光伏发电站接入电力系统技术规范》GB/T19964-2012

《光伏发电站接入电力系统设计规范》GB/T5086-2013

《光伏(PV)系统电网接口特性》GB/T20046-2006

《电能质量公用电网谐波》GB/T14549-19933

《电能质量三相电压允许不平衡度》GB/T15543-1995

《晶体硅光伏方阵I-V特性的现场测量》GB/T18210-2000

二、电站系统设计

2.1组件选型

组件是电站中造价最高的设备,投资一个电站几乎一半的钱是砸这组件上去了,为此我们选择的组件一定要是最适合本电站的,不管是组件效率还是组件的其他参数在同功率组件下都应该保持最佳,这样才不会亏本。

组件的类型有很多,以不同的材料来说,组件又分为了晶硅组件、薄膜组件,在电站中使用最多的便是晶硅型组件,而晶硅型组件又分为单晶硅和多晶硅,它们都是市场上十分热门的组价。

单晶硅的效率比多晶硅高了很多,其使用寿命时间也长了不少,但价格方面却比多晶硅高了很多,但考虑到平价上网的时代,单晶硅的价格远远不如过去那样昂贵,所以本电站选取的组件为单晶型组件。

表2-1伏组件对比表

组件品牌及型号

晶科

Swan Bifacial 400 72H

晶科

Swan Bifacial 405 72H

晶澳

JAM72S10 400MR

最大功率(Pmax)

400Wp

405Wp

400Wp

最佳工作电压(Vmp)

41V

41.2V

41.33V

组件转换效率(%)

19.54%

19.78%

19.9%

最佳工作电流(Imp)

9.76A

9.83A

9.68A

开路电压(Voc)

48.8V

49V

49.58V

短路电流(Isc)

10.24A

10.3A

10.33A

工作温度范围(℃)

-40℃~+85℃

-40℃~+85℃

-40℃~+85℃

最大系统电压

1000/1500V DC(IEC/UL)

1000/1500VDC(IEC/UL)

1000/1500VDC (IEC)

最大额定熔丝电流

20A

20A

20A

输出功率公差

0~+5W

0~+5W

0~+3%

最大功率(Pmax)的温度系数

-0.350%/℃

-0.35%/℃

-0.35%/℃

开路电压(Voc)的温度系数

-0.290%/℃

-0.29%/℃

-0.272%/℃

短路电流(Isc)的温度系数

0.048%/℃

0.048%/℃

0.044%/℃

名义电池工作温度(NOCT)

45±2℃

45±2℃

45±2℃

组件尺寸:长*宽*厚(mm)

2031*1008*30mm

2031*1008*30mm

2015*996*40mm

电池片数

72

72

72

第一款组件晶科Swan Bifacial 400 72H和第二款组件晶科Swan Bifacial 405 72H的型号牌子都一样,除功率和其效率有点差距之外,其他的参数基本一样,但其第二款组件晶科Swan Bifacial 405 72H组件的效率高,相同尺寸不同效率下,选择第二款组件更好。

第三款组件晶澳JAM72S10 400MR是3款组件里效率最高的组件,比第一款和第二款分别高了0.37%和0.12%,并且尺寸和部分温度系数也是3款里面最小的,开路电压和工作电压以及短路电流等参数也是3款组件中最高的,从数据上来看,第三款组件晶澳JAM72S10 400MR是3款里最棒的组件。

综合上面的分析,本项目最终选择第3款组件晶澳JAM72S10 400MR作为本项目的组件使用型号。组件图如图2-1所示。

图2-1 组件图

2.2最佳倾斜角和方位角设计

本电站建造在平面屋顶上,该屋顶无任何的倾角,由于组件是依靠着太阳光发电,但每时每刻太阳都是在运动着,为此便会与组件形成一个角度,该角度影响着组件的发电量,对于采取固定支架安装方式的电站来说,选择一个最合适的角度能够让电站发电量达到最高,因此最佳倾角这个概念便被引出了。

对于本电站而言,根据其PVsyst软件的计算后,得出了湘潭最佳倾角为18度时,方位为0度时,电站一年下来的发电量能够达到最高。PVsyst最佳方位角、倾斜角模拟图如图2-2所示。

图2-2 PVsyst最佳方位角、倾斜角模拟图

2.3组件排布方式

本项目选址地屋顶长43米,宽为29米,采取横向排布方式无法摆下其电站中的整个阵列,因此本项目组件方式采取竖向排布,中间间距20mm。如图2-3所示。

图2-3 组件排列方式

2.4组件间距设计

太阳照射到一个物体上时,由于该物体遮住了光,使得光不能直射到地上时,该物体便会产生一个阴影投射到地上,而电站中的组件也类似于此,前一个组件因光产生的阴影投射到另一个组件上时,被照射的组件便会受到影响,进而影响整个电站,这对于电站来说是一个严重的问题,因此在设计其组件之间的间距时,一定要保证阴影的距离不会触及组件。

图2-4间距图

在公式2-1中:

L是阵列倾斜面长度(4050mm)

D是阵列之间间距

β是阵列倾斜角(18°)

为当地纬度(27.96°)

把以上数值代入公式后计算得:

2-5组件计算图

根据结果,当电站中的子方阵间距大于2119mm时,子方阵与子方阵便不会受到影响。

图2-6方阵间距图

2.5逆变器选型

逆变器是电站中其转换电流的设备,十分的重要,而逆变器的种类比较多,对于本项目电站来说,选择组串式逆变器最佳,因此本项目选择了3款市场上热卖的组串式逆变器。

表2-2 逆变器参数对比表

逆变器品牌及型号

华为

SUN2000-100KTL-C1

华为

SUN2000-110KTL-C1

固德威

HT 100K

最大输入功率

100Kw

110Kw

150Kw

中国效率

98.1%

98.1%

98.1%

最大直流输入电压(V)

1100V

1100V

1100V

各MPPT最大输入电流(A)

26A

26A

28.5A

MPPT电压范围(V)

200 V ~ 1000 V

200 V ~ 1000 V

200V ~ 1000V

额定输入电压(V)

600V

600V

600V

MPPT数量/输入路数

10/20

10/20

10/2

额定输出功率(KW)

100K W

110K W

100K W

最大视在功率

110000 VA

121000 VA

110000 VA

最大有功功率 (cosφ=1)

110KW

121K W

110KW

额定输出电压

3 × 220 V/380 V, 3 × 230 V/400 V, 3W+N+PE

3 × 220 V/380 V, 3 × 230 V/400 V, 3W+N+PE

380, 3L/N/PE 或 3L/PE

输出电压频率

50 Hz,60Hz

50 Hz,60Hz

50 Hz

最大输出电流(A)

168.8A

185.7 A

167A

功率因数

0.8 超前—0.8 滞后

0.8超前—0.8滞后

0.99 (0.8超前—0.8滞后)

最大总谐波失真

<3%

<3%

<3%

输入直流开关

支持

支持

支持

防孤岛保护

支持

支持

支持

输出过流保护

支持

支持

支持

输入反接保护

支持

支持

支持

组串故障检测

支持

支持

支持

直流浪涌保护

Type II

Class II

具备

交流浪涌保护

Type II

Class II

具备

绝缘阻抗检测

支持

支持

支持

残余电流监测

支持

支持

支持

尺寸(宽 x 高 x 厚)

1,035 x 700 x 365 mm

1,035 x 700 x 365 mm

1005*676*340

重量(kg)

85kg

85kg

93.5kg

工作温度(°C)

-25°C~60°C

-25°C~60°C

-25~60℃

3款逆变器的功率均在100kw以上,其效率也都是一模一样,均只有98.1%,其额定输出电压也都为600V,对于本电站来说,这3款逆变器都能使用,但可惜本电站只会从中选择一个最合适的品牌。

第一款逆变器华为SUN2000-100KTL-C1和第二款逆变器华为SUN2000-110KTL-C1是同种类同型号,但不同功率的逆变器,这两款逆变器大部分数据都一模一样,但第二款逆变器功率比第一款逆变器功率高了10k,比本电站的容量也高了10k,并且价格了略微高了那么点,选用第一款逆变器不仅省钱而且还不会造成功率闲置无处使用,最大发挥逆变器的作用,因此第1款比第2款逆变器好。

第三款逆变器是固德威HT 100K,它的最大输入功率高达150kw,明明是一个100kw的逆变器,但其输入功率却不同我们往常见的逆变器一样,它居然还高了50k,如果选用这款逆变器,那么阵列输入的功率超过100都能承受。虽然最大输入功率很恐怖,但其他参数正常,对比第一款逆变器,仅只是部分参数略微差了点,总体是几乎没什么太大的差别。

本项目根据上述的分析和对其逆变器的需求,最终选择了固德威HT 100K型逆变器为本电站逆变器。

2.6光伏阵列布置设计

2.6.1串并联设计

图2-7串并联计算

公式2-3、2-4中:

Kv——光伏组件的开路电压温度系数-0.00272

K——光伏组件的工作电压系数-0.0035

t/——光伏组件工作环境极限高温(℃)60

Vpm——光伏组件的工作电压(V)41.33

VMPPTmax——逆变器MPPT电压最大值(V)1000

VMPPTmin——逆变器MPPT电压最小值(V)200

Voc——光伏组件开路电压(V)49.58

N——光伏组件串联数(取整)

t——光伏组件工作环境极端低温(℃)-12.7

——逆变器允许的最大直流输入电压(V)1100

把以上数值代入公式中计算可得:

5.5≤N≤21

经计算,本电站最终选取20块组件为一阵列。如图2-6组件串并联设计图。

图2-8组件串并联设计图

2.6.2项目方阵排布

据2.6.1的结果,每一个阵列共有20块组件,单块组件的功率是400w,一个阵列便是8kw,而本电站的总容量为100kw,总计是需要13个阵列。本电站建设地屋顶长43米,宽为32米,可以完整的摆放电站中的所有子方阵。如图2-9所示。

图2-9项目方阵排布图

2.7基础与支架设计

2.7.1水泥墩设计

本电站所建地点是公办学校,属于公共建筑,如果使用其打孔安装方式,便有可能使得其屋顶因时间长久而漏水,一旦漏水便需要进行维修,这也是得花费一些金钱,又因是学校,开工去维修可能将使部分学生要做停课处理,因此为了避免这个麻烦,本电站还是选择最常见的水泥墩来做基础设计。

考虑到学校有许多的学生,突然出现了事故,作为电站建设者肯定会有责任,因此为了避免组件出现任何事故,特地将水泥墩设计为一个正方形,其长宽高都为500mm,这样的重量大大降低了事故的发生率。如图2-10水泥墩设计图和2-11电站整体水泥墩设计所示。

图2-10水泥墩设计

图2-11电站整体水泥墩设计图

2.7.2支架设计

都已经把基础设计水泥墩做好了,那么接下来则是考虑水泥墩上的支撑设备支架,对于支架的设计最重要的一点就是在选材上,一般电站中的支架会持续使用到电站报废为止,使用时间长达二十多年三十多年甚至更久,对此支架的选型便是十分的重要,其使用寿命必须得长,抗腐蚀能力强。如图2-12支架设计图所示。

图2-12支架设计图

2.8配电箱选型

配电箱在光伏电站里又分为直流配电箱和交流配电箱,对于本电站来说,是选择其交流配电箱。配电箱的容量是根据其逆变器的容量选择,必定不能小于其逆变器的容量,否则可能会出现配电箱过压的情况,然后给电站造成事故危险。

配电箱具备配电、汇电、护电等多种功能,是本电站必须要又的设备,经过配电箱型号的对比,本电站最终选择了昌松100kw光伏交流逆变器。

表2-3配电箱参数

项目名称

昌松100kw光伏交流配电箱

项目型号

100kw交流配电箱

额定功率

100KW

额定电流

780A

额定频率

50Hz

海拔高度

2500m

环境温度

-25~55℃

环境湿度

2%~95%,无凝霜

2.9电缆选配

电站分为两类电,一类是直流电,必须使用直流电缆运输;一类是交流电,必须使用交流电缆运输,切记不可以乱搭配使用,否则将会造成电缆出线问题,电站设备出现问题。

直流电缆选型一般都是选择PV1-F-1*4mm²光伏专用直流电缆

交流电缆:

P:逆变器功率100KW

U:交流电电压380V

COSΦ:功率因数0.8

=

=190A

=0.035Ω

=976W

线损率:976/100000=0.9%<2%,符合光伏电缆设计要求。

据其计算结果和下图电缆参数表,本电站最终选择ZRC-YJV22 7Omm2交流电缆。如图2-13电缆参数图所示。

图2-13 电缆参数图

2.10防雷接地设计

防雷接地是绝大多数光伏电站都必须要做的,目的就是防止雷击破幻电站,损坏人民的生命以及财产,特别是对于本电站而言,建设点是在学校,而学校不仅人多而且易燃物也多,一旦雷击劈到电站上,给电站造成了任何事故,都有可能把整个学校给毁了,为此本电站一定需要做好防雷接地设计。

本电站防雷方式采取常用的避雷针进行避雷,接地则是为电站中各个设备接地端做好接地连接。

图2-14防雷接地设计图

2.11电气系统设计及图纸

本电站装机总容量为100kw,由260块光伏组件组成,形成了13个阵列,每个阵列20块组件,然后连接至逆变器,逆变器变电后接入配电箱,最后再连接国家电网。

图2-15电气系统设计图

三、电站成本与收益

3.1电站项目设备清单

根据当地市场的物价,预估出了一个本电站预计投资表。

表3-1设备清单表

序号

设备

型号

单位

数量

单价

(元)

价格

(万元)

1

组件

晶澳JAM72S10 400MR

260

1.77

18.4

2

逆变器

固德威HT 100K

1

3.3w

3.3

3

直流电缆

PV1-F-1*4mm²

1500

5.2

0.78

4

交流电缆

ZRC-YJV22 70mm2

100

72

0.72

5

支架

39

556

2.17

6

水泥墩

500*500*500mm

78

250

1.95

7

配电箱

昌松100kw光伏交流配电箱

1

1.3w

1.3

8

运输费

18

1000

1.8

9

其他

4.15

10

人工费

7

合计:41.57万元

3.2电站年发电量计算

本电站总容量为100kw,而电站选址地的年总辐射量为1116.6,首先发电量便达到了89328度电。

(式3-1)

Q=100*1116.6*0.8=89328度

Q——电站首年发电量

W——本项目电站总容量(85KW)

T——许昌市年日照小时数(1258.2H)

——系统综合效率(0.8)

任何设备一旦使用,便就开始慢慢磨损了,其效率也是一年比一年差,即便是光伏组件也不例外。组件首年使用一年后,为了适应其环境,自身的效率瞬间就降低2.5%,而后的每年则是降低0.7%,将至80%左右时,光伏组件也是已经运行了25年。

表3-2电站发电量

发电年数

功率衰减

年末功率

年发电量(kWh)

累计发电量(kWh)

第1年

2.5%

97.50%

89328.000

89328.000

第2年

0.7%

96.80%

87094.800

176422.800

第3年

0.7%

96.10%

86469.504

262892.304

第4年

0.7%

95.40%

85844.208

348736.512

第5年

0.7%

94.70%

85218.912

433955.424

第6年

0.7%

94.00%

84593.616

518549.040

第7年

0.7%

93.30%

83968.320

602517.360

第8年

0.7%

92.60%

83343.024

685860.384

第9年

0.7%

91.90%

82717.728

768578.112

第10年

0.7%

91.20%

82092.432

850670.544

第11年

0.7%

90.50%

81467.136

932137.680

第12年

0.7%

89.80%

80841.840

1012979.520

第13年

0.7%

89.10%

80216.544

1093196.064

第14年

0.7%

88.40%

79591.248

1172787.312

第15年

0.7%

87.70%

78965.952

1251753.264

第16年

0.7%

87.00%

78340.656

1330093.920

第17年

0.7%

86.30%

77715.360

1407809.280

第18年

0.7%

85.60%

77090.064

1484899.344

第19年

0.7%

84.90%

76464.768

1561364.112

第20年

0.7%

84.20%

75839.472

1637203.584

第21年

0.7%

83.50%

75214.176

1712417.760

第22年

0.7%

82.80%

74588.880

1787006.640

第23年

0.7%

82.10%

73963.584

1860970.224

第24年

0.7%

81.40%

73338.288

1934308.512

第25年

0.7%

80.70%

72712.992

2007021.504

3.3电站预估收益计算

根据湖南省的标准电价,我们电站发的每度电能够有0.45元收入,持续运行25年后,将会获得2007021.504*0.45=903159元,也就是90多万,减去我们为电站投资的41.57万,我们25年内能够获得大约50万的纯利润收入

参考文献

[1]王思钦.分布式光伏发电系统电能计量方案[J].农村电工,2019,27(09):37.

[2]谷欣龙.光伏发电与并网技术分析[J].科技资讯,2019,17(24):31+33.

[3]黄超辉,陈勇,任守宏.基于应用的光伏电站电缆优化设计[J].电子工业专用设备,2019,48(03):67-71.

[4]余茂全,张磊.基于PVSYST的光伏发电系统仿真研究[J].安徽水利水电职业技术学院学报,2019,19(02):35-39.

[5]谭阳.家用太阳能分布式光伏并网发电系统研究[J].电子制作,2019(09):94-95+91.

[6]石培进.发展分布式光伏电站的可行性分析[J].山东工业技术,2019(12):183.

[7]蒋飞. 光伏发电项目的投资决策方法研究[D].华东理工大学,2013.

[8]陈坤. 光伏发电系统MPPT控制算法研究[D].重庆大学,2013.

[9]徐瑞东. 光伏发电系统运行理论与关键技术研究[D].中国矿业大学,2012.

[10]任苗苗. 光伏发电三相并网逆变器的研究[D].兰州交通大学,2012.

文艺的往事
直率的外套
2025-12-04 07:13:32

地面太阳能光伏发电系统是通过太阳光直接照在太阳能电池板上产生电能,并对蓄电池充电,可为直流节能灯,收录机,电视机,DVD,卫星电视接收机等产品供电,本品具有过充,过放,短路,温度补偿,蓄电池反接等保护功能,可输出12V直流电和220V交流电。分体式设计,体积小巧,携带方便,使用安全。

太阳能发电机由以下三部分组成:太阳电池组件;充、放电控制器、逆变器、测试仪表和计算机监控等电力电子设备和蓄电池或其它蓄能和辅助发电设备。

作为关键部件的太阳电池使用寿命长,晶体硅太阳电池寿命可达到25年以上。

光伏系统应用非常广泛,光伏系统应用的基本形式可分为两大类:独立发电系统和并网发电系统。应用主要领域主要在太空航空器、通信系统、微波中继站、电视差转台、光伏水泵和无电缺电地区户用供电。随着技术发展和世界经济可持续发展的需要,发达国家已经开始有计划地推广城市光伏并网发电,主要是建设户用屋顶光伏发电系统和MW级集中型大型并网发电系统等,同时在交通工具和城市照明等方面大力推广太阳能光伏系统的应用太阳能发电有很多形式,大体可以分为两类,一种是半导体发电,一种是太阳能热发电。 半导体发电是利用半导体界面的光生伏特效应而将光能直接转变为电能的一种技术。这种技术的关键元件是太阳能电池。太阳能电池经过串联后进行封装保护可形成大面积的太阳电池组件,再配合上功率控制器等部件就形成了光伏发电装置。单晶硅、多晶硅、薄膜发电均是这种技术。也较光伏发电,现在光伏发电的效率一般在20%左右,发电的成本在1.5-3元/kwh,价格还是比较贵。不过听说一些厂家大规模的太阳能电站可以做到0.7元左右,不知道是不是真的。还有一种是是太阳能热发电技术,现在一般的太阳能技术最高也就做到150-200°,再高的话太阳能的效率就很低了,这个温度还不能达到发电的水平,都在研究阶段,还有应用实例。

糊涂的导师
威武的裙子
2025-12-04 07:13:32

分布式光伏与大型地面光伏电站在以下几个方面区别:

分布式光伏豁免发电业务许可。

用电不稳定,电费收取难,受建筑业主生产状况的制约,光伏电站依附于建筑业主的情况,尤其是电网的专变用户一旦业主停产或者公司倒闭,则光伏电站将无法发电。

工业厂房污染大,污染物附着在组件上,降低发电量,同时增加清洗成本。

厂房彩钢瓦屋顶使用寿命小于电站寿命。

分布式屋顶光伏电站与电网存在利益冲突,自发自用部分消减了电网的售电量。

分布式屋顶光伏电站因屋顶所有权不属于项目业主,不能做抵押,融资较难。

分布式光伏发电特指在用户场地附近建设,运行方式以用户侧自发自用、多余电量上网,且在配电系统平衡调节为特征的光伏发电设施。

光伏电站,是指一种利用太阳光能、采用特殊材料诸如晶硅版、逆变器等电子元件组成的发电体系,与电网相连并向电网输送电力的光伏发电系统。光伏电站是目前属于国家鼓励力度最大的绿色电力开发能源项目。可以分为带蓄电池的和不带蓄电池的并网发电系统。太阳能发电分为光热发电和光伏发电。现时期进入商业化的太阳能电能,指的就是太阳能光伏发电。

目前应用最为广泛的分布式光伏发电系统,是建在城市建筑物屋顶的光伏发电项目。该类项目必须接入公共电网,与公共电网一起为附近的用户供电。

高挑的雨
悲凉的歌曲
2025-12-04 07:13:32
一般而言,电站收益来自企业电费、上网电费和度电补贴收入,但风险则贯穿于整个电站项目建设及运营期间,所以在项目实施前必须做好项目投资评估工作。

一、直接影响电站收益的因素

电站收益=企业电费+上网电费+度电补贴收入

其中,企业电费=发电量×自发自用比例×企业电价

上网电费=发电量×余电上网比例×上网电价

度电补贴收入=发电量×度电补贴

由上述公式,电站发电量及电价水平(度电补贴为全国统一,企业电价及上网电价则因地域不同而差别,此处均称电价水平)和自发自用比例是影响电站收益最重要的三个因素。

1、电站发电量

电站发电量与太阳辐照量、光伏组件转换效率以及光伏组件年发电衰减率相关。辐照量是评判某个地区是否适合投资光伏电站的重要自然因素,我国一类资源区太阳能资源丰富,同等条件下电站发电量远高于三类资源区。另外,组件的转换效率也是影响电站发电量的重要因素,单晶硅组件转换效率高于多晶硅组件转换效率,但单晶硅组件成本较高,目前分布式光伏发电市场仍以多晶硅组件为主。

一般而言,在电价水平及电站自发自用比例相同的情况下,单位发电量越高,电站收益越大。

2、电价水平

目前大多省市的一般工业及大工业用电执行峰平谷电价以及峰平谷发电时段比例,而上网电价则按当地燃煤机组标杆上网电价计算。在单位发电量及电站自发自用比例相同的情况下,电价越高,电站收益越大。

3、自发自用比例

自发自用比例与企业年用电量、年发电量、每天工作时间、年假期天数、休息时厂房设备是否负荷等因素相关,自发自用比例越高(即企业使用光伏电力的用电量越高),电站收益越高。

一般而言,发电量水平及电价水平是确定项目开发区域的重要因素,而当地政府的支持力度及经济发展水平也是很重要的参考指标。在确定了项目开发区域后,关于某个单体项目是否值得投资,则着重需评估该项目预计的自发自用比例并基于发电情况和电价情况计算该项目的内部收益率。

二、风险控制流程

在评估某个单体项目时,对其每一个阶段和过程都需要进行严格的控制,特别是签订合同能源管理节能服务协议之前的项目前期评估,主要是从技术、财务及法律角度评估项目的可行性。同时项目实施及运营阶段的控制也很重要,它直接关系整个项目的实际盈利能力。归纳而言,单体项目需进行以下阶段的评估和控制:

(一)前期评估

1、初步开发:针对单体项目需根据企业的行业条件、屋顶条件、企业用电情况、企业经营状况、信用度、房屋及土地产权等情况来初步评估该项目是否具有继续开发的必要。

2、技术评估:从屋顶结构及承载、电气结构及负荷等技术方面判断项目的可实施性,同时评估计算该单体项目的装机容量、单位发电量及自发自用比例等基础数据,从而形成初步技术方案,并为财务评估提供依据。

3、财务评估:通过对项目进行初步投资效益分析,考察项目的盈利、清偿能力等财务状况,判断该项目是否具有投资价值。一般要求项目内部收益率不低于9%。财务评估的主要经济指标如下:

(1)装机容量:电站装机容量首先是由屋顶可用面积和变压器容量决定的,但因电站自发自用比例越大收益越高,因此企业用电情况对装机容量的多少也有限制。在保证基本收益的情况下,电站装机容量应结合屋顶可用面积、变压器容量和企业用电情况来综合确定。一般需技术部门进行初步设计和组件排布,同时充分考虑建筑物阴影遮挡等问题,综合评估项目预计安装容量。

(2)首年发电量:电站每年的发电量是以一定比例逐年衰减的,必须测量出首年发电量才能计算每年的发电情况。影响发电量的因素除了太阳辐照量和组件转换效率以外,屋顶类型、电站朝向、电站关闭时间等也会对电站发电量产生影响。光伏电站是将光能转化为电能,电站接收的光照越多,则发电效率越高,因此电站朝向、倾角等设计的科学性非常重要。就屋顶类型而言,水泥屋面电站可按最佳角度安装,其发电量稍高于彩钢瓦屋面电站。

(3)自发自用比例:其重要性上文已叙述。

(4)用电电价及电价折扣:用电类型不同其电价也不同。大工业用电,其屋顶条件好,但有时段电价,因此平均电价较低;而一般工业用电、商业用电屋顶面积小,但无时段电价,因此电价相对较高。

(5)单位建设成本:除电站主要设备和工程费用外,不同企业的个体需求也会增加电站的建设成本,并最终影响收益率。尤其是分布式屋顶电站,受限于建筑物屋顶情况,对建筑物的结构、承重等具有一定要求,部分不达标的屋顶需通过刷漆、换瓦等方式进行改进,但同时也会相应增加电站建设成本。因此每个单体项目,需技术部门和商务部门等综合评定该项目的单位建设成本。

4、合同谈判及审查

(1)合同能源管理节能服务协议,即EMC合同

EMC合同是光伏电站投资建设最重要的一份合同,是电站投资建设的合法性依据,其合同双方是投资者和用电人。签订EMC合同的目的是为投资者建设光伏电站并售电给企业使用,围绕这一目的延伸出合同双方的权利义务及风险分配。合同谈判即就双方的权利义务及风险承担进行协商洽谈。合同谈判中企业的几个重要关注点分别是,合同期间、电价折扣、屋顶维修责任、电能质量问题、电站搬迁事项及其他违约责任,如企业破产等企业无法继续履行合同的情况,等。审查合同亦主要是对其合法性和合理性进行分析判断并进行调整,尤其是上述几个关注点。

5、项目评审

上述评估和判断是各部门独立进行的,在EMC合同签订前需进行一次系统的项目评审会,要求合同主办部门、技术部门、财务部门及项目管理部门等相关部门均参与评审。

合同评审会的目的即在于了解该单体项目在技术、工程施工及后期运营上的可行性、该项目的投资回报、法律风险控制的合法合理性等。同时,与其他关联部门进行对接,对该EMC合同的权利义务进行评述,有特殊要求的需进行协调,以便更明确的履行合同义务、实现合同权利,这也是合同评审会的一个重要目的。例如,因光伏电站项目是交由第三方进行施工的,在EMC合同中可能对于施工有特殊的要求,若EPC合同主办部门对该特殊要求不知情,在EPC合同中未对对该要求进行处理,则会存在因投资方违反EMC合同而被相对方追究责任的风险。

(二)项目实施及建设

光伏电站项目主要通过招投标确定组件供应商及EPC方(即项目施工方),其中组件采购费用和工程建设费用约各占电站总投资的一半,因此组件采购合同和工程建设合同的履行状况十分重要。

(1)组件采购合同:组件交付义务一般在项目开工后,组件质量问题是最值得关注的履行事项。首先,组件质量标准及责任承担需明确;其次,产品监造、出厂试验、验货及验收测试等都要严格按标准及规定执行。

(2)建设工程合同,即EPC合同:建设工程合同的基本权利义务请参照合同法的相关规定,此处不予赘述。在光伏电站项目施工过程中常会出现的问题是,施工方不按规定操作、随意踩踏组件。为减少不必要的诉累,在施工过程中应加强监管,并在合同中约定EPC方的严格责任。

在光伏电站竣工前,组件损坏的原因可能是多方的,但该责任具体如何承担则较难处理,如果事后通过谈判和诉讼解决,会严重延误工期导致损失。因此,关于组件质量问题的风险承担,投资方可与EPC方和组件供应商共同协商确定一个时间节点作为风险转移时间点。一般买卖合同标的物损毁等风险在交付时转移,质量问题除外。在此可约定(仅供讨论),在组件交付前所有风险由组件供应商承担,交付后由EPC方承担,在发生风险事项后EPC方无论原因必须先行赔付或以其他损失最小化方式承担责任,如事后经鉴定全部或部分属于组件供应商原因导致的,EPC方可再向供应商追偿。

(三)项目运营维护

项目的运营维护工作是否做好,直接影响电站的使用寿命和收益情况。评估运营维护工作,主要需防止第三人破坏发电设备,同时出现故障后要及时修复。

光伏电站是安装在用电人屋顶上的,在用电人控制范围内,通常电站设备被破坏或故障,用电人能比投资人更快发现并及时反馈给投资人。所以在运营维护过程中需要注意与用电人稳定友好的合作关系也是电站长期稳定运营的重要保障。

三、常见投资风险

在上文我们已经对整个项目的进行了详细的分析和评估,包括技术评估、财务评估及法律评审等,但这些都是在理想状态下对电站的常态事项进行的评估。光伏电站的运营期限长达20多年,在此期间有许多可控与不可控的风险,需要投资者进行全面评估,并找出风险应对措施,最大限度降低电站投资风险。以下将对电站投资的最重要几个风险点进行分析。

(一)风险因素

1、房屋产权人与用电人不同

在实操中,经常会出现用电人与产权人不一致的情况,EMC合同不能对抗产权人的所有权,因此必须经产权人同意投资人合法使用厂房屋顶并出具建设场地权属证明,从而排除投资人侵犯第三人权益的风险。具体分析请参见本人另一论题《分布式光伏发电项目中用电人与产权人不一致的情形与处理方法》。

2、设备质量问题

光伏组件是光伏发电站最重要的设备,一般是独自招投标。而组件较易发生隐裂、闪电纹等问题,但可能造成上述问题的原因很多,因此设备尤其是组件的质量问题非常值得关注。组件质量问题的风险主要在交付后。对投资者而言,虽风险不转移,但交付后发现质量问题仍会对投资者产生不利影响,因此,在组件采购合同中要严格规定保质期、质量问题的范围以及发生质量问题后的救济方式,以便于事后维护自身权益。

3、工程质量问题

在光伏电站建设施工过程中,极易因操作不当导致设备损坏等问题,如卸货、安装、保管等过程都可能因操作不当导致组件损坏,除需加强监管外,在EPC合同中也要严格规定施工方的责任。

有一种较为常见但重要的情况,组件损坏可能由质量问题和操作不当共同引致,在这种情况下,难以区分双方各自责任大小,不利于投资者权益保护,那么事先约定双方的权责就十分必要了(详见上文建设工程合同第二段)。(组件损坏可能由质量问题和操作不当共同引致,属于侵权责任法规定的共同侵权行为,虽然可以通过法律途径救济,但本文主要讨论电站投资评估事项,旨在通过项目评估在项目实施前最大限度降低各种风险和成本,因此此处不予赘述。)

4、电站建设期延长

在光伏电站投资建设中,电站建设期的长短关系投资到资本化问题和投资回收期问题,电站建设期越短,就能越早获得电站收益和资本回报。但实际施工建设中,经常会出现工期过长的问题。究其原因,一是项目施工计划和施工进度没有控制好,出现设备供应与施工建设脱节的严重问题;二是个别项目就维修屋顶未能与屋顶权属人达成一致,极大影响项目正常施工进度。因此,在项目开工前,首先需做好项目技术勘察,就维修事项提前与屋顶权属人达成一致意见,其次必须制定详细的施工计划并严格按照计划实施。

5、企业拖欠电费

分布式光伏发电项目收取电费首先需确定电表计量装置起始时间和起始读数,但因计取电费直接关系EMC合同双方利益,在实操中,投资者较难就计取电费的起始时间和起始读数与用电人达成一致。因光伏电站需并网,有供电部门介入,此时可借助其公信力,在EMC合同中约定以供电部门计量的起始时间和起始读数为参照。

另外,在电站进入稳定运营期间后,用电人也可能因经营状况恶化或与投资者产生冲突等原因而拒交或拖欠电费。因此,在项目实施前必须充分了解该用电人的财务状况和信用度,综合评估其拖欠电费的可能性,同时在EMC合同中也要明确约定拖欠电费的违约责任。

6、电站设施被破坏

电站设施被破坏的原因很多(此处主要讨论在项目运营阶段的电站设施被破坏,至于项目建设阶段的破坏在前文设备质量问题和工程质量问题处已进行讨论),如不可抗力、意外事故、人为破坏等,其损失可大可小,小则需维修发电设备,大则电站损毁。一般遭受上述不可抗力、意外事故等非人力控制因素破坏的,电站所依附的屋顶也会遭受致命损害,通常这种情况的发生并非用电人过错,且用电人自身也遭受极大损失,此时要求用电人承担责任也不实际,因此购买电站财产保险十分重要。而在人为破坏的情况下,则可根据过错责任要求破坏者承担相应责任,而用电人也需尽到通知和减少损失的义务。

7、用电低于预期

自发自用比例低也即用电低于预期。投资者在项目实施前需了解用电人的行业发展前景及用电人自身经营状况,如能在EMC合同中约定最低用电量则能有效避免这一风险给投资者带来损失。但通常情况下,在EMC合同中投资者仍是处于劣势低位,用电人一般不会接受最低用电量。所以投资者必须在项目实施前精确评估单体项目的自发自用比例,将该风险控制在可控范围内。

8、发电低于预期

新建筑物遮挡阳光、系统转换效率降低、组件损坏以及太阳辐照降低等均会导致电站发电量低于预期值。首先,购买发电量保险;其次,对于系统效率可在组件采购合同中作出约定,由供应商对系统效率作出保证;第三需要到工业园区等机构了解园区发展规划,预判合同期内项目场地周边的开发情况,并由技术部门判断其对电站发电情况的影响程度,从而更精确地计算每年发电量和电站收益。

9、建筑物产权变更

屋顶业主破产、建筑物转让以及国家征收征用等都可能导致建筑物产权发生变更。首先投资者需了解用电人经营状况,评估其合同期内破产、转让建筑物等的风险,并通过当地政府等途径了解合同期内有无征地规划等情况;其次,要求用电人在建筑物产权变更情况下要先与新产权人达成协议,由新产权人替代用电人继续履行合同,即债权债务的概括转移。

10、建筑物搬迁

用电人生产发展等需要以及国家征收征用等均可能出现建筑物搬迁的需要,因此投资者需了解用电单位的发展规划,评估合同期内其搬迁的可能性,并在EMC合同中约定发生建筑物搬迁事宜的,光伏电站随建筑物搬迁或由用电人提供同等条件的新建筑屋顶给投资者。

(二)解决措施

从对上述风险因素的诱因及其解决方法的分析来看,防控上述风险主要有三个步骤。一是全面综合了解各风险的成因,将其量化为风险成本,并反映在财务评估模型中,综合各方面因素评估单体项目的投资收益情况。二是在相应的合同中约定出现各风险后的救济方式。三是在项目实施过程中积极预防上述风险的出现。其中前两个步骤在项目实施前必须完成,如此可将上述风险控制在投资者可接受的范围内,并提高投资者的投资信心。

四、结语

近年来,分布式光伏发电站投资越来越得到国家和当地政府的支持,加上江苏、山东、浙江等光伏大省良好的示范效应,越来越多资金进入分布式光伏发电投资市场,譬如恒大强势进军光伏行业,也再次印证光伏发电行业的巨大潜力。但光伏发电行业在国内仍属于新兴行业,各方都处于探索阶段,未来还充满许多不确定因素。为了实现电站利益最大化,电站的投资评估必须严而待之。

自觉的河马
妩媚的灰狼
2025-12-04 07:13:32

新能源是指传统能源之外的各种能源形式。我整理了浅谈新能源技术论文,欢迎阅读!

浅谈新能源技术论文篇一

论新能源发电技术

摘要:本文从全球能源的现状,介绍了中国能源发电技术的应用情况,发现中国新能源发电对现代化建设具有重要战略意义。进一步介绍了风力发电系统和燃料电池发电系统两种新能源发电技术。风力发电是当今非水可再生能源发电中技术最成熟、最具有大规模开发条件和商业化前景的发电方式,也是近期发展的重点。燃料电池是一种将化学能直接转换成电能的装置,它能量转化效率高,几乎不排放氮的氧化物和硫的氧化物。

关键词:新能源风能燃料电池发电技术

中图分类号: F206 文献标识码: A

能源紧缺已成为制约各国经济发展的瓶颈,如何开发先进安全的新能源使用技术、如何提高能源利用率也随之成为世界各国关心的课题。欧盟就首先提出了20-20-20计划:到2020 年,可再生能源占欧盟总能源消耗的20%。2007年12月,美国前总统布什也签署了《能源独立和安全法案》(EISA),从而大力推动新能源的使用和节能计划。另外,从环境的角度来看,为了保护人们赖以生存的地球,开发新能源也是必由之路。

一、我国能源和发电技术的现状

2011年,我国新能源发电继续保持快速发展态势,并网装机容量持续增长,发电量不断增加。截至2011年底,我国新能源安装容量达到7000万kW,居世界首位,并网新能源装机容量达到5409万kW,同比增长47.4%,约占全部发电装机容量的5.1%。其中,风电并网容量约占并网新能源装机总量的85.5%并网太阳能光伏装机容量约占并网新能源装机总量的4.4%生物质及其他新能源发电装机容量约占并网新能源装机总量的10.1%。

2011年,我国新能源发电量约为1016亿kW?h,同比增长29.9%,约占全部发电量的2.2%。其中,风电发电量约占新能源发电总量的72.0%太阳能光伏发电约占0.9%生物质及其他新能源发电约占27.1%。2011年我国新能源发电量按发电煤耗320g/(kW?h)计算,相当于节约3241万tce,减排二氧化碳9030万t。

电能是国民生活和生产的根基,无论是从能源角度,还是电力系统自身方面来看,研究新能源发电技术对于我国的现代化建设和人民生活都具有相当大的现实意义和战略意义。

二、风力发电技术

风能资源主要包括陆地资源与近海离岸资源两部分。风力发电是当今非水可再生能源发电中技术最成熟、最具有大规模开发条件和商业化前景的发电方式,也是目前新能源发展的重点方向。

1.发展现状

近年来,我国风力发电产业取得了长足发展,这与我国的风能资源丰富密不可分。据有关资料显示,陆地上离地面10米高度处,我国风能资源理论储量约为43亿千瓦,技术可开发量约为3亿千瓦,离地面50米,估计可能增大一倍近海资源10米高经济可开发量约7.5亿千瓦,50米高约15亿千瓦。从我国联网风电场总装机量来说,到2006 年底,我国已建成约91个风电场,装机总容量达到约260万千瓦,比2005年新增装机134万千瓦,增长率为105%。根据国家中长期规划,2015年风能发电要达到1500万千瓦,2020年要达到3000万千瓦。但是,与风电发达国家相比,我国的发展规模还很小,发展速度也较缓慢。制约我国风电发展的重要因素包括技术和制度两个方面。技术方面,风电机组的制造水平较低,风电机组性能测试设备和技术也相对落后,并缺少相应的认证机构制度方面,风电场的运行维护水平和制度与国外风电场及国内火电生产相比有明显差距,缺乏对运行过程中出现的问题和故障的详细记录、分析。

2.对电力系统的影响

风力发电机是以风作为原动力,风的随机波动性和间歇性决定了风力发电机的电能输出也是波动和间歇的。所以,风电场的大规模接入将会带来波动功率,从而加重电网负担,影响电网供电质量和电网稳定性等。

(1)对电能质量的影响。空气气流运动导致的风速波动周期一般为几秒到几分钟,这种短周期的风速波动以及风电机组本身的运行特性可能影响电网的电能质量。首先会对频率产生影响:风力发电有功功率波动引起电磁功率的波动,由于发电机组转子惯性,调节系统很难跟上电磁功率的瞬时变化,造成功率不平衡,使发电机转速变化,系统频率也将改变。此外,风电还会对电压产生影响:并网风电机组输出功率的波动导致电压的波动,而其输出功率的频率范围正处于电压闪变的范围之内(25Hz),因此又会造成电压闪变,最后会产生谐波电压和谐波电流。

(2)对电网稳定性的影响。对较为薄弱的电网,风电功率波动将导致瞬间电压跌落以及风力发电机的频繁掉线。在故障清除之后,发电机的磁化和转差率的增加会消耗大量无功,导致电网电压恢复困难。

(3)对调频调峰能力的影响。气流长时间、季节性运动导致的风速波动周期一般为数小时,甚至数天、数月,这种长周期的风速波动会增加现有电网调频调峰的负担。负荷曲线的低谷期常常对应了风电出力的高峰期,风电场的并网发电使电网的等效负荷峰谷差增大,大大增加了电网调频调峰负担。

三、太阳能光伏电池发电技术

1. 1 太阳能光伏电池

太阳能光伏电池发电也简称为太阳能光伏发电,被认为是未来世界上发展最快和最有前途的一种可再生新能源技术。太阳能光伏电池的基本原理是利用半导体的“光生伏打效应”( 光伏效应) 将太阳的光能直接转换成电能。能利用光伏效应产生电能的物质,称为光伏材料。利用光伏效应将太阳能直接转换成电能的器件叫太阳能光伏电池或光伏电池。光伏电池是太阳能光伏发电的核心组件。

1839 年,法国物理学家贝克勒尔 ( Edmond Bec-qurel) 发现: 将两片金属浸入电解液中所构成的伏打电池,当接收到太阳光照射时电压升高,他在所发表的论文中把这种现象称为“光生伏打效应( PhotovohaicEffect) ”。“光生伏打效应”是不均匀半导体或半导体与金属混合材料在光照作用下,其内部可以传导电流的载流子分布状态和浓度发生变化,因而在不同部位之间产生电位差的现象。1941 年,奥尔在硅材料上发现了光伏效应,从而奠定了半导体硅在太阳能光伏发电中广泛应用的基础。1954 年,美国贝尔实验室的科学家恰宾( Darryl Chapin) 和皮尔松( Gerald Pearson) 研制成功世界上第一个实用的单晶硅光伏电池。同年,韦克尔发现砷化镓具有光伏效应,并在玻璃上沉积硫化镉薄膜,制成世界上第一块薄膜光伏电池。我国2010 年 12 月投入运行的大丰 20 MW 光伏电站,是目前全国最大的薄膜光伏电站,年发电量2 300 万 kW·h。

太阳能光伏电池的工作原理如图 1 所示。

在半导体中掺加杂质制成 PN 结,以形成在平衡状态时具有的内建电场,在该内建电场的作用下分离由外界激发而生成的过剩载流子,从而形成外部电压。在光照条件下,半导体中的电子吸收光子能量从价带跃入导带,形成电子———空穴对,成为载流子。生成载流子所需要的最低能量是半导体的禁带宽度 Eg,使用禁带宽度较小的材料制作的太阳能电池可以形成较大的电流。

基于单晶硅的第一代光伏电池是目前太阳能光伏电池市场的主流,其光电转换率已达 24. 7%基于薄膜技术的第二代光伏电池的光电转换效率已达到16. 5% ~ 18. 8% 。由于薄膜光伏电池大大减少了半导体材料的消耗,因此具有很好的发展前景。应该指出,光伏电池在光电转换过程中,光伏材料既不发生任何化学变化,也不产生任何机械磨损,因此太阳能光伏电池是一种无噪音、无气味、无污染的理想清洁能源。2006 年,我国太阳能电池生产总量首次达到400 MW,从而超过美国成为全球第三大生产国,也是世界上发展最快的国家。

1. 2 太阳能光伏电站

太阳能光伏电站是将若干个光伏转换器件即光伏电池封装成光伏电池组件,再根据需要将若干个组件组合成一定功率的光伏阵列,并与储能、测量、控制装置相配套,构成太阳能光伏电站。

太阳能光伏电池具有很大的灵活性,不仅可以用其建设零星规格的电站,而且可以组成应用于小型、分散电力用户的太阳能光伏发电系统。这种独立运行的太阳能光伏发电系统称之为离网型太阳能光伏发电系统。

由于受昼夜日照变化及天气的影响,离网型光伏发电系统通常需要和其他电源形式联合使用,比如柴油发电机组以及蓄电池组,从而增大了电站的投资和维护费用。离网型光伏发电系统往往建在距离电网较远的偏远山区及荒漠地带,向独立的区域用户供电。西藏措勒 20 kW 光伏电站是我国建设较早的离网型光伏电站,总投资 290 万元,1994 年 12 月正式投产发电。

离网型太阳能光伏电站系统如图 2 所示。

电站的发电系统由太阳能光伏电池方阵、蓄电池组、直流控制器、直流 - 交流逆变器、交流配电柜和备用电源系统( 包括柴油发电机组和整流充电柜) 等组成。其工作原理为太阳能光伏电池方阵经过直流控制柜向蓄电池组供电,并根据需要整定蓄电池组的上限和下限电压,由直流控制柜自动控制充电。蓄电池组通过直流控制柜向直流 - 交流逆变器供电,经逆变器将直流电变换成三相交流电,再通过交流配电柜以三相四线制向用户供电。当蓄电池组的电压下降到下限电压时,为不造成蓄电池组的过渡放电,直流控制柜将自动切除其输出电路,使直流 - 交流逆变器停止工作。柴油发电机组为电站的备用电源,必要时由备用电源通过整流充电柜向蓄电池组充电,或在光伏发电系统出现故障及停运时直接通过交流配电柜向用户供电。直流 - 交流逆变器和柴油发电机组不能同时向用户供电,为此必须在交流配电柜中设置互锁装置以保证供电电源的唯一性。

当太阳能光伏电站的容量达到一定规模时,还可与电网相联,即所谓的并网型光伏电站。这时,如果本地负荷不足,则可将多余的电能输送给电网。当本地太阳能发电量不足时,则由电网向用户提供电能。因此,并网型光伏电站可以不需要使用蓄能装置,减少系统投资和维护费用。同时由于与电网的互济,提高了发电设备的利用率和供电用电的安全可靠性,是大规模开发太阳能发电技术的必然趋势。我国第一座并网型光伏电站是 2006 年建成投运的西藏羊八井可再生能源基地 100 kW 高压并网光伏电站。2010 年底全国首个光伏并网发电项目敦煌 2 ×10 MW 光伏发电项目建成投产。

四、结论与展望

本文从全球和我国的能源现状出发,分析说明了新能源发电技术是当前迫切而有实际价值的研究课题,进而具体介绍了风力发电系统和燃料电池发电系统的特点以及我国在这两个方面的发展现状。新能源不仅仅指风能和燃料电池,还包括生物质能、海洋能、地热能和光伏电池等。我国乃至全世界的新能源发电技术发展的潜力都是巨大的。在人类明天的舞台上,新能源将取代化石燃料,扮演重要的角色。

参考文献:

[1] 徐德鸿 . 新能源电力电子导论 [D]. 杭州 : 浙江大学 ,2009.

[2] 郝伟, 舒隽, 张粒子. 新能源发电技术综述 [C].华北电力大学第五届研究生学术交流年会 ,2007.

[3] 施涛.燃料电池发电系统的建模与仿真 [D].南京:东南大学,2007:5-6,63-64.

点击下页还有更多>>>浅谈新能源技术论文

开放的钢笔
复杂的未来
2025-12-04 07:13:32
要从能源安全的角度研究电站的可靠性,从度电成本的角度探讨组件设计的安全边际问题。”6月1日,上海交通大学教授、上海市太阳能学会名誉理事长沈文忠在“光伏电站可靠性及资产安全研讨会”上表示。该研讨会由上海市太阳能学会主办,隆基绿能协办。

当日,国家发改委等九部门印发《“十四五”可再生能源发展规划》。 规划显示,“十四五”期间,可再生能源发电量增量在全社会用电量增量中占比超50%,风光发电量实现翻倍。

面对可再生能源装机的不断增加,能源安全备受关注,光伏电站的可靠性及资产安全显得至关重要。

光伏装机大干快上 电站隐患不容忽视

中国光伏行业协会预计,未来光伏年均新增装机规模将在7000万千瓦到9000万千瓦之间。光伏前景一片大好,但暴露出的问题也层出不穷,如非先进产能盲目扩产、炒作伪创新噱头、低价竞标、粗放施工等。

“一些光伏电站盲目追求开发速度,安全隐患开始显现。供应商水平也是参差不齐,专业化、规范化标准欠缺,运维市场存在无序竞争。”谈及光伏装机大干快上问题时,黄河上游水电开发有限责任公司新能源生产部宦兴胜反复强调全行业亟待规范化、标准化管理,“影响光伏电站可靠性的最大风险来源于组件,包括热斑、隐裂、电池衰减等;其次是直流汇流箱、逆变器、支架等。组件成本约占电站总投资的60%。若组件发生故障,不能维修,只能更换,损失很大。”

“光伏高质量指的是安全性、稳定性、可靠性。首先要确保系统的安全和可靠,再考虑能源载荷与储能的互动基础。”隆基绿能产品管理中心总裁吕俊指出,作为光伏电站的核心设备,组件的玻璃和硅片越来越薄,组件越做越大,电流与电压被不断推高。随着应用场景的不断增多,其不可控风险显著提高,一味追求低成本,将使光伏产品在应对极端恶劣环境时的可靠性被严重削弱。

单薄的板凳
干净的冰淇淋
2025-12-04 07:13:32

行业主要上市公司:隆基股份(601012)晶澳科技(002459)晶科能源(688223)通威股份(600438)天合光能(688599)等

本文核心数据:光伏发电板块上市公司研发费用光伏发电相关论文发表数量

全文统计口径说明:1)论文发表数量统计以“solar pv”、“solar

photovoltaic”为关键词,选择“中国”、“论文”筛选。2)统计时间截至2022年8月29日。3)若有特殊统计口径会在图表下方备注。

光伏发电行业技术概况

1、技术原理及类型

(1)光伏发电行业技术原理

光伏发电是利用半导体界面的光生伏特效应而将光能直接转变为电能的一种技术,其发电原理如下。

(2)光伏发电种类

光伏发电一般分为两类:集中式发电和分布式发电,集中式发电主要为大型地面光伏系统分布式发电主要应用于商业/工业、建筑屋顶。

2、技术全景图:主要为光伏电池技术路线

光伏发电行业的产业链中游为电池片、电池组件和系统集成,其中各类光伏电池技术为重点技术路线。根据半导体材料的不同,光伏电池技术主要包括晶硅电池、薄膜电池以及叠层和新结构电池(第三代电池)。

晶硅电池是研究最早、最先进入应用的第一代太阳能电池技术,按照材料的形态可分为单晶硅电池和多晶硅电池,其中单晶硅电池根据基体硅片掺杂不同又分为P型电池和N型电池。目前应用最为广泛的单晶PERC电池即为P型单晶硅电池,而TOPCon、HJT、IBC等新型太阳能电池技术主要是指N型单晶硅电池。

薄膜光伏电池分为硅基薄膜电池和化合物薄膜电池,以铜铟稼硒(CIGS)、锑化镉(CdTe)和砷化镓(GaAs)等的化合物薄膜电池为代表。

叠层、新结构电池包括有机太阳能电池、铜锌锡硫化物电池、钙钛矿太阳能电池、染料敏化太阳能电池、量子点太阳能电池等。

光伏发电行业技术发展历程:电池技术路线演变拉动

光伏发电行业技术发展主要是由光伏电池技术路线演变拉动的,从以硅系电池为代表的第一代光伏电池、到以铜铟稼硒(CIGS)、锑化镉(CdTe)和砷化镓(GaAs)等材料的薄膜电池为代表的第二代光伏电池,如今光伏电池技术已发展至第三代,第三代光伏电池技术主要包括有机太阳能电池、铜锌锡硫化物电池、钙钛矿太阳能电池、染料敏化太阳能电池、量子点太阳能电池等,具有薄膜化、转换效率高、原料丰富且无毒的优势。

光伏发电行业技术政策背景:政策加持技术水平提升

近年来,我国出台一系列光伏发电技术及研发的相关政策,通过政策指导,行业加快光伏发电技术的推广和革新,促进光伏发电产业的快速发展。

光伏发电行业技术发展现状

1、光伏发电行业技术科研投入现状

(1)国家重点研发计划项目

据已公开的国家重点研发计划项目,2018-2021年我国光伏发电技术相关国家重点研发计划项目共计15项。

注:2019年未公布光伏发电技术相关国家重点研发计划项目。

(2)A股上市企业研发费用

光伏发电行业经过多年发展,产品相对成熟,但行业整体研发投入水平较高。从A股市场来看,2017-2021年,我国光伏板块上市公司研发总费用逐年增长,2022年第一季度,光伏板块上市公司研发总费用约281.13亿元。

2、光伏发电技术科研创新成果

(1)论文发表数量

从光伏发电相关论文发表数量来看,2010年至今我国光伏发电相关论文发表数量呈现逐年递增的趋势,可见光伏发电科研热度持续走高。截至2022年8月,我国已有18289篇光伏发电相关论文发表。

注:统计时间截至2022年8月。

(2)技术创新热点

通过创新词云可以了解光伏发电行业内最热门的技术主题词,分析该技术领域内最新重点研发的主题。通过智慧芽提取该技术领域中近约5000条专利中最常见的关键词,其中,光伏组件、太阳能、光伏板、太阳能板、光伏发电、太阳能电池板、逆变器等关键词涉及的专利数量较多,说明光伏发电行业研发和创新重点集中于光伏组件和光伏板等领域。

(3)专利聚焦领域

从光伏发电专利聚焦的领域看,目前光伏发电专利聚焦领域较明显,其主要聚焦于太阳能、光伏板、太阳能电池、光伏组件等。

主要光伏电池技术对比分析

从技术水平来看,硅、砷化镓、磷化铟、碲化镉和铜铟硒多元化合物(铜铟镓硒是其典型代表)是可选光伏材料中综合性能的最佳集合。而它们各方面性能的优劣,直接导致了目前光伏电池技术百花齐放的现状。

注:平均转换效率均只记正面效率。

光伏发电行业技术发展痛点及突破

1、光伏发电行业技术发展痛点

(1)硅基光伏电池:P型电池转换效率低

由于电池片的光电转换效率直接影响整个光伏系统的效益,因此光伏电池的光电转换效率十分重要,光电转换效率的提升主要依靠技术更新换代。现阶段,晶硅光伏电池面临着转换效率较低的问题,尤其是P型电池。

据德国哈梅林太阳能研究所(ISFH),PERC电池的理论极限效率为24.5%,PERC产线的量产效率已经达到23%,逐步逼近理论极限效率。

(2)薄膜电池量产转换效率低

薄膜光伏电池具有衰减低、重量轻、材料消耗少、制备能耗低、适合与建筑结合(BIPV)等特点,但薄膜电池面临着量产转换效率低的问题,性价比较低。

2、光伏发电行业技术发展突破

(1)N型电池技术突破P型电池极限转换效率

相较于P型电池,N型电池技术少子寿命高、无光致衰减、弱光效应好且温度系数小,转换效率更高。面临P型电池逐步逼近理论效率极限,N型电池技术能够突破P型电池的理论效率极限并达到更高转换效率。据中国光伏行业协会(CPIA),2022-2023年N型电池技术的平均转换效率就可以达到PERC电池的理论极限效率(24.5%)。

(2)钙钛矿电池可实现高转换效率

钙钛矿电池是利用钙钛矿型的有机金属卤化物半导体作为吸光材料的第三代太阳能电池,钙钛矿材料的吸光能力强于晶硅材料,因此钙钛矿电池能够实现高转换效率。除了拥有高转换效率,钙钛矿电池还具备价格低、投资小、制备简单等优势。

光伏发电行业技术发展方向及趋势:降本增效

2022年8月,工信部五部门联合印发的《加快电力装备绿色低碳创新发展行动计划》,提出通过5-8年时间,在太阳能装备方面重点发展高效低成本光伏电池技术,包括推动TOPCon、HJT、IBC等晶体硅太阳能电池技术和钙钛矿、叠层电池组件技术产业化,开展新型高效低成本光伏电池技术研究和应用等。

可见,未来光伏发电技术将向着降本增效方向发展,一方面由于现有光伏电池逐渐逼近最高理论转换效率,因此更高转换效率的电池将成为光伏电池技术发展方向另一方面,光伏组件转换效率的提升以及制造成本的降低,是降低光伏电站建设成本,并最终降低光伏发电成本的关键因素。

「前瞻碳中和战略研究院」聚焦碳中和领域的政策、技术、产品等开展研究,瞄准国际科技前沿,服务国家重大战略需求,围绕“碳中和”开展有组织、有规划科研攻关,促进碳中和技术成果转化和推广应用,为企业创新找到技术突破口,为各级政府提供碳达峰、碳中和的战略路径管理咨询和技术咨询。院长徐文强博士毕业于美国加州大学伯克利分校,二十余年来一直深耕于低碳清洁能源和绿色材料领域的基础研究、产品开发和产业化,拥有55项专利、33篇论文,并已将30多种产品推向市场,创造商业价值50+亿元,专注于氢能、太阳能、储能等清洁能源研究。

以上数据参考前瞻产业研究院《光伏发电行业技术趋势前瞻及投资价值战略咨询报告》。