epdm可以打介质过氧乙酸吗?
epdm最好不要打介质过氧乙酸。
塑料橡胶的热氧老化,主要就是和氧气形成过氧化物,过氧乙酸也是属于过氧化物,会加速epdm老化。如果要消毒的话,采用酒精,不要用过氧乙酸。
三元乙丙橡胶是乙烯-丙烯-丁二烯三元共聚物合成的全硫化橡胶,最高工作温度: 130°C
耐酸性能: 极好
抗碱性能: 极好
耐酸碱、耐腐蚀
杰出的耐极性溶剂性(酮、酯类)
优异的耐氧、耐臭氧性
高强度、高耐压
总体没问题,关键是你的原料要正宗。
橡胶软连接球体骨架材料选用聚酯帘布使综合性能更加可靠,该工艺设计国内首创。内胶层——丁基橡胶,可增强橡胶接头的回弹性、压缩永久变形、电性能、撕裂强度、耐水溶胀性、耐酸、碱、油等性能。内衬胶管层延伸至橡胶接头法兰的外端面,其性能是能够防止水流的渗漏和冲刷。外胶层——氯丁橡胶。氯丁橡胶是氯丁二烯的聚合体,该橡胶材料耐磨、耐油、耐老化,拉伸强度≥13MPa,拉断伸长率≥500%,拉断永久变形≤30%,脆性耐温≤-30℃,粘着强度≥2.0DN/m。由于可曲挠橡胶接头的外胶层暴露在空气中,容易受外界因素的影响和被弄伤,这就需要接头的外胶层具有抗热、耐酸碱、耐油、耐臭氧等特性。针对这些情况,我们使用了氯丁橡胶。通过合理的配方,氯丁橡胶最高使用温度可达130℃,脆性温度为-35℃~55℃。骨架层——丁基橡胶+氯丁橡胶+聚酯帘布;骨架材料选用强力高,断裂强度≥190cN/tex,断裂应力≥2.76GPa,弹性模量≥44N/tex,断裂伸长率≥4%聚酯帘布。使内外层与骨架层的紧密结合,经过硫化成为一体,解决了橡胶接头的热伸胀及整体附着强度和耐压性能,保证足够的承受其真空度和水锤冲击能力。配套拉杆——根据用户使用环境,配套相应的拉杆材质。拉杆的技术要求GB8262-97的规定其机械性能符合GB3098.1-82标准。
以上信息编辑:上海松夏减震器 崔倪军
中午好,EPDM耐乳酸,但是只耐低浓度的稀氢氧化钠和稀盐酸水溶液比如洁厕灵那种程度的,它不耐浓氢氧化钠和37%浓盐酸长期浸泡会严重腐蚀请酌情参考。耐这两种化学品一般都是使用NBR或者FKM硅橡胶。
晚上好,EPDM对甲醇和乙醇耐受力很好,丙酮也型但如果长期浸泡还是可能会出现表面溶胀变形,常见的几种合成橡胶品种对酮类溶剂都不怎么优秀。如果你要盛放丙酮和丁酮建议换成全氟橡胶比较好一些。
肯定是PTFE耐酸碱的效果比较强,还不止强一点是要强很多,唯一的缺点就是PTFE是塑料没有什么弹性。以下是EPDM乙丙橡胶和PTFE聚四氟乙烯两种食品级阀门上常用的两种密封圈形式,希望能够帮到您!
而EPDM对极性溶剂具有良好抗性。
三元乙丙橡胶是乙烯、丙烯以及非共轭二烯烃的三元共聚物,1963年开始商业化生产。每年全世界的消费量是80万吨。 EPDM最主要的特性就是其优越的耐氧化、抗臭氧和抗侵蚀的能力。由于三元乙丙橡胶属于聚烯烃家族,它具有极好的硫化特性。在所有橡胶当中,EPDM具有最低的比重。它能吸收大量的填料和油而影响特性不大。因此可以制作成本低廉的橡胶化合物。
分子结构和特性
三元乙丙是乙烯、丙烯和非共轭二烯烃的三元共聚物。二烯烃具有特殊的结构,只有两键之一的才能共聚,不饱和的双键主要是作为交链处。另一个不饱和的不会成为聚合物主链,只会成为边侧链。三元乙丙的主要聚合物链是完全饱和的。这个特性使得三元乙丙可以抵抗热,光,氧气,尤其是臭氧。三元乙丙本质上是无极性的,对极性溶液和化学物具有抗性,吸水率低,具有良好的绝缘特性。
在三元乙丙生产过程中,通过改变三单体的数量,乙烯丙烯比,分子量及其分布以及硫化的方法可以调整其特性。
EPDM第三单体的选择
第三二烯烃类型的单体是通过乙烯和丙烯的共聚,在聚合物中产生不饱和,以便实现硫化。第三单体的选择必须满足以下要求:
最多两键:一个可聚合,一个可硫化
反应类似于两种基本的单体
主键随机聚合产生均匀分布
足够的挥发性,便于从聚合物中除去
最终聚合物硫化速度合适
二烯烃类型和含量对聚合物特性的影响
三元乙丙生产中主要是用ENB和DCPD。
三元乙丙中最广泛使用的是ENB,它比DCPD产品硫化要快得多。在相同的聚合条件下,第三单体的本质影响着长链支化,按以下顺序递增:EPM<EPDM(ENB)<EPDM(DCPD)
三元乙丙其他的受二烯烃第三单体影响的还有:
ENB-快速硫化,高拉伸强度,低永久形变
DCPD-防焦性,低永久应变,低成本
随着二烯烃第三单体的增加,将会有下列影响发生:更快硫化率,更低的压缩形变,高定伸,促进剂选择的多样性,减少的防焦性和延展,更高的聚合物成本。
乙烯丙烯比
乙烯丙烯比可以在硫化阶段进行改变,商业的三元乙丙聚合物乙烯丙烯比由80/20到50/50。当乙烯丙烯比由50/50变化到80/20 时,正面的影响有:更高的压坯强度,更高的拉伸强度,更高的结晶化,更低的玻璃体转化温度,能将原材料聚合物转化成丸状,以及更好的挤出特性。不好的影响就是不好的压延混合性,较差的低温特性,以及不好的压缩形变。
当丙烯比例更高时,好处就是更好的加工性能,更好的低温特性以及更好的压缩形变等。
分子量和分子量分布
弹性体的分子量通常用门尼粘度表示。在三元乙丙的门尼粘度中,这些值是在高温下得到的,通常为125℃,这样做的主要原因是要消去由高乙烯含量所产生的任何影响(结晶化),由此会掩盖聚合物的真正分子量。三元乙丙的门尼粘度范围在20到100之间。也有更高分子量的商用三元乙丙也有生产,但一般都充油,以便混炼。
分子量以及在三元乙丙中的分布可以在聚合过程中通过以下途径聚合:
催化剂以及共催化剂的类型和浓度
温度
改性剂,如氢的浓度
三元乙丙的分子量分布可以通过凝胶渗透色谱法使用二氯苯作为溶剂在高温下(150℃)测量而得。分子量分布通常被称为是重量平均分子量与数量平均分子量的比例。根据普通和高度支化的结构,这个值在2到5之间变化。由于有分键,含有DCPD的三元乙丙橡胶更宽的分子量分布。
通过增加三元乙丙的分子量,正面影响有:更高的拉伸和撕裂强度,在高温情况下更高的生坯强度,能够吸收更多的油和填料(低成本)。随着分子量分布的增加,正面的影响有:增加的混炼和碾磨加工性。但是,较窄的分子量分布可以改进硫化速度,硫化状态以及注塑行为。
硫化类型
三元乙丙可以利用有机过氧化物或者硫来进行硫化。但是,相比与硫磺硫化,过氧化物交链的三元乙丙用于电线电缆工业时具有更高的温度抗性,更低的压缩形变以及改进的硫化特性。过氧化物硫化的不好的地方就在于更高的成本。
正如前面所提到的,三元乙丙的交链速度和硫化时间随着硫化类型和含量而改变。当三元乙丙与丁基,天然橡胶,丁苯橡胶混合时,在选择合适的三元乙丙产品时,必须要考虑到下列因素:
当与丁基进行混合时,由于丁基具有较低的不饱和度,为适应丁基的硫化速度,最好选择相对较低含量的DCPD和ENB含量的三元乙丙。
当与天然橡胶和丁苯橡胶混合时,最好选择8%到10%ENB含量的三元乙丙,以满足其硫化速度。