建材秒知道
登录
建材号 > 乙酸 > 正文

三氯乙酸对细胞有什么作用

落后的煎饼
大力的酒窝
2022-12-31 16:25:41

三氯乙酸对细胞有什么作用

最佳答案
含蓄的眼睛
自然的小懒虫
2025-12-04 20:18:33

在酸性条件下与蛋白质形成不溶性盐. 这样可以尽量保证细胞中蛋白质等有效成分的流失。 才会更有利于我们对细胞的研究。

三氯乙酸,有机化合物,又名三氯醋酸 ,无色结晶,有刺激性气味,易潮解 ,溶于水、乙醇、乙醚 。主要用于有机合成和制医药、化学试剂、杀虫剂。

由三氯乙醛与发烟硝酸共熔氧化而得,反应温度80~100℃。用硝酸或高锰酸钾氧化三氯乙醛、在碘或三氯化磷催化和光照下直接氯化乙酸可制得三氯乙酸。

扩展资料:

TCA与蛋白质在酸性条件下与蛋白质形成不溶性盐。作为蛋白质变性剂使蛋白质构象发生改变,暴露出较多的疏水性基团,使之聚集沉淀。

随着蛋白质分子量的增大,其结构复杂性与致密性越大,TCA可能渗入分子内部而使之较难被完全除去,在电泳前样品加热处理时可能使蛋白质结构发生酸水解而形成碎片,而且随时间的延长这一作用愈加明显。

在电泳时使用TCA对蛋白质样品的浓缩或除盐时,对于分子质量大的蛋白质,要慎重选择TCA.对小分子量蛋白质的浓缩,采用TCA时也有两点需要注意:一是用TCA沉淀后,尽量用丙酮彻底抽提TCA二是样品处理后要尽快进行电泳分析,以免发生聚集及断裂,造成结果分析的不准确。

参考资料来源:百度百科——三氯乙酸

最新回答
个性的灰狼
欣慰的衬衫
2025-12-04 20:18:33

一般来说,混浊就是有少量沉淀。通常是沉淀充分后离心收集。有没有酶可以通过活性测定来判断。再加入三氯乙酸前,应该测定过吧?

做一个实验,文献准备很重要。你要提取什么酶,性质如何,选取什么材料,什么方法,事先都要想好。比如使用三氯乙酸沉淀,还是用乙醇、丙酮等沉淀,在什么浓度、pH下沉淀,加入多少沉淀剂,怎么离心,等等,这些在做实验前都应该已经考虑过了。

呵呵,别灰心。科研之路很辛苦的,如果做得好,也有乐趣。

舒心的高跟鞋
魁梧的蓝天
2025-12-04 20:18:33
 大学生是祖国建设的栋梁之才,医学生既有大学生心理发展的共性,又因其自身的学科专业特点而具有职业定向的个性特征。下文是我为大家整理的关于大专医学生 毕业 论文的 范文 ,欢迎大家阅读参考!

大专医学生毕业论文篇1

浅谈红芪多糖的纯化及初步结构鉴定

论文摘要:目的研究红芪多糖的分离纯化及初步的结构。 方法 采用超声辅助提取多糖,比较 Sevag法、三氯乙酸法和三氯乙酸-正丁醇法脱蛋白的效果,并用 GC、TLC及 IR分析多糖的初步结构。结果三氯乙酸-正丁醇法脱蛋白,经 Sephadex G-25柱层析分离纯化后得红芪多糖2(HPS-2),HPLC确定为均一多糖,糖含量为 98.2%,糖组成分析表明其含有鼠李糖、木糖、阿拉伯糖、葡萄糖和半乳糖,摩尔比为 .3∶.2∶2.7∶16.1∶2.。结论HPS-2是一种以 β苷键为主的吡喃型杂多糖。

论文关键词:红芪多糖薄层色谱结构鉴定

红芪(Radix Hedysari),为豆科岩黄芪属植物多序岩黄芪Hedysarumpolybotrys Hand.-Mazz的干燥根,为甘肃特产名贵药材,在临床上主要用于补气固表, 利尿托毒, 排脓, 敛疮生肌。红芪中含有氨基酸、有机酸、β-谷甾醇、红芪多糖、微量元素等众多的生物活性物质[1]。近年来研究发现,红芪多糖的活性成分具有增强机体免疫力、抗肿瘤、抗衰老、治疗糖尿病等作用[1,2]。特别是我们近几年的研究发现,经 7%乙醇沉淀部分药理作用尤为明显。由于多糖为大分子化合物,分离纯化比较困难,而蛋白质的脱除是后期结构鉴定的关键之一,为了提高多糖的得率、纯度及活性,本实验对这部分多糖进行了脱蛋白方法的研究,结合TLC、GC、IR等方法对 HPS-2 的结构进行了初步的分析,以期为红芪多糖的进一步研究提供理论基础。

1 材料与仪器

红芪,购自甘肃武都牛血清白蛋白、考马斯亮蓝 G-25(西安周鼎国生物技术有限责任公司)单糖对照品(中国药品生物制品检定所)Sephadex G-25(上海长征制药厂)硅胶 G(青岛海洋化工厂) 其它 试剂均为分析纯。

CR22G Ⅱ型离心机(日本日立)UV-17 型紫外仪(日本岛津)GC-Clarus 5型气相色谱仪(美国 PerkinElmer公司)红外光谱仪(Nicolet NEXUS 67)BS-1A 自动部分收集器、HL-2 恒流泵(上海沪西分析仪器厂有限公司)美国Waters6型高效液相色谱仪,配 Waters2414型示差折光检测器。

2 方法

2.1 红芪多糖的提取纯化路线其流程如下。

2.1.1 提取红芪药材→粉碎→超声脱脂→热水提取3次→合并提取液→减压浓缩后离心→取上清液→乙醇沉淀→有机溶剂洗剂→透析→减压浓缩→冷冻干燥得粗多糖 HPS。

2.1.2 纯化粗多糖液→脱蛋白、色素→Sephadex G-25柱层析→洗脱液透析→浓缩→冷冻干燥→精制红芪多糖 HPS-2。

2.2 蛋白质和多糖含量的测定蛋白质含量测定采用考马氏亮蓝法[3],多糖含量采用苯酚-硫酸法[4]。

2.3 脱蛋白方法

称取一定量的粗多糖,加入适量蒸馏水,6℃加热溶解,备用。本实验采用 3种脱蛋白的方法。

2.3.1 Sevag法取粗多糖溶液,加入等体积的氯仿-正丁醇(V/V为 4∶1)试剂,混合振摇 3 min,离心除去沉淀,透析后醇沉,冷冻干燥,即得脱蛋白多糖。

2.3.2 三氯乙酸法取粗多糖溶液,加入多糖溶液体积 .1倍量的三氯乙酸,低温(4℃)剧烈振摇 3 min,离心除去沉淀,透析后醇沉,冷冻干燥,即得脱蛋白多糖。

2.3.3 三氯乙酸-正丁醇法

取粗多糖溶液,加入等体积的三氯乙酸-正丁醇(V/V为 1∶1)试剂,振荡 1 min,静置分层,收集下层水溶液,透析后醇沉,冷冻干燥,即得脱蛋白多糖。

2.4 红芪多糖的精制将一定量的脱蛋白多糖,溶解于适量蒸馏水中。过氧化氢除色素,减压浓缩,经醇沉、离心、冷冻干燥得红芪多糖1(HPS-1),取适量的 HPS-1,蒸馏水溶解后,Sephadex G-25柱分离,蒸馏水洗脱,流速 .8 ml/min,每 3 ml收集1份,苯酚-硫酸法跟踪检测,绘制洗脱曲线,合并主峰流出液,减压浓缩至一定体积,冷冻干燥得 HPS-2。

2.5 纯度鉴定用 HPLC法,TSK-gel G25PW色谱柱,示差折光检测器,流动相为双蒸水,流速 1. ml/min,检测器温度35℃,样品浓度4 mg/ml,进样量5 μl。同时取该样品溶液在 2~4 nm范围内进行紫外扫描。

2.6 气相色谱参照文献[5],多糖样品经彻底水解后制备糖腈乙酸酯衍生物,以单糖的糖腈乙酸酯衍生物为对照品进行 GC分析。色谱条件: OV-11毛细管柱(5 m×. 32 mm),载气为N2 ,流速 5 ml/min,分流比 4∶1,FID氢火焰检测器,汽化室温度 25℃,检测器温度 28℃。程序升温:11℃(保持 5 min)→(5℃/min)→ 28 ℃(保持 2 min)。进样量 .4 μl。

2.7 薄层色谱[6]取 15mg HPS-2,三氟醋酸彻底水解,水解产物溶于 1 ml蒸馏水中,以标准单糖为对照,分别取样品水解液和单糖对照液在含磷酸二氢钠的硅胶G薄层板上点样,上行二次展开,展开剂: 醋酸乙酯∶冰醋酸∶甲醇∶水=12∶3∶3∶2(V/V)自然风干后显色,显色剂: 苯胺-邻苯二甲酸溶液,烘箱中 15 ℃加热 5~1 min显色。

2.8 红外光谱测定 取 2 mg HPS-3,KBr压片,测定红外光谱。

3 结果

3.1 脱蛋白方法的选择以蛋白脱除率和多糖损失率为指标,比较 Sevag法、三氯乙酸法和三氯乙酸-正丁醇法的脱蛋白效果(见图1)。Sevag法的多糖损失率最低,但脱蛋白率也最低三氯乙酸-正丁醇法的脱蛋白率最高,多糖损失率最低三氯乙酸法的脱蛋白率达 3%以上,但多糖损失最高。综合各方面的因素,本实验选取三氯乙酸-正丁醇法脱除红芪多糖中的蛋白质。

3.2 红芪多糖分离纯化红芪多糖经Sephadex G-25柱层析纯化分离的洗脱曲线(见图2)。仅出现 1个洗脱峰, 收集主峰, 透析, 浓缩,冷冻干燥, 得到 HPS-2。

3.3 纯度鉴定HPS-2的紫外扫描在 26~28nm处吸收峰消失,茚三酮反应呈阴性,说明样品中的蛋白质基本除尽,也无核酸存在碘-碘化钾反应呈阴性,表明样品为非淀粉多糖经 HPLC凝胶色谱后为单一对称峰。表明其为均一组分苯酚-硫酸法测定 HPS-2的糖含量为 98.6%。

3.4 红芪多糖的结构分析

3.4.1 气相色谱分析

气相色谱分析(见图 3)。比较标准品和样品的保留时间,可见多糖 HPS- 2由鼠李糖、木糖、阿拉伯糖、葡萄糖、半乳糖5种单糖组成。其摩尔组成比例为 .3∶.2∶2.7∶16.1∶2.。

3.4.2 薄层色谱分析HPS-2 经薄层色谱(见图 4)。检出半乳糖(Rf对=Rf样=.4)、葡萄糖(Rf对=Rf样=.3)、阿拉伯糖(Rf对=.2,Rf样=.19)、木糖(Rf对=Rf样=.62)和鼠李糖(Rf对=Rf样=.77),其中木糖和鼠李糖含量较低,斑点不明显。这与气相色谱结果一致。

3.4.3 红外分析从IR谱图由图 5可见,HPS-2在 3 6~3 2 cm-1、3 ~2 8 cm-1和 1 4~1 2 cm-1处均具有多糖的特征吸收峰。1 154、1 8、1 24 cm-1处为 β-吡喃糖基的振动峰[7]898 cm-1为 β-糖苷键的吸收峰,82 cm-1处为 α-吡喃糖的吸收峰,说明多糖 HPS-2中存在 α和 β两种类型的苷键,并以吡喃型糖为主。

4 结论

本实验比较了3种脱蛋白方法,三氯乙酸-正丁醇法脱蛋白效果最好,脱除率达 37.2%,多糖损失率少。利用葡聚糖凝胶 Sephadex G-25柱层析分离纯化红芪多糖得 HPS-2,经 HPLC及紫外扫描为均一多糖,不含蛋白质和核酸。

GC、TLC及 IR分析 HPS-2的糖基组成和结构为,主要由鼠李糖、木糖、阿拉伯糖、葡萄糖和半乳糖5种单糖组成,其摩尔比为 .3∶.2∶2.7∶16.1∶2.,单糖主要为吡喃糖,异头碳以 β型为主,并有少量的 α型。这为红芪多糖的深入研究打下了理论基础,特别为其组成的快速分析提供了可靠的方法。

参考文献

[1]权菊香. 红芪的药理研究进展[J]. 时珍国药研究,1997,8(2):178.

[2]金智生,汝亚琴. 中药红芪的实验研究进展[J].甘肃中医学院学报,23,2(4):52.

[3]李知敏,王伯初,周 菁,等. 植物多糖提取液的几种脱蛋白方法的比较分析[J].重庆大学学报,24,27(8):57.

[4]董 群,郑丽伊,方积年. 改良的苯酚-硫酸法测定多糖和寡糖含量的研究[J].中国药学杂志,1996,31:55.

[5]康学军,曲见松. 白芷多糖中单糖组成的气相色谱分析[J].药物分析杂志,26,26(7):891.

[6]张维杰.复合多糖生化研究技术[M].上海:上海科学技术出版社,1987:1.

大专医学生毕业论文篇2

试谈医学 教育 实践改革

摘要:医学教育主要是通过理论教学和实践教学来进行,通过理论知识的传授、临床技能和临床思维的训练,最终培养成能够解决病患疾苦的合格的医师。理论教学在整个培养过程中占据绝大部分时间,理论授课形式对学生吸引力不够,学生主动参与学习程度不够,实际解决问题能力不强,这些都影响了教学效果。因此,针对现阶段医学教育存在的问题,在医学教育中加强医学教育改革,减少理论授课时间,增加实践课教学时间,提高学生主观能动性,加强师生之间教学互动,进而提升学生学习的主动性和积极性,提高教学质量和教学效果,在真正意义上提升学生解决问题的能力。

关键词:医学教育实践改革探讨

医学专业学生的实践能力培养是我国医学教育的关键,也是最终目的。我国传统的医学教育存在重视理论知识的单一传授,忽视学生动手能力和解决实际问题能力培养的问题。随着医学事业的发展,现阶段的社会对医学生的培养提出了更高的要求,需要在医学教学中加强对学生实践能力的培养,在课程的设置上增加实践教学课时,减少不必要的理论授课时间。比如我国很多医科大学建设了医学技能培训中心,将医学教育中的理论教学、实践教学和技能培训进行结合,并相应配备了高技术的设备和计算机培训软件系统,在计算机软件的作用下将医学操作和人体模型进行结合,在很大程度上满足了医学发展对医学生培训的需求。

1现阶段医学教育的发展现状

伴随我国高等教育的扩招,我国高等教学实现了由精英化教育向大众化教育的转变。高等医学院校的招生人数不断增加,但与之相匹配的教育投入却没有按照一定比例增加,在扩招的影响下,加剧了学生人数增加与投入教育资源不足之间的矛盾。医学教育是培养学生诊断和治疗疾病的教育,是高投入的教育,医学实践教学对提升医学生的分析能力、实践能力和创新能力具有重要意义。但在扩招的情况下,医学教育面临师资力量、教学经费不足、教学场所不够等困境,使得医院的实践教学变得困难,情况不容乐观。

具体体现在以下几方面:第一,人才培养方案制定不合理,无法实现医学教育培养目标。医学教育不仅需要培养创新型人才,更需要培养能够在各级医疗卫生机构中从事大量诊疗工作的医师,只要这样才能解决患者看病难、看病贵的现实问题。但在实际的医学教育培养方案中,对学生实践能力的培养,即在处理病人过程中分析问题、解决问题的能力培养明显不足。学生理论知识丰富,动手能力差。

第二,招生人数急剧增加,但学校硬件和软件设施不能相应增加,无法取得优质的教学质量。由于大学教育由精英教育向大众化教育发展,以及部分经济利益的驱动,几乎每个大学都在扩招。这样的后果就是,学生人数迅猛增加,学校的软硬件设施没有相应增加,而招收的学生整体素质是下降的,能力参差不齐。扩招后的医学院校,由于在办学资金、师资力量以及教学设施上存在限制,导致在实际教学中不能完全采用小班式教学,而更多的是采用大班式的理论教学。大班理论教学效果自然不如小班教学。

人数的增加与学生整体素质的下降加之教学效果下降自然影响最终毕业学生的素质和能力。第三,医学院校附属医院实践条件受限,患者自我保护意识增强,学生实践机会减少。医学院校的附属医院都是大型医院,恰恰也是病人最多的医院,往往是一床难求,临床工作的医师往往超负荷工作,在指导临床实践的实习生的时间和精力上都受到严重影响,指导学生实践的效果自然受到影响。伴随社会发展,医疗环境发生了变化,病人自我保护意识增强,传统的和患者面对面的实践教学面临挑战,更多病人不愿意让学生动手检查和进行一些医学处置。所以,学生实践能力受到影响。而且由于扩招,最终在临床上实践的学生人数多,导致每个实践学生管理病人的数量减少,所见疾病种类也减少。

2医学教育实践教学改革的策略

2.1制定合理的培养方案

医学院校既要培养创新型高素质人才,以期他们去探索未知的许多医学难题。也要培养更多实用型医技人才,大量的医疗卫生机构需要他们去充实力量,大量的患者需要医师去诊断和治疗,这是解决看病难、看病贵,大医院人满为患的根本。因此,要因人制宜地制定培养方案,不搞一刀切。

2.2增加教育经费的投入

投入更多的教育经费,可以增加教师的数量,改善教师工作条件,提高教师教学能力。改善教学硬件设施,采用多媒体教学,采用更多小班教学,增加授课过程中教师与学生互动,变被动学习为主动参与,提高学生学习积极性。

2.3压缩临床课程理论教学学时,增加实践课学时,改革学生成绩考核方式

临床课程理论教学属于被动教学,老师讲,学生听,学生觉得枯燥无味,学习积极性不高,课堂死气沉沉。学生喜欢实践性强的内容,喜欢更接近临床病人的内容。因此,增加临床课程实践教学学时等于提前进入临床实践。对影像专业核医学课程,我们的改革就是将20学时的理论学时压缩成14学时,实践学时由2学时增加到8学时。改革评价学生成绩的方式,将每次的作业、课堂纪律、考勤、期末考试成绩综合后作为本学期最终成绩。经过这些改革,学生学习积极性明显增强,自律性加强,学习效果越来越好,综合素质得到提高。

2.4加强实验技能中心和附属医院的建设,充分发挥实践教学平台的作用,对实践过程进行严格规范

实践教学是培养和提升学生实践技能的根本,实验技能中心和附属医院就是虚拟实践和真实实践的两个平台。医学院校要从意识上重视医学实践的发展,为医学实践配置相应的教学设备,实行完善的设备管理 措施 ,加强对实践教学过程的规范。另外,有关人员还要加强对医学实践教学模拟软件的开发,将先进的技术和理念运用到医学教育实践中。还要加强对医学教育资金的投入,完善医学教学平台实践教学环节的建设。医学教学模式的选择要根据医学实践教学改革面临的问题进行建立,要重点突出模拟教学的地位,形成医学教学质量评价的标准,对医学实践的管理模式进行创新,对教育实践的过程进行优化。[1]

2.5加强对实践教学的管理,完善相应的实践教学制度,加强实践教学质量的管控

针对原有重视理论课教学,忽视实践课教学问题,医学教学对原有的教学管理模式进行改革,强化实践教学制度的建设,加强对实验考核、实验设备以及实验消耗的管理。在实践课环节,要更多要求学生主动参与,分析医学问题。在加强对实践教学质量的管控方面做到以下几点:

第一,加强对实践教学计划的管理。根据人才培养的目标以及学生具备的知识、技能,制定适合的实践教学大纲。实验教学设计要结合具体的医学考试内容进行设计,建立一种不依附于理论教学的实验教学体系,加强对实验综合性、创新性的关注。

第二,加强对实践过程的管理。在实践教学中要按照严格的要求组织实验教学,特别是注意对学生独立分析和处理问题能力的培养。加强对实践教学的考核。[2]第三,加强对实践教学质量的检查。首先,要健全实验课的考核评定方法,将学生对实验课全过程的记录作为对其最终考核的标准之一。其次,建立实验听课制度,加强学生之间的相互学习。最后,定期在网上对学生进行实验教学评价调查,进而了解最新的实验教学状况。

3 总结

综上所述,伴随医学院的扩招以及社会发展对医学人才的需要,医学教育改革是医学教育发展的必然需要。培养具有实践技能的医学高级人才是一个系统工程,因此,如何培养一个符合社会需要的医学人才,需要各个医学院校进行不断的研究和探索。

参考文献:

[1]裴冬梅,吴多芬.医学实践教学改革的新途径[J].现代教育管理,2009,(6):69-71.

[2]赵申武.医学临床专业预防医学实践教学改革探讨[J].实用预防医学,2009,(1):293-294.

大专医学生毕业论文篇3

医学模拟教学在妇产科教学的应用

【摘要】探讨用单项基础技能训练、综合训练的模拟教学模式在本科生妇产科教学中的应用,以达到提高医学生临床基本技能操作能力和培训科学思维的目的。

【关键词】妇产科实践教学模拟教学

临床实践教学是医学生学习掌握基本操作技能、培养临床思维等能力的关键阶段[1,2]。妇产科的操作大多涉及患者的隐私,而医学模拟教育可以利用局部功能训练模型、模拟人、计算机虚拟模拟人,模拟临床真实环境作为教学铺助,达到提高学生临床基本操作技能和培训科学思维的目的。

1模拟教学在妇产科实践教学中的应用

医学本科生学习期间,要掌握基本的操作技能,如在妇产科,对患者子宫后穹窿的穿刺、输卵管通液术、上环术、下环术及产前检查等。可采用多元化示范为导向的模拟教学模式,用局部功能训练模型训练学生,使其有效率地掌握相应的临床操作技能[2],熟练操作技巧[3]。示范教学是指教师与学生之间的互动性局部功能训练模型示范教学,该环节是以实验技能为主的操作教学,教师先通过微视频进行示范,让学生了解基本操作要求,再有选择的对一些重点、难点问题进行讲解并示范操作[4]。各小组选择代表先照样练习,掌握要领后再向组内同学讲解并在全班示范操作。学生在练习时,老师注意观察,对关键部分要提示学生注意,随时指出操作中的不足,并加以讲解。

要给出充足的实践操作时间,用于组内和组间的示范性交流,相互间进行评价,并可以拍摄视频,收集教学素材,用于以后的实验教学,活跃课堂的教学气氛。在示范性教学中,要充分发挥微课、慕课等新教学手段的优点,利用好信息化教学的优势。局部功能训练模型能给学生提供反复强化操作训练的机会,让学生能熟练操作技能。现有的高级综合模拟人拥有强大软件功能。

模拟人具有生理系统和功能体征系统,根据实践教学内容的要求,设置相应的参数,设计不同病情的“患者”,满足各层次的医学实践教学的需求。此类综合训练模拟教学提高了学生的学习兴趣和学习难度[5,6]。综合训练教学采用了启发式教学、案例教学、小组讨论式方法等多种 教学方法 。教师可以一星期前告知学生案例,学生事先做好预习准备。实验室模拟人连接监护仪、呼吸机、麻醉机,学生可对模拟人进行观察、做各种体格检查、采集数据,在最短的时间内做出综合分析和鉴别判断[4],实施相应的临床诊治方案。教师根据学生的诊治表现给予指导和纠正错误,培训医学生的良好的临床思维,提升现代医学教学受训学生的教学质量。

2医学模拟教学的优点

2.1妇科患者病种多样

学生可以通过模拟教学观察到多种妇科疾病,特别是临床上少见疾病的特征[6],学生可直接进行体格检查和操作,熟悉各种妇科疾病患者的诊治。

2.2通过模拟教学反复练习

学生在模型上重复练习[6],能较好的掌握操作要点,直到技能熟练,如妇科患者子宫后穹窿穿刺术、诊刮术、会阴侧切缝合术等。

2.3模拟教学安全性强

在带教教师的指导下直接在患者身上进行操作,如助产术,存在一定的安全隐患。病史采集不熟练及诊治时间急促,易引发患者不良情绪,可能触发医患矛盾。而模拟教学利用模拟系统直到学生进行练习,避免此类问题的发生[7,8]。在妇产科的本科生教学中,模拟教学创造了一个安全、贴近真实临床的教学环境,同时也必须认识到,模拟教学不能完全代替临床实践床旁教学。

参考文献

[1]邓贝贝.医学模拟教学:现代医学教育改革的必经之路[J].卫生教育,2015,21(34):85-86.

[2]卢书明,马亮亮,李艳霞,等.案例教学法联合模拟教学法在消化内科临床教学实践中的应用[J].医学伦理与实践,2015,28(23):3299-3301.

[3]李益平,刘冬莹,库华义.医学模拟教学在基层卫生技术人员康复技能培训中的应用[J].中安国医学教育杂志,2014,34(1):105-106.

[4]张明亚,罗良平,赵辉.高级综合模拟系统在医学教育中的应用[J].医疗卫生装备,2012,33(5):132-133.

[5]尹悦,韩霏,郭凤林,等.临床实习前医学模拟教学集中训练的效果分析[J].中国高等医学教育,2012,4:67,101.

[6]刘静馨,陈沁,罗艳华.护理教育者在高仿真模拟教学中的真实体验的质性研究[J].护理进修杂志,2011,26(12):1082-1084.

[7]伍丽艳,植瑞东,陈康敏.情景模拟教学法和虚拟医学教学法在临床教学中的作用分析[J].北方药学,2013,10(7):152-153.

[8]吴凡,许杰洲,杨棉华.医学模拟教学在提高学生能力与素质中的应用探讨[J].中国医学教育技术,2010,24(2):171-173.

猜你喜欢:

1. 大专临床医学论文

2. 大专临床医学专业毕业论文

3. 大专临床毕业论文范文

4. 大专临床医学毕业论文

悲凉的纸鹤
瘦瘦的铃铛
2025-12-04 20:18:33
你说的那种方法对蛋白的影响很大,对后期的分析也会造成很大的影响,最好是用专门的膜蛋白提取试剂盒,价格不算贵,比起相应的时间和步骤应该是很值的。提出来后就看你要分析什么了,western、coIP、ELISA都可以阿

心灵美的咖啡豆
凶狠的小懒虫
2025-12-04 20:18:33
收稿日期:2007-07-04.基金项目:昆明理工大学科研启动基金资助项目(项目编号:校青2006-18).

第一作者简介:刘宇奇(1975-),女,硕士,讲师.主要研究方向:分析化学及配位化学.E-mai:l1iuNqi7547@ 163. com

光度法测定药品和食物中的微量VC

刘宇奇1,杨 睿1,杨 泳2

(1.昆明理工大学理学院,云南昆明6500932.昆明医学院药理教研室,云南昆明650031)

摘要:采用一种简单、快速的方法测定VC,该方法基于在室温下,抗坏血酸能快速地将Fe3+还原

成Fe2+,Fe2+与2, 2’-联吡啶反应生成红色配合物,配合物的最大吸收峰位于520 nm波长处,

VC的质量浓度在0·088~7·0mg/L范围内符合比尔定律,该方法用于食品和药片中VC含量的

测定,结果的相对标准偏差小于1·5%,回收率在96·3% ~105·0%之间.

关键词:分光光度法联毗啶维生素C含量测定

中图分类号:O65文献标识码:A文章编号:1007-855X(2008)02-0112-04

Determination ofVitamin C in Foods and

MedicalTabletby Spectrophotometry

LIU Yu-qi1, YANG Rui1, YANG Yong2

(1.Faculty ofScience, KunmingUniversity ofScience and Engineering, Kunming 650093, China

2. Deptartment ofPharmacology, KunmingUniversity ofMedicalScience, Kunming 650031, China)

Abstract:A simple and fastmethod is used for the determination ofVC in this paper. Thismethod is based on

the fact thatunder room temperature, ascorbic acid reducesFe(III) toFe(II) quickly and the latter reactswith

bipyridine (2, 2’-hipy) to form a reddish colored complexwith its absorptionmaximum at thewavelength of520

nm. Beer’s law is obeyed in the concentration range of0·088-7·0mg ofVC per1000mL ofsolution. The pro-

posedmethod is then applied to the determination of foods andmedical table.t RSDs' (n=6) is less than 1·5%

with recoveries in the range of96·3% -105·0%.

Key words:spectrophotometryvitamin Cbipyridinecontentdetermince

0前言

VC具有抗坏血病的效应,所以又称抗坏血酸(Ascorbicacid).它是人体不可缺少的一种重要营养物

质,常存在于新鲜的蔬菜和水果中.由于抗坏血酸参与体内一系列代谢和反应,能促进胶原蛋白和粘多糖

的合成,增加微血管的致密性,降低其通透性及脆性,增加机体抵抗力.缺乏时,引起造血机能障碍、贫血、

微血管壁通透性增加,脆性增强和血管容易破裂出血,严重时肌肉、内脏出血死亡,这些症状在临床上通常

称为坏血病.因此抗坏血酸不仅是人体所必须的由外界提供的营养物质,同时也是维持正常生命过程所必

需的一类有机物.人正常每天最低需要量为75mg,长期缺乏抗坏血酸会导致某种营养不良症状及相应的

疾病,所以,VC对维持人体健康十分重要.对部分食品中的营养成分———抗坏血酸的含量做一些测定,为

指导人们合理膳食,正确补充营养素有一定意义.

目前测定抗坏血酸的方法有2, 6-二氯靛酚滴定法、2, 4-二硝基苯肼分光光度法[1]、荧光分光光度

法、近红外分光光度法[2]、电位滴定法[3-4]、钼蓝比色法[5]、褪色光度法[6]、高效液相色谱法[7]等.不同方

法各有其长处,但也有一定的局限性.如2, 6-二氯酚滴定法及2, 4-二硝基苯肼光度法操作复杂,测试条

件较为严格. 2, 4-二硝基苯肼光度法完成一次样品分析需数小时,不能快速测定[8].利用VC分子中的烯

二醇基将Fe3+定量还原成成F2+e与2, 2’-联吡啶(2, 2-bipyridine)进行显色反应.并利用2, 2’-bipy-

Fe2+-VC显色体系在本文研究的最佳测定条件下用分光光度法间接测定VC的含量,由于剩余Fe3+的也

能与2, 2’-联毗啶显色,可用NaF将其掩蔽.此法简便、快速,结果令人满意,为食品和药片中VC含量的

测定提供了方法.

1试验部分

1. 1主要仪器和试剂

722型光栅分光光度计(山东高密分析仪器厂)电子分析天平(北京赛多利斯仪器系统有限公司)

六孔数显水浴锅(金坛市环保仪器厂)捣碎机.

0·000 125 0mol/L维生素C标准溶液:准确称取维生素C(分析纯) 0·011 01 g,加入适量pH 3三氯

乙酸溶液溶解,定量转移到500mL的棕色容量瓶中,用pH 3三氯乙酸溶液稀释至刻度,暗处放置.

Fe3+标准溶液: 0·001mol/L,称取硫酸铁铵0·24 g,用1mol/L,的硫酸溶解,用水稀释到500mL.

2, 2’-联吡啶: 0·004mol/L,称取固体物质用少量的无水乙醇溶解,并用水稀释到250mL.

1mol/L的NaF标准溶液.

1·2试验方法

用移液管移取10mLFe3+标准溶液和一定量的VC标准溶液于50mL比色管中.加入10mL pH 3三氯

乙酸溶液,然后加入一定量的2, 2’-联吡啶溶液和1mol/LNaF溶液1·00mL,用水稀释至50mL、摇匀.

室温条件下静置10min后置1 cm比色皿中,在分光光度计上以试剂空白为参比,于520 nm波长处测定其

吸光度.

2结果与讨论

2. 1测量波长的选择

按试验方法以试剂为空白,将显色后的溶液在400~600 nm区

间内绘制吸收曲线,如图1所示.结果表明最大吸收波长为520 nm,

实验选用520 nm为测定波长.

2. 2显色剂加入量

试验结果表明, 0·004 mol/L 2, 2’-联吡啶用量在8·0~10·0

mL范围内,吸光度达到最大且稳定.本法用量为9mL.

2. 3反应时间与温度的影响

分别考察了反应时间与反应温度对体系吸光度的影响,结果表

明,室温度时定容5~10min之内即可显色完全,且显色在100min

内相当稳定.本文选择在室温下反应10min.

2·4离于对试剂的选择

当CTMAB加入5mL时对2, 2’-bipy-Fe2+-VC形成络合物的吸光度和吸收波长无显著影响,而加

入三乙醇胺则可使显色体系的吸光度增大.

2. 5掩蔽剂及用量选择

在试验中发现,被抗坏血酸还原后剩余的Fe3+也可以与2, 2’-联吡啶生成有色配合物,并在光还原

作用下还原为Fe2+与2, 2’-联吡啶的配合物,因此需要用掩蔽剂来掩蔽剩余的Fe3+,本实验选用1mol/L

NaF溶液作为掩蔽剂,进一步研究表明, 0·25mL以上的1mol/LNaF溶液即能达到掩蔽作用.故本文选用

1mL的1mol/LNaF溶液作为掩蔽剂.

2. 6标准曲线制备

按试验方法对标准系列进行显色测定,结果表明:VC质量浓度在0·088~7·0mg/L范围内符合比尔

113第3期 刘宇奇,杨 睿,杨 泳:光度法测定药品和食物中的微量VC

定律回归方程为:A=0·003 25+231 49·455 03C(mol/L),相关系数为0. 999 91表观摩尔吸光系数ε=

2·40×104L·mol-1·cm-1.

2·7干扰离子的影响

当相对误差控制在±5%以内,对1·0mg/L的抗坏血酸进行测定时,下列倍数的物质不干扰:Na+,

Cl-,K+,NO3-,Zn2+(1 000倍),Mg2-, SO42+,Al3+(500倍), I′(100倍),Vitamin B1,Vitamin E(100倍),

常见离子中Ca2+(1 000倍),Ba2+对抗坏血酸的测定产生干扰,但在样品中Ba2+与Ca2+的含量一般比较

低.通常不需要分离处理,可以直接测定. 1mL的1mol/LNaF可掩蔽Fe3+,体系选择性较好.

2. 8样品分析

样品制备和测定分析

1)VC药片.分别将市售VC白片和VC黄片各一瓶倒入玻璃研钵中研细,充分混匀后,准确称取VC

白片0. 019 841 g和黄片0. 0138 6 g置于2个100mL的容量瓶中,用pH 3三氯乙酸溶液浸取并定容.充分

摇动使其粉末分散约1~2min后,立即用干燥滤纸过滤,弃去初滤液,精密移取过滤液1. 50mL于50mL

比色管中定容,按试验方法进行测定,结果如表1.

表1 药片中维生素C含量测定结果(n=6)

Tab. 1 The determ ination results of content of

vitam in C in m edical tablet(n=6)

样品本法测定值g/100 g加入量/μg回收率/% RSD /%

VC白片68·02 90 102·8 0·701

VC黄片57·89 89 103·7 0·325

表2 食物中维生素C含量测定结果(n=6)

Tab. 2 The determ ination results of content of

vitam in C in foods(n=6)

样品本法测定值加入量/μg回收率/% RSD /%

弥猴桃0·238 g/100g 0·200 98·2 0·541

黄瓜10·03mg/100g 0·200 104·9 1·41

鲜橙多58·50mg/100mL 0·200 96·3 1·08

2)食物样品.称取去皮猕猴桃

30·853 9 g和黄瓜25·425 8 g浸在一

定量的pH 3三氯乙酸溶液中,用捣碎

机捣碎混匀并过滤.取过滤后的猕猴

桃果汁置于500mL的容量瓶中、黄瓜

过滤液置于100mL的容量瓶中,并用

pH 3三氯乙酸溶液稀释至刻度.充分

摇动1~2min,立即用干燥滤纸滤去

初滤液,精密分别移取猕猴桃过滤液

1·00mL和黄瓜过滤液5·00mL于50

mL比色管中定容,按试验方法进行

测定,结果如表2.

3)饮料.移取鲜橙多10·00mL在

一定量的pH 3三氯乙酸溶液中,置于

100mL的容量瓶中,并用pH 3三氯乙酸溶液稀释至刻度.充分摇动1~2min,精密移取过滤液2·50mL

于50mL比色管中定容,按试验方法进行测定,结果如表2.

3结语

1)从表2中看出,水果中猕猴桃的维生素C含量较为丰富,在日常生活中应多食用这类水果,补充身

体所需营养素.

2)从表1和表2中方法的精密度、回收率以及标准曲线的线性关系来看,用分光光度法测定抗坏血酸

是可行的.但是由于抗坏血酸本身性质不稳定,容易降解,因此在进行样品处理时应注意尽快将样品捣碎

浸取在缓冲溶液中.

3)水果中含有的铁都是以有机物形式存在的,不与2, 2’-联吡啶直接络合,则不影响测定结果.水果

中的VC在空气中极易被氧化,样品处理时必须用保护剂防止VC被氧化.保护剂不能用草酸,因草酸具有

还原性,本法用三氯乙酸缓冲溶液作保护剂.

参考文献:

[1]闫树刚,韩涛.果蔬及其制品中维生素C测定方法评价[J].农学通报, 2002, 18(4): 110-112.

114昆明理工大学学报(理工版) 第33卷

[2]杨婷,逯家辉,张大海,等.菲林B近红外分光光度法测定维生素C[J].分析化学, 2005, 33(11): 1 593-1 595.

[3]陈秋丽,甘振威,张娅捷,等.电位滴定法测定深色蔬菜和水果中的维生素C[J].吉林大学学报:医学版, 2004, 30(5):

821-822.

[4]陈志慧.荔枝保鲜过程中维生素C的快速电位滴定[J].理化检验(化学分册), 2006, 42(8): 664-665.

[5]李军.钼蓝比色法测定还原型维生素C[J].食品科学, 2000, 21(8): 42-45.

[6]孙德坤,许月明,吴定.褪色光度法测定果蔬中VC的含量C[J].食品工业科技: 2003, 24(5): 93-95.

[7]胡志群,王惠聪,胡桂兵.高效液相色谱测定荔枝果肉中的糖、酸和维生素C[J].果树学报, 2005, 22(5): 582.

[8]奚长生.磷钼蓝分光光度法测定维生素C[J].光谱学与光谱分析, 2001, 21(5): 723-725.

(上接第103页)

该综合方程的R2更接近1F值临界值为6·42,而该方程的F值为30·59P值减小,表明该回归方程

具有更好的统计意义.方程说明ΔE(H-L),Q(C5)和EL对药物的活性有较大的影响.活性参数(pIC50)

的值越大,药物作用在受体上的活性越好.从方程可以看出ΔE(H-L)越小,Q(C5)更正(即负电荷越少)

药物的活性更强.因此可以看出ΔE(H-L)和Q(C5)可能是决定药物活性的主要因数.EL2对药物活性也

有一定影响,但系数较小,影响也较小.

3结论

通过对灯盏花苷Ⅰ及其衍生物前线分子轨道的分析和构效关系的计算,计算结果定量的表明,当灯盏

花苷Ⅰ及其衍生物作用于受体的时候,ΔE(H-L)和Q(C5)是决定药物活性的主要因数.文中所得到的表

示pIC50与量子化学参数间关系的相关方程式,为类似衍生物的生物活性的预测提供了一个简单可行的

方法.

参考文献:

[1] ZhangWD, ChenWS, KongDY, et a.l Two new Glycoside from Erigeron Brevicapus[J]. JChin Pharm Sc,i 2000, 9(3):

122-124.

[2] Zhou Y, ZhangWD, Gu ZB, et a.l Study on Synthesis of erigeside[J]. ChinMediChem. 2002, 46(2): 68-72.

[3]周耘.灯盏花苷及其衍生物的合成与初步生物活性研究[D].上海:第二军医大学药物化学专业, 2002, 7-19.

115第3期 刘宇奇,杨 睿,杨 泳:光度法测定药品和食物中的微量VC

分光光度法测定大枣中的维生素C含量

袁叶飞,甄汉深,欧贤红

(广西中医学院,广西南宁 530001)

摘要:目的:建立大枣中维生素C含量的测定方法。方法:用乙酸从大枣中提取维生素C,

由维生素C形成脎,于波长490 nm处测定脎的吸光度。结果:维生素C标准溶液的浓度在8~

16μg/ml范围内线性关系良好(r=0. 999 7),平均回收率为99. 76%,大枣中含维生素C 4. 752

mg/g,与传统碘量法相比,测定结果基本一致。结论:本方法操作简便,结果可靠,重现性好,可作

为大枣中的维生素C含量测定方法。

关键词:大枣维生素C分光光度法

中图分类号:R927. 2 文献标识码:A 文章编号: 1000-2219(2006)02-0041-03

大枣为鼠李科植物枣(Ziziphus jujubaMil.l )的

燥成熟果实,具有补中益气、养血安神等功效[1]。

枣中富含维生素C、山楂酸和环磷酸腺苷,笔者采

分光光度法测定大枣中的维生素C含量,取得了

好的结果。

仪器与试药

. 1 仪器 Agilent 8453型紫外可见分光光度计

美国)METTLER AE100电子分析天平(瑞士)。

. 2 试药 大枣由广西南宁市医药公司提供,产于

西灌阳,经本院中药鉴定教研室鉴定。维生素C

R(四川成都科龙化工试剂一厂生产,批号

50426)。硫酸铁铵AR(四川成都科龙化工试剂一

生产,批号040130),实验时以蒸馏水配成0. 003

ol/L的溶液。乙酸AR(国药集团化学试剂有限公

生产,批号20050519),实验时以蒸馏水配成1. 2

ol/L的溶液。硫酸AR(广西师范学院化学试剂厂

产,批号200406101),实验时以蒸馏水配成500

l/L的溶液。2, 4-二硝基苯肼AR(中国医药集团

海化学试剂公司生产,批号T2002061),实验时以

00 ml/L硫酸溶液配成1 ml/L的溶液,过滤,不用

放入冰箱内,每次用前必须过滤。乙酸钠AR(中

医药集团上海化学试剂公司生产,批号

20041105)。pH 6. 0的乙酸-乙酸钠缓冲溶液,由

9 g乙酸钠和3 ml乙酸混合,最后用蒸馏水稀释至

L而成。

方法与结果

. 1 对照品溶液的制备 维生素C原料经乙醇二

者简介:袁叶飞(1973-),男,博士研究生,讲师。

次重结晶,真空度60 mmHg, 50℃干燥至恒重,符合

《中华人民共和国药典》2005年版规定,碘量法测定

含量为999. 70 g/kg。精密称取已纯化并干燥的维

生素C 10 mg,置于100 ml容量瓶中,蒸馏水定容、

摇匀,配制成100μg/ml的维生素C水溶液。

2. 2 供试品溶液的制备 称取去核鲜枣10. 00 g,

置乳钵中,加少量1. 2 mol/L乙酸溶液,研碎,过滤,

用1. 2 mol/L乙酸溶液反复洗涤滤渣及乳钵后,所

得滤液再离心,将离心后的滤液全部转移至200 ml

容量瓶,用蒸馏水定容。

2. 3 标准曲线绘制 分别精密移取100μg/ml维

生素C标准溶液2. 0, 2. 5, 3. 0, 3. 5, 4. 0 ml于25 ml

容量瓶中,各加入5 ml pH=6的乙酸-乙酸钠缓冲

溶液,摇匀,随之加入2. 0 ml0. 003 mol/L硫酸铁铵

溶液,摇匀后,再加1. 5 ml1ml/L 2, 4-二硝基苯肼

溶液,摇匀,最后用蒸馏水定容到25 ml。立即置于

37℃水浴锅中,恒温反应2 h。冷却后,在Agilent

8453型紫外可见分光光度计上于波长490 nm处

测定吸光度。维生素C含量与脎的吸光度的关系

见表1。

表1 维生素C含量与吸光度的关系

编号体积(ml)浓度(μg/ml)吸光度

1 2. 0 8 0. 149 3

2 2. 5 10 0. 318 7

3 3. 0 12 0. 472 0

4 3. 5 14 0. 608 2

5 4. 0 16 0. 767 8

将吸光度(A)与浓度(c)进行线性回归,得回归

方程A=0. 076 32c-0. 452 7,相关系数r=0. 999 7。

40

果表明维生素C在8~16μg/ml范围内,线性关

良好。

. 4 试验条件

.4. 1 酸度的影响:以乙酸和乙酸钠配成一系列酸

的缓冲液,余下同标准曲线项操作,结果表明,缓

液的pH值在5. 0~6. 8范围内脎的最大吸收峰

在490 nm处,吸光度最大且恒定。本实验选用

H=6的乙酸-乙酸钠缓冲溶液。

.4. 2 乙酸-乙酸钠缓冲溶液的用量:同标准曲线

操作,加入3~9 ml pH=6的乙酸-乙酸钠缓冲溶

时,脎的吸光度基本保持不变,本实验选用5 ml。

.4. 3 硫酸铁铵用量:同标准曲线项操作,改变硫

铁铵用量,其用量分别为1. 0, 1. 5, 2. 0, 2. 5, 3. 0

l。结果表明,硫酸铁铵加入量以2. 0 ml为宜。

在1. 5~2. 5 ml范围内,吸光度保持稳定)

. 4. 4 2, 4-二硝基苯肼溶液用量:同标准曲线项

作, 2, 4-二硝基苯肼用量分别为0. 5, 1. 0, 1. 5,

. 0, 2. 5 ml。结果表明,加入量以1. 5 ml为宜。

在1. 0~2. 0 ml范围内,吸光度保持稳定)

. 4. 5 成脎的反应温度:当温度低于30℃时反应

完全。温度上升到37℃时,吸光度趋于最大,

7℃以后,吸光度趋于稳定。

4.6 成脎的反应时间:在1. 0, 1. 5, 2. 0, 2. 5, 3. 0 h

末,脎的吸收光度分别为0. 483 1, 0. 502 6, 0. 608 1,

0. 608 0, 0. 608 1。结果表明,反应2 h末脎的吸光

度达到最大值并且比较稳定。

2.4. 7 共存物质的干扰影响:对于9. 6μg/ml的维

生素C量,下列共存离子或物质(mg)不干扰(相对

误差≤5% ):蔗糖(12. 0)葡萄糖(6. 0)果糖

(4. 0)蛋白质(5. 0)Ca2+、Mg2+、K+、Na+(4. 0)

天冬氨酸、苏氨酸、酪氨酸(8. 0)维生素B2(1. 0)

烟酰胺(2. 0)山楂酸(1. 1)环磷酸腺苷(2. 5)柠

檬酸(0. 9)酒石酸(2. 1)。

2. 5 精密度试验:精密移取对照品溶液6份,每

份2. 5 m,l按标准曲线项操作测定吸光度,RSD为

0. 09% (n=6),说明精密度良好。

2.6 重现性试验 精密移取供试品溶液6份,每份

1. 5 ml于25 ml容量瓶中,以下操作按标准曲线项

测定吸光度并计算含量,结果RSD为0. 23% (n=

6),说明重现性良好。

2. 7 稳定性试验 精密移取对照品溶液2. 5m,l按

标准曲线项操作,每隔0. 5 h测定1次吸光度,结果

其RSD为0. 2%(n=6),脎至少在2. 5 h内稳定。

2. 8 回收率试验 采用加样回收法。取供试液

0. 2 ml于25 ml容量瓶中,再分别精密加入对照品

100, 200, 300μg,余下按标准曲线下操作。见表2。

表2 回收率测定结果

编号样品含维生素C量(μg)加入维生素C量(μg)测得总维生素量(μg)回收率(% )平均回收率(% )RSD(% )

1

2

3

4

5

6

47. 52

47. 52

47. 52

47. 52

47. 52

47. 52

100

100

200

200

300

300

146. 62

148. 31

246. 89

245. 56

346. 92

348. 02

99. 10

100. 79

99. 69

99. 02

99. 80

100. 17

99. 76 0. 667 7

表3 大枣中维生素C含量测定结果比较

编号分光光度法

测定值(mg/g)均值(mg/g)

碘量法

测定值(mg/g)均值(mg/g)

均值相对差

(% )

1 4. 746 4. 718

2 4. 749 4. 722

3 4. 758 4. 752 4. 731 4. 724 0. 593

4 4. 747 4. 711

5 4. 757 4. 724

6 4. 755 4. 738

9 大枣中维生素C含量测定 精密移取1. 5 ml

试品溶液于25 ml容量瓶中,共6份,以下操作同

准曲线项,测定脎的吸光度,经测定脎的平均吸光

为0. 635 3,RSD=0. 23% (n=6)。把平均吸光

代入回归方程A=0. 076 32c-0. 452 7,得c=

4. 256μg/m,l则大枣中含维生素C 4. 752 mg/g。

.10 结果比较 用分光光度法与传统的碘量法分

别测定大枣中维生素C的含量并相比较,结果基本

一致,均值相对误差为0. 593%。见表3。

3 讨论

目前,测定果蔬中的维生素C含量的方法一般

采用电位滴定法[2]、碘量法[1]等,但所有这些方法

都有标准溶液标定繁琐、操作程序复杂、费时等缺

点。笔者根据Fe3+使维生素C氧化成脱氢抗坏血

酸,脱氢抗坏血酸再与2, 4-二硝基苯肼作用生成

脎,脎的量与抗坏血酸含量成正比这一原理,采用分

光光度法直接测定大枣中的维生素C含量。本方

法与传统碘量法测定大枣中的维生素C的含量,结

果基本一致,因而本方法结果可靠。另外本方法操

作简便,重现性好,克服了碘量法的缺点。

哭泣的跳跳糖
过时的乌龟
2025-12-04 20:18:33

根据一级质谱可以测得多肽整体的分子量,多肽碎裂时会产生一系列在肽链不同位置断裂而形成的碎片离子,可以得到多肽的二级谱图,根据二级质谱相近谱峰之间的质量数之差可以推算出对应的氨基酸序列。

由两个氨基酸分子脱水缩合而成的化合物叫做二肽,同理类推还有三肽、四肽、五肽等。通常由10~100个氨基酸分子脱水缩合而成的化合物叫多肽。

扩展资料:

一般肽中含有的氨基酸的数目为二到九,根据肽中氨基酸的数量的不同,肽有多种不同的称呼:由两个氨基酸分子脱水缩合而成的化合物叫做二肽,同理类推还有三肽、四肽、五肽等,一直到九肽。通常由10~100个氨基酸分子脱水缩合而成的化合物叫多肽,它们的分子量低于10,000Da(Dalton,道尔顿),能透过半透膜,不被三氯乙酸及硫酸铵所沉淀。

也有文献把由2~10个氨基酸组成的肽称为寡肽(小分子肽);10~50个氨基酸组成的肽称为多肽;由50个以上的氨基酸组成的肽就称为蛋白质,换言之,蛋白质有时也被称为多肽。多肽也简称为肽,是20世纪被发现的。

友好的钻石
任性的玉米
2025-12-04 20:18:33

水果中维生素c含量的测定方法有三种,分别为原子吸收分光光度法、紫外可见分光光度法、高效液相色谱法。

1、原子吸收分光光度法

利用原子吸收分光光度法问接测定维生素C的含量,是利用维生素C可以与一些金属离子发生氧化还原反应,通过测定反应掉的金属离子的量,进而间接计算出维生素c的含量。

2、紫外-可见分光光度法

利用紫外-可见分光光度法测定维生素C的含量是基于维生素c在紫外光区有特征吸收,但是因为维生素C结构中具有不饱和键,具有还原性,不易稳定存在,直接测定误差较大。所以在利用紫外分光光度法测定时,维生素标准溶液和待测样的配制条件非常重要。

3、高效液相色谱法

高效液相色谱法是以液体为流动相,采用高压输液系统,将维生素C的溶剂装有固定相的色谱柱,在柱内各成分被分离后,进入检测器进行检测,从而测量出维生素c的含量。

扩展资料

维生素c含量的测定方法对比:

由于维生素C自身的不稳定,导致了很多方法测定结果误差较大,所以对维生素C稳定存在条件的探索非常重要。高效液相色谱法因为测定较准确、灵敏度高、选择性好,有较好的发展前景,是目前发展较快的一种方法。

参考资料来源:百度百科-维生素c

百度百科-高效液相色谱

百度百科-原子吸收分光光度法

百度百科-紫外-可见分光光度法

懦弱的香菇
紧张的猎豹
2025-12-04 20:18:33
常用紫外分光光度法测定蛋白质含量。以下引用:6种方法测定蛋白质含量一、微量凯氏(kjeldahl)定氮法样品与浓硫酸共热。含氮有机物即分解产生氨(消化),氨又与硫酸作用,变成硫酸氨。经强碱碱化使之分解放出氨,借蒸汽将氨蒸至酸液中,根据此酸液被中和的程度可计算得样品之氮含量。若以甘氨酸为例,其反应式如下:nh2ch2cooh+3h2so4——2co2+3so2+4h2o+nh3(1)2nh3+h2so4——(nh4)2so4(2)(nh4)2so4+2naoh——2h2o+na2so4+2nh3(3)反应(1)、(2)在凯氏瓶内完成,反应(3)在凯氏蒸馏装置中进行。为了加速消化,可以加入cuso4作催化剂,k2so4以提高溶液的沸点。收集氨可用硼酸溶液,滴定则用强酸。实验和计算方法这里从略。计算所得结果为样品总氮量,如欲求得样品中蛋白含量,应将总氮量减去非蛋白氮即得。如欲进一步求得样品中蛋白质的含量,即用样品中蛋白氮乘以6.25即得。二、双缩脲法(biuret法)(一)实验原理双缩脲(nh3conhconh3)是两个分子脲经180℃左右加热,放出一个分子氨后得到的产物。在强碱性溶液中,双缩脲与cuso4形成紫色络合物,称为双缩脲反应。凡具有两个酰胺基或两个直接连接的肽键,或能过一个中间碳原子相连的肽键,这类化合物都有双缩脲反应。紫色络合物颜色的深浅与蛋白质浓度成正比,而与蛋白质分子量及氨基酸成分无关,故可用来测定蛋白质含量。测定范围为1-10mg蛋白质。干扰这一测定的物质主要有:硫酸铵、tris缓冲液和某些氨基酸等。此法的优点是较快速,不同的蛋白质产生颜色的深浅相近,以及干扰物质少。主要的缺点是灵敏度差。因此双缩脲法常用于需要快速,但并不需要十分精确的蛋白质测定。(二)试剂与器材1.试剂:(1)标准蛋白质溶液:用标准的结晶牛血清清蛋白(bsa)或标准酪蛋白,配制成10mg/ml的标准蛋白溶液,可用bsa浓度1mg/ml的a280为0.66来校正其纯度。如有需要,标准蛋白质还可预先用微量凯氏定氮法测定蛋白氮含量,计算出其纯度,再根据其纯度,称量配制成标准蛋白质溶液。牛血清清蛋白用h2o或0.9%nacl配制,酪蛋白用0.05nnaoh配制。(2)双缩脲试剂:称以1.50克硫酸铜(cuso4•5h2o)和6.0克酒石酸钾钠(knac4h4o6•4h2o),用500毫升水溶解,在搅拌下加入300毫升10%naoh溶液,用水稀释到1升,贮存于塑料瓶中(或内壁涂以石蜡的瓶中)。此试剂可长期保存。若贮存瓶中有黑色沉淀出现,则需要重新配制。2.器材:可见光分光光度计、大试管15支、旋涡混合器等。(三)操作方法1.标准曲线的测定:取12支试管分两组,分别加入0,0.2,0.4,0.6,0.8,1.0毫升的标准蛋白质溶液,用水补足到1毫升,然后加入4毫升双缩脲试剂。充分摇匀后,在室温(20~25℃)下放置30分钟,于540nm处进行比色测定。用未加蛋白质溶液的第一支试管作为空白对照液。取两组测定的平均值,以蛋白质的含量为横座标,光吸收值为纵座标绘制标准曲线。2、样品的测定:取2~3个试管,用上述同样的方法,测定未知样品的蛋白质浓度。注意样品浓度不要超过10mg/ml。三、folin—酚试剂法(lowry法)(一)实验原理这种蛋白质测定法是最灵敏的方法之一。过去此法是应用最广泛的一种方法,由于其试剂乙的配制较为困难(现在已可以订购),近年来逐渐被考马斯亮兰法所取代。此法的显色原理与双缩脲方法是相同的,只是加入了第二种试剂,即folin—酚试剂,以增加显色量,从而提高了检测蛋白质的灵敏度。这两种显色反应产生深兰色的原因是:在碱性条件下,蛋白质中的肽键与铜结合生成复合物。folin—酚试剂中的磷钼酸盐—磷钨酸盐被蛋白质中的酪氨酸和苯丙氨酸残基还原,产生深兰色(钼兰和钨兰的混合物)。在一定的条件下,兰色深度与蛋白的量成正比。folin—酚试剂法最早由lowry确定了蛋白质浓度测定的基本步骤。以后在生物化学领域得到广泛的应用。这个测定法的优点是灵敏度高,比双缩脲法灵敏得多,缺点是费时间较长,要精确控制操作时间,标准曲线也不是严格的直线形式,且专一性较差,干扰物质较多。对双缩脲反应发生干扰的离子,同样容易干扰lowry反应。而且对后者的影响还要大得多。酚类、柠檬酸、硫酸铵、tris缓冲液、甘氨酸、糖类、甘油等均有干扰作用。浓度较低的尿素(0.5%),硫酸纳(1%),硝酸纳(1%),三氯乙酸(0.5%),乙醇(5%),乙醚(5%),丙酮(0.5%)等溶液对显色无影响,但这些物质浓度高时,必须作校正曲线。含硫酸铵的溶液,只须加浓碳酸钠—氢氧化钠溶液,即可显色测定。若样品酸度较高,显色后会色浅,则必须提高碳酸钠—氢氧化钠溶液的浓度1~2倍。进行测定时,加folin—酚试剂时要特别小心,因为该试剂仅在酸性ph条件下稳定,但上述还原反应只在ph=10的情况下发生,故当folin一酚试剂加到碱性的铜—蛋白质溶液中时,必须立即混匀,以便在磷钼酸—磷钨酸试剂被破坏之前,还原反应即能发生。此法也适用于酪氨酸和色氨酸的定量测定。此法可检测的最低蛋白质量达5mg。通常测定范围是20~250mg。(二)试剂与器材1.试剂(1)试剂甲:(a)10克na2co3,2克naoh和0.25克酒石酸钾钠(knac4h4o6•4h2o)。溶解于500毫升蒸馏水中。(b)0.5克硫酸铜(cuso4•5h2o)溶解于100毫升蒸馏水中,每次使用前,将50份(a)与1份(b)混合,即为试剂甲。(2)试剂乙:在2升磨口回流瓶中,加入100克钨酸钠(na2wo4•2h2o),25克钼酸钠(na2moo4•2h2o)及700毫升蒸馏水,再加50毫升85%磷酸,100毫升浓盐酸,充分混合,接上回流管,以小火回流10小时,回流结束时,加入150克硫酸锂(li2so4),50毫升蒸馏水及数滴液体溴,开口继续沸腾15分钟,以便驱除过量的溴。冷却后溶液呈黄色(如仍呈绿色,须再重复滴加液体溴的步骤)。稀释至1升,过滤,滤液置于棕色试剂瓶中保存。使用时用标准naoh滴定,酚酞作指示剂,然后适当稀释,约加水1倍,使最终的酸浓度为1n左右。(3)标准蛋白质溶液:精确称取结晶牛血清清蛋白或g—球蛋白,溶于蒸馏水,浓度为250mg/ml左右。牛血清清蛋白溶于水若混浊,可改用0.9%nacl溶液。2.器材(1)可见光分光光度计(2)旋涡混合器(3)秒表(4)试管16支(三)操作方法1.标准曲线的测定:取16支大试管,1支作空白,3支留作未知样品,其余试管分成两组,分别加入0,0.1,0.2,0.4,0.6,0.8,1.0毫升标准蛋白质溶液(浓度为250mg/ml)。用水补足到1.0毫升,然后每支试管加入5毫升试剂甲,在旋涡混合器上迅速混合,于室温(20~25℃)放置10分钟。再逐管加入0.5毫升试剂乙(folin—酚试剂),同样立即混匀。这一步混合速度要快,否则会使显色程度减弱。然后在室温下放置30分钟,以未加蛋白质溶液的第一支试管作为空白对照,于700nm处测定各管中溶液的吸光度值。以蛋白质的量为横座标,吸光度值为纵座标,绘制出标准曲线。注意:因lowry反应的显色随时间不断加深,因此各项操作必须精确控制时间,即第1支试管加入5毫升试剂甲后,开始计时,1分钟后,第2支试管加入5毫升试剂甲,2分钟后加第3支试管,余此类推。全部试管加完试剂甲后若已超过10分钟,则第1支试管可立即加入0.5毫升试剂乙,1分钟后第2支试管加入0.5毫升试剂乙,2分钟后加第3支试管,余此类推。待最后一支试管加完试剂后,再放置30分钟,然后开始测定光吸收。每分钟测一个样品。进行多试管操作时,为了防止出错,每位学生都必须在实验记录本上预先画好下面的表格。表中是每个试管要加入的量(毫升),并按由左至右,由上至下的顺序,逐管加入。最下面两排是计算出的每管中蛋白质的量(微克)和测得的吸光度值。folin—酚试剂法实验表管号12345678910标准蛋白质00.10.20.40.60.81.0(250mg/ml)未知蛋白质0.20.40.6(约250mg/ml)蒸馏水1.00.90.80.60.40.200.80.60.4试剂甲5.05.05.05.05.05.05.05.05.05.0试剂乙0.50.50.50.50.50.50.50.50.50.5每管中蛋白质的量(mg)吸光度值(a700)2.样品的测定:取1毫升样品溶液(其中约含蛋白质20~250微克),按上述方法进行操作,取1毫升蒸馏水代替样品作为空白对照。通常样品的测定也可与标准曲线的测定放在一起,同时进行。即在标准曲线测定的各试管后面,再增加3个试管。如上表中的8、9、10试管。根据所测样品的吸光度值,在标准曲线上查出相应的蛋白质量,从而计算出样品溶液的蛋白质浓度。注意:由于各种蛋白质含有不同量的酪氨酸和苯丙氨酸,显色的深浅往往随不同的蛋白质而变化。因而本测定法通常只适用于测定蛋白质的相对浓度(相对于标准蛋白质)。四、改良的简易folin—酚试剂法(一)试剂1.试剂甲:碱性铜试剂溶液中,含0.5nnaoh、10%na2co3、0.1%酒石酸钾和0.05%硫酸铜,配制时注意硫酸铜用少量蒸馏水溶解后,最后加入。2.试剂乙:与前面的基本法相同。临用时加蒸馏水稀释8倍。3.标准蛋白质溶液:同基本法。(二)操作步骤测定标准曲线与样品溶液的操作方法与基本法相同。只是试剂甲改为1毫升,室温放置10分钟后,试剂乙改为4毫升。在55℃恒温水浴中保温5分钟。用流动水冷却后,在660nm下测定其吸光度值。改良的快速简易法,可获得与folin—酚试剂法(即lowry基本法)相接近的结果。五、考马斯亮兰法(bradford法)(一)实验原理双缩脲法(biuret法)和folin—酚试剂法(lowry法)的明显缺点和许多限制,促使科学家们去寻找更好的蛋白质溶液测定的方法。1976年由bradford建立的考马斯亮兰法(bradford法),是根据蛋白质与染料相结合的原理设计的。这种蛋白质测定法具有超过其他几种方法的突出优点,因而正在得到广泛的应用。这一方法是目前灵敏度最高的蛋白质测定法。考马斯亮兰g-250染料,在酸性溶液中与蛋白质结合,使染料的最大吸收峰的位置(lmax),由465nm变为595nm,溶液的颜色也由棕黑色变为兰色。经研究认为,染料主要是与蛋白质中的碱性氨基酸(特别是精氨酸)和芳香族氨基酸残基相结合。在595nm下测定的吸光度值a595,与蛋白质浓度成正比。bradford法的突出优点是:(1)灵敏度高,据估计比lowry法约高四倍,其最低蛋白质检测量可达1mg。这是因为蛋白质与染料结合后产生的颜色变化很大,蛋白质-染料复合物有更高的消光系数,因而光吸收值随蛋白质浓度的变化比lowry法要大的多。(2)测定快速、简便,只需加一种试剂。完成一个样品的测定,只需要5分钟左右。由于染料与蛋白质结合的过程,大约只要2分钟即可完成,其颜色可以在1小时内保持稳定,且在5分钟至20分钟之间,颜色的稳定性最好。因而完全不用像lowry法那样费时和严格地控制时间。(3)干扰物质少。如干扰lowry法的k+、na+、mg2+离子、tris缓冲液、糖和蔗糖、甘油、巯基乙醇、edta等均不干扰此测定法。此法的缺点是:(1)由于各种蛋白质中的精氨酸和芳香族氨基酸的含量不同,因此bradford法用于不同蛋白质测定时有较大的偏差,在制作标准曲线时通常选用g—球蛋白为标准蛋白质,以减少这方面的偏差。(2)仍有一些物质干扰此法的测定,主要的干扰物质有:去污剂、tritonx-100、十二烷基硫酸钠(sds)和0.1n的naoh。(如同0.1n的酸干扰lowary法一样)。(3)标准曲线也有轻微的非线性,因而不能用beer定律进行计算,而只能用标准曲线来测定未知蛋白质的浓度。(二)试剂与器材1.试剂:(1)标准蛋白质溶液,用g—球蛋白或牛血清清蛋白(bsa),配制成1.0mg/ml和0.1mg/ml的标准蛋白质溶液。(2)考马斯亮兰g—250染料试剂:称100mg考马斯亮兰g—250,溶于50ml95%的乙醇后,再加入120ml85%的磷酸,用水稀释至1升。2.器材:(1)可见光分光光度计(2)旋涡混合器(3)试管16支(三)操作方法1.标准方法(1)取16支试管,1支作空白,3支留作未知样品,其余试管分为两组按表中顺序,分别加入样品、水和试剂,即用1.0mg/ml的标准蛋白质溶液给各试管分别加入:0、0.01、0.02、0.04、0.06、0.08、0.1ml,然后用无离子水补充到0.1ml。最后各试管中分别加入5.0ml考马斯亮兰g—250试剂,每加完一管,立即在旋涡混合器上混合(注意不要太剧烈,以免产生大量气泡而难于消除)。未知样品的加样量见下表中的第8、9、10管。(2)加完试剂2-5分钟后,即可开始用比色皿,在分光光度计上测定各样品在595nm处的光吸收值a595,空白对照为第1号试管,即0.1mlh2o加5.0mlg—250试剂。注意:不可使用石英比色皿(因不易洗去染色),可用塑料或玻璃比色皿,使用后立即用少量95%的乙醇荡洗,以洗去染色。塑料比色皿决不可用乙醇或丙酮长时间浸泡。考马斯亮兰法实验表管号12345678910标准蛋白质00.010.020.040.060.080.10(1.0mg/ml)未知蛋白质0.020.040.06(约1.0mg/ml)蒸馏水0.10.090.080.060.040.0200.080.060.04考马斯亮蓝g-250试剂5.05.05.05.05.05.05.05.05.05.0每管中的蛋白质量(mg)光吸收值(a595)(3)用标准蛋白质量(mg)为横座标,用吸光度值a595为纵座标,作图,即得到一条标准曲线。由此标准曲线,根据测出的未知样品的a595值,即可查出未知样品的蛋白质含量。0.5mg牛血清蛋白/ml溶液的a595约为0.50。2.微量法当样品中蛋白质浓度较稀时(10-100mg/ml),可将取样量(包括补加的水)加大到0.5ml或1.0ml,空白对照则分别为0.5ml或1.0mlh2o,考马斯亮蓝g-250试剂仍加5.0ml,同时作相应的标准曲线,测定595nm的光吸收值。0.05mg牛血清蛋白/ml溶液的a595约为0.29。六、紫外吸收法蛋白质分子中,酪氨酸、苯丙氨酸和色氨酸残基的苯环含有共轭双键,使蛋白质具有吸收紫外光的性质。吸收高峰在280nm处,其吸光度(即光密度值)与蛋白质含量成正比。此外,蛋白质溶液在238nm的光吸收值与肽键含量成正比。利用一定波长下,蛋白质溶液的光吸收值与蛋白质浓度的正比关系,可以进行蛋白质含量的测定。紫外吸收法简便、灵敏、快速,不消耗样品,测定后仍能回收使用。低浓度的盐,例如生化制备中常用的(nh4)2so4等和大多数缓冲液不干扰测定。特别适用于柱层析洗脱液的快速连续检测,因为此时只需测定蛋白质浓度的变化,而不需知道其绝对值。此法的特点是测定蛋白质含量的准确度较差,干扰物质多,在用标准曲线法测定蛋白质含量时,对那些与标准蛋白质中酪氨酸和色氨酸含量差异大的蛋白质,有一定的误差。故该法适于用测定与标准蛋白质氨基酸组成相似的蛋白质。若样品中含有嘌呤、嘧啶及核酸等吸收紫外光的物质,会出现较大的干扰。核酸的干扰可以通过查校正表,再进行计算的方法,加以适当的校正。但是因为不同的蛋白质和核酸的紫外吸收是不相同的,虽然经过校正,测定的结果还是存在一定的误差。此外,进行紫外吸收法测定时,由于蛋白质吸收高峰常因ph的改变而有变化,因此要注意溶液的ph值,测定样品时的ph要与测定标准曲线的ph相一致。下面介绍四种紫外吸收法:1.280nm的光吸收法因蛋白质分子中的酪氨酸、苯丙氨酸和色氨酸在280nm处具有最大吸收,且各种蛋白质的这三种氨基酸的含量差别不大,因此测定蛋白质溶液在280nm处的吸光度值是最常用的紫外吸收法。测定时,将待测蛋白质溶液倒入石英比色皿中,用配制蛋白质溶液的溶剂(水或缓冲液)作空白对照,在紫外分光度计上直接读取280nm的吸光度值a280。蛋白质浓度可控制在0.1~1.0mg/ml左右。通常用1cm光径的标准石英比色皿,盛有浓度为1mg/ml的蛋白质溶液时,a280约为1.0左右。由此可立即计算出蛋白质的大致浓度。许多蛋白质在一定浓度和一定波长下的光吸收值(a1%1cm)有文献数据可查,根据此光吸收值可以较准确地计算蛋白质浓度。下式列出了蛋白质浓度与(a1%1cm)值(即蛋白质溶液浓度为1%,光径为1cm时的光吸收值)的关系。文献值a1%1cm,?称为百分吸收系数或比吸收系数。蛋白质浓度=(a280′10)/a1%1cm,280nm(mg/ml)(q1%浓度?10mg/ml)例:牛血清清蛋白:a1%1cm=6.3(280nm)溶菌酶:a1%1cm=22.8(280nm)若查不到待测蛋白质的a1%1cm值,则可选用一种与待测蛋白质的酪氨酸和色氨酸含量相近的蛋白质作为标准蛋白质,用标准曲线法进行测定。标准蛋白质溶液配制的浓度为1.0mg/ml。常用的标准蛋白质为牛血清清蛋白(bsa)。标准曲线的测定:取6支试管,按下表编号并加入试剂:管号123456bsa(1.0mg/ml)01.02.03.04.05.0h2o5.04.03.02.01.00a280用第1管为空白对照,各管溶液混匀后在紫外分光光度计上测定吸光度a280,以a280为纵座标,各管的蛋白质浓度或蛋白质量(mg)为横座标作图,标准曲线应为直线,利用此标准曲线,根据测出的未知样品的a280值,即可查出未知样品的蛋白质含量,也可以用2至6管a280值与相应的试管中的蛋白质浓度计算出该蛋白质的a1%1cm,280nm2.280nm和260nm的吸收差法核酸对紫外光有很强的吸收,在280nm处的吸收比蛋白质强10倍(每克),但核酸在260nm处的吸收更强,其吸收高峰在260nm附近。核酸260nm处的消光系数是280nm处的2倍,而蛋白质则相反,280nm紫外吸收值大于260nm的吸收值。通常:纯蛋白质的光吸收比值:a280/a260?1.8纯核酸的光吸收比值:a280/a260?0.5含有核酸的蛋白质溶液,可分别测定其a280和a260,由此吸收差值,用下面的经验公式,即可算出蛋白质的浓度。蛋白质浓度(mg/ml)=1.45×a280-0.74×a260此经验公式是通过一系列已知不同浓度比例的蛋白质(酵母烯醇化酶)和核酸(酵母核酸)的混合液所测定的数据来建立的。3.215nm与225nm的吸收差法蛋白质的稀溶液由于含量低而不能使用280nm的光吸收测定时,可用215nm与225nm吸收值之差,通过标准曲线法来测定蛋白质稀溶液的浓度。用已知浓度的标准蛋白质,配制成20~100mg/ml的一系列5.0ml的蛋白质溶液,分别测定215nm和225nm的吸光度值,并计算出吸收差:吸收差d=a215-a225以吸收差d为纵座标,蛋白质浓度为横座标,绘出标准曲线。再测出未知样品的吸收差,即可由标准曲线上查出未知样品的蛋白质浓度。本方法在蛋白质浓度20~100mg/ml范围内,蛋白质浓度与吸光度成正比,nacl、(nh4)2so4以及0.1m磷酸、硼酸和tris等缓冲液,都无显著干扰作用,但是0.1nnaoh,0.1m乙酸、琥珀酸、邻苯二甲酸、巴比妥等缓冲液的215nm光吸收值较大,必须将其浓度降到0.005m以下才无显著影响。4.肽键测定法蛋白质溶液在238nm处的光吸收的强弱,与肽键的多少成正比。因此可以用标准蛋白质溶液配制一系列50~500mg/ml已知浓度的5.0ml蛋白质溶液,测定238nm的光吸收值a238,以a238为纵座标,蛋白质含量为横座标,绘制出标准曲线。未知样品的浓度即可由标准曲线求得。进行蛋白质溶液的柱层析分离时,洗脱液也可以用238nm检测蛋白质的峰位。本方法比280nm吸收法灵敏。但多种有机物,如醇、酮、醛、醚、有机酸、酰胺类和过氧化物等都有干扰作用。所以最好用无机盐,无机碱和水溶液进行测定。若含有有机溶剂,可先将样品蒸干,或用其他方法除去干扰物质,然后用水、稀酸和稀碱溶解后再作测定。

英勇的棒棒糖
干净的蜗牛
2025-12-04 20:18:33
我国目前已经成为全球主要农药生产与消费国家之一,但是生产品种主要以传统和仿制的中低档品种为主。我国农药生产与开发与发达国家和地区相比存在相当的差距,尤其是技术开发水平低,新农药的创制与开发本身难度大、周期长、投入大;尽管经过多年研究与开发,我国已经开发出部分拥有自主知识产权的创制农药,但是真正走入市场的并不多;面对如此局面,我国农药除加大创制研发力度外,还应高度重视开发一些具有市场前景的专利过期或即将过期的重要农药品种。本文将主要介绍一些专利过期不久或即将过期的一些重要农药品种及其合成所需中间体开发与生产情况,为国内开发与生产这些农药及中间体提供参考。

1 氟虫腈(fipronil)

由法国罗纳-普朗克公司开发,获中国专利授权(CN86108643),该化合物专利在2006年12月19日到期;同时,拜耳公司对氟虫腈及其中间体的制备方法也在我国获得专利授权(CN95100789.0),此项专利的有效期将持续到2015年。

氟虫腈是一种苯基吡唑类广谱杀虫剂,主要是阻碍昆虫γ-氨基丁酸控制的氟化物代谢,具有触杀、胃毒和中度内吸作用,对鳞翅目、蝇类和鞘翅目等一系列害虫具有很高的杀虫活性,与现有杀虫剂无交互抗性。氟虫腈2005年全球销售额为4.2亿美元,在杀虫剂品种销售额排名第4。

目前氟虫腈工业化生产合成路线主要有两条,一是以2,6-二氯-4-三氟甲基苯胺为原料,经过重氮化得到重氮盐,再与2,3-二氰基丙酸乙酯反应得到;二是以2,6-二氯-4-三氟甲基苯肼为原料与富马腈反应,再氧化得到产品。

1.1 2,6-二氯-4-三氟甲基苯胺

2,6-二氯-4-三氟甲基苯胺主要合成路线有三条:①对三氟甲基苯胺法。对三氟甲基苯胺在溶剂中直接氯化得到2,6-二氯-4-三氟甲基苯胺。该法简单方便,但是对三氟甲基苯胺价格较贵,生产成本比较高,国外主要采用该法生产。②对氯三氟甲苯法。对氯三氟甲苯与二甲基甲酰胺和NaNH2在一定温度和压力下反应得到N,N-二甲基对三氟甲基苯胺,然后在光照下氯化,脱甲基并环上氯化得到目的产品。该法步骤较长,''三废''量较大。③3,4-二氯三氟甲苯法。以3,4-二氯三氟甲基苯胺为原料,与二甲基甲酰胺及氢氧化钠在压力釜中反应,在光照条件下氯化脱甲基并环上氯化得到产品。目前国内多家科研机构研究与开发此路线。此路线更趋于合理,产品质量高,''三废''量有一定减少。

1.2 2,6-二氯-4-三氟甲基苯肼

目前研究主要方向是以对氯三氟甲基苯为原料,在三氯化铁存在下深度氯化得到3,4,5-三氯三氟甲苯,然后与水合肼反应得到2,6-二氯-4-三氟甲基苯肼。

1.3 2,3-二氰基丙酸乙酯

2,3-二氰基丙酸乙酯合成方法,主要有分步法和一步法两种。分步法生产过程较为繁琐,生产过程中产生对人体有害的剧毒品且''三废''量比较大,因此目前主要采用一步法生产。一步法合成工艺为:将氰化钠和溶剂无水乙醇混合,充分溶解后,加入多聚甲醛,溶解后接着加入氰乙酸乙酯,氰化钠、多聚甲醛、氰乙酸乙酯投料比例为1:1:0.91(m:m)。然后使用盐酸酸化后,再经过萃取水洗得到粗品,最后精馏去除溶剂得到产品。目前国内泰州天源化工有限公司等数家企业采用该法生产2,3-二氰基丙酸乙酯。

2 溴虫腈(chlorfenapyr)

由美国氰胺公司开发,获中国专利授权(CN88106516.1),该专利将在2008年7月28日到期。德国巴斯夫公司在中国获得虫螨腈原药和10%虫螨腈悬浮剂临时登记。目前国内江苏龙灯化学有限公司和广东德利生物科技公司有相关登记。

溴虫腈是一种新型吡咯类广谱杀虫杀螨剂,在植物表面渗透性强,有一定内吸活性,兼有胃毒和触杀作用,可以防治多种鳞翅目、双翅目、鞘翅目、半翅目害虫和螨类,并可有效防治对氨基甲酸酯类、有机磷类和拟除虫菊酯类杀虫剂产生抗性的昆虫。

溴虫腈的合成方法主要有:①2-对氯苯基-5-三氟甲基吡咯-3-腈在光照下与溴反应,再与乙醇钠反应得到;②芳基吡咯腈在叔丁醇钾作用下,在四氢呋喃中与氯甲基乙基醚反应;③芳基吡咯腈在DMF、三氯氧磷、三乙胺存在下与二乙氧基甲烷反应得到。其中主要中间体为芳基吡咯腈,国内外研究主要集中以2-对氯苯基-5-三氟甲基吡咯-3-腈为原料的路线上。2.1 2-对氯苯基-5-三氟甲基吡咯-3-腈

有关芳基吡咯-3-腈专利报道比较多,国外公司一般采用2-对氯苯基甘氨酸为原料,三氟乙酸酐为三氟乙酰化剂,并关环成4-对氨基苯基-2-三氟甲基吡唑啉-5-酮,再与2-氯丙烯腈反应生成2-对氯苯基-5-三氟甲基吡咯-3-腈。国外在我国申请不少专利,如有三氯化磷和三乙胺存在下用三氟乙酸进行三氟乙酰化,或用三氟乙酰氯代替三氟乙酸反应的,也有选择合适的极性溶剂和碱等。

国外也有研究人员采用对氯苯基三氟乙酰胺基腈为原料,在酸存在下与酰卤反应生成恶唑胺的酰化衍生物,继而在碱性条件下与2-氯丙烯腈反应得到2-对氯苯基-5-三氟甲基吡咯-3-腈。

国内许多科研机构也进行了大量研究,如郑州大学和大连理工大学,以对氯苄胺为基础原料,在三氯化磷存在下与三氯乙酸反应,三氟乙酰化得到N-对氯苄基三氟乙酰胺;然后在三氯氧磷存在下通过氯化得到对氯苄基氯三氟乙酰亚胺;在碱的存在下对氯苄基氯三氟乙酰亚胺与氯代丙烯腈发生1,3偶极环加成反应,区域定向性地得到2-对氯苯基-5-三氟甲基吡咯-3-腈。该路线尽管步骤比较多,但是原料价廉易得,国此具有较高的应用开发价值。

国内还有一些文献报道以对氯苯基氨基丙烯腈经过溴化后与三氟甲基丙酮环合得到2-对氯苯基-5-三氟甲基吡咯-3-腈,尽管该法简单,但是原料来源比较困难。

3 四氟苯菊酯(transfluthrin)

该品种由拜耳公司开发,获中国专利授权(CN88100834),该专利将在2008年2月11日到期。拜耳公司在我国获得拜奥灵原药的临时登记,国内相关登记企业有江苏常州康泰化工有限公司和扬农化工股份有限公司。四氟苯菊酯是一种高效、低毒的卫生用拟除虫菊酯杀虫剂,具有吸入、触杀和驱避活性,对蚊虫具有快速击倒作用,用作多种蚊香、驱蚊片的原料,也可以有效防治苍蝇、蟑螂和白粉虱,其药效远高于烯丙菊酯。由于常温下的饱和蒸气压比较高,四氟苯菊酯还可用于制备野外和旅游用的杀虫产品,从而将卫生杀虫剂的应用从室内拓展到室外。

四氟苯菊酯合成主要是以2,3,5,6-四氟苄醇为原料,在甲苯作为溶剂的情况下与吡啶和二氯菊酰氯进行反应制得。其中四氟苄醇为关键的中间体,二氯菊酰氯则为多种拟除虫菊酯通用型中间体,国内山东大成农药化工股份有限公司等多家企业已经生产,因此主要介绍关键中间体四氟苄醇的合成。

四氟苄醇合成难度比较大,国外文献报道主要有两条路线生产:①采用四氟苯甲酸或者四氟苯甲醛为原料合成四氟苄醇,如欧洲专利介绍,以1,2,4,5-四氟苯与正丁基锂反应,然后与二氧化碳作用制备2,3,5,6-四氟苯甲酸,再利用LiAlH4还原制备2,3,5,6-四氟苄醇。该法过程相对比较简单,但是反应条件苛刻,原料来源比较困难;②日本和国内一些专利文献报道则采用2,3,5,6-四氯对苯二腈为原料合成四氟苄醇。具体过程以二甲基甲酰胺以为溶剂,四氯对苯二腈与无水氟化钾进行亲核取代反应,生成2,3,5,6-四氟苯腈;然后在80%浓硫酸存在下,四氟苯腈进行水解反应得到四氟对苯二甲酸;四氟对苯二甲醇在三丁胺和氢氧化钠存在下发生脱羧反应得到四氟苯甲酸;四氟苯甲酸在甲苯作为溶剂的情况下,与氯化亚砜发生酰氯化反应得到四氟苯甲酰氯,在四氢呋喃作为溶剂的情况下,四氟苯甲酰氯与硼氢化钠催化还原得到四氟苄醇。

目前国内江苏扬农化工股份有限公司和江苏激素研究所等能够生产四氟苄醇。

4 唑螨酯(fenpyfoximate)

该品种由日本农药株式会社开发,获中国专利授权(CN86108691),此专利于2006年12月26日到期。日本农药株式会社还在中国获得唑螨酯原药、13%炔螨&#8226唑螨水乳剂等多种产品登记。国内山东栖霞通达化工有限公司和江苏龙灯化学有限公司也有制剂登记。

唑螨酯是一种苯氧吡唑类杀螨剂,高剂量时可以直接杀死螨类,低剂量可以抑制类蜕皮或者产卵,具有击倒和抑制蜕皮作用,无内吸作用,可以防治多种螨类,尤其是多种果树上的叶螨和红蜘蛛,对幼螨和若螨具有优良活性,对天敌比较安全,对蜜蜂无不良影响,对家蚕有拒食作用。

唑螨酯合成主要以1,3-二甲基吡唑酮-5为原料,经过1,3-二甲基-5-氯吡唑甲醛-5、1,3-二甲基-5-苯氧基吡唑甲醛-5得到1,3-二甲基-5-苯氧基吡唑肟-5,然后与中间体对氯甲基苯甲酸叔丁酯进行反应得到唑螨酯。其中重要的中间体为1,3-二甲基吡唑酮-5和对氯甲基苯甲酸叔丁酯。

4.1 1.3-二甲基吡唑酮-5

国内外文献报道吡唑酮合成主要采用无水甲基肼,并以无水乙醇或甲醇作为溶剂进行吡唑酮的环化反应。由于无水甲基肼价格昂贵,且运输和使用也极不安全,国内研究人员选用了甲基肼水溶液为起始原料合成1,3-二甲基吡唑酮-5,具体过程为:40%甲基肼水溶液与乙酰乙酸乙酯在75℃下进行环化反应得到粗1,3 -二甲吡唑酮-5,产物经过乙醚重结晶纯化。

国外专利文献也介绍了1,3-二甲基吡唑酮-5的其他合成方法:①以水为反应介质,用氢氧化钠的水溶液中和硫酸甲基肼,不分离出中和产生的硫酸钠副产物,直接和乙酰乙酸乙酯反应,得到产物;但是收率比较低;②以乙醇为反应介质,用氢氧化钠的乙醇溶液中和硫酸甲基肼,不分离副产物,直接与乙酰乙酸乙酯反应,得到1,3-二甲基吡唑酮-5,收率比较高。

4.2 对氯甲基苯甲酸叔丁酯

该中间体合成相对比较简单,工业化生产一般以叔丁醇为原料,与吡啶和对氯甲基苯甲酰氯在室温下进行反应,反应后加入一定量的水,然后用甲苯萃取有机相,分离出有机层后进行蒸馏脱去甲苯,得到对氯甲基苯甲酸叔丁酯,进一步纯化得到精制产品。

5 嘧菌酯(azoxystrobin)

该品种是由先正达开发,获中国专利授权(CN1047286),该专利将于2010年2月8日到期。在美国、欧洲、日本等数十个国家有登记和销售,嘧菌酯2005年全球销售额达到6.35亿美元。

嘧菌酯是模仿天然产物Strobilurin A化学结构而产生的新型高效广谱甲氧基丙烯酸酯类杀菌剂,嘧菌酯对几乎所有各真菌纲病害如白粉病、锈病、颖枯病、网斑病、黑星病、霜霉病、稻瘟病等数十种病害均具有很好的活性。具有保护、治疗、铲除、渗透和内吸活性,适宜于禾谷类、水稻、多种果树和蔬菜杀菌抗菌,对地下水和环境安全。

嘧菌酯合成路线主要分为两种:①先合成中间体(E)-3-甲氧基-2-(2-羟基苯基)丙烯酸甲酯,然后分别与4,6-二氯嘧啶、水杨腈反应生成最终产物;②4,6-二氯嘧啶先与水杨腈反应后再与(E)-3-甲氧基-2-(2-羟基苯基)丙烯酸甲酯反应得到嘧菌酯。两种方法中(E)-3-甲氧基-2-(2-羟基苯基)丙烯酸甲酯是合成嘧菌酯的关键中间体。

文献报道(E)-3-甲氧基-2-(2-羟基苯基)丙烯酸甲酯的合成路线比较多,但是常用、具有工业化前景的主要是邻羟基苯乙酸为原料经过3步反应得到丙烯酸甲酯的路线,具体工艺过程为:将邻羟基苯乙酸、乙酸酐先进行反应,然后在氮气保护下,与原甲酸三甲酯反应,分离出低沸点物质,将剩下混合物加入甲醇后,加热回流然后冷却结晶得到中间产物3-(α-甲氧基)亚甲基苯并呋喃-2(3H)-酮(Ⅰ);将甲醇钠、四氢呋喃和甲醇混合后冷却,在氮气保护下分批加入上述反应得到的化合物Ⅰ中,然后进行成环反应得到(E)-3-甲氧基-2-(2-羟基苯基)丙烯酸甲酯。有的文献报道合成(E)-3-甲氧基-2- (2-羟基苯基)丙烯酸甲酯可以选用乙酸甲酯、N,N-二甲基甲酰胺等溶剂。

6 烟嘧磺隆(nicosulfuron)

该品种由日本石原产业株式会社开发,获得中国专利授权(CN87100436),该专利于2007年1月27日到期。日本石原产业株式会社在中国获烟嘧磺隆原药和多种制剂的登记,国内相关登记企业有浙江金牛农药有限公司(80%烟嘧磺隆可湿性粉剂、40g/L烟嘧磺隆悬浮剂)和天津中农化农业生产资料有限公司(40g/L烟嘧磺隆悬浮剂)。

烟嘧磺隆是一高效玉米田选择性苗后除草剂,是目前磺酰脲类除草剂中销售额最大的品种,2005年全球销售额2.38亿美元。低剂量苗后使用能有效防除玉米田多种一年生禾本科杂草、阔叶杂草及莎草科杂草,其被叶和根迅速吸收,并通过木质部和韧皮部迅速传导,玉米对该药物有较好耐药性,该药剂对哺乳动物毒性低。

国外专利报道烟嘧磺隆主要从2-氨基-4,6-二甲氧基嘧啶在三乙胺存在下与光气反应生成相应的异氰酸酯,再与2-氨磺酰基-N,N-二甲基烟酰胺在乙腈中反应制得。文献还报道其他多种合成路线,但是多数路线均涉及重要的中间体2-氨基-4,6-二甲氧基嘧啶和2-氨磺酰基-N,N-二甲基烟酰胺。

6.1 2-氨基-4,6-二甲氧基嘧啶

2-氨基-4,6-二甲氧基嘧啶是磺酰脲类除草剂的重要中间体,以其为原料除合成烟嘧磺隆外,还用于合成苄嘧磺隆、吡嘧磺隆、嘧啶磺隆、玉嘧磺隆等。该中间体合成主要采用硝(盐)酸胍与丙二酸二乙酯反应制得。目前国内开发比较成熟的工业技术是采用硝酸胍与丙二酸二乙酯合成。具体工艺过程:在催化剂乙醇钠存在下,硝酸胍与丙二酸二乙酯反应得到2-氨基-4,6-二羟基嘧啶;2-氨基-4,6-二羟基嘧啶在溶剂存在的情况下,与三氯氧磷反应得到2-氨基- 4,6-二氯嘧啶;二氯嘧啶与甲醇钠发生甲氧基化反应得到2-氨基-4,6-二甲氧基嘧啶。目前国内有企业采用该法生产,生产过程中产生一定数量的''三废'',有待进一步改进与完善。

6.2 2-氨磺酰基-N,N-二甲基烟酰胺

2-氨磺酰基-N,N-二甲基烟酰胺国内文献报道的合成路线主要采用2-氯烟酸为原料合成,也有专利报道以2-羟基-2-氰基吡啶为原料,但是该原料供应紧张,价格昂贵,不适合工业化生产。国外专利报道以2-氯烟酸为原料,用氯气对2-位的巯基进行氧化后,用Al(CH3)3及NH(CH3)2进行3-位的酰胺化得到目的产物。国内研究人员在此基础上进行改进,提高收率,目前已具备工业化生产水平。具体工艺过程:2-氯烟酸、氯化亚砜及二甲胺反应得到2-氯-N,N-二甲基烟酰胺(Ⅰ);化合物Ⅰ与Na2S&#82269H2O及S加热反应得到2-巯基-3-N,N-二甲基烟酰胺(Ⅱ);化合物Ⅱ溶解于氨水中,然后在酸性条件下与过氧化氢及次氯酸钠发生反应得到2-氨磺酰基-N,N-二甲基烟酰胺。该工艺以2-氯烟酸为原料经过四步反应合成目的产物,收率可以达到86%以上,反应条件比较温和,反应中使用的有机溶剂均可回收套用。

7 吡螨胺(tebufenpyrad)

该品种由日本三菱化成株式会社开发,获中国专利授权(CN88102427),该专利将于2008年4月23日到期。必螨立克10%可湿性粉剂曾在中国获得临时登记(LS93021)。

吡螨胺是一种吡唑酰胺类新型杀虫杀螨剂,具有独特的化学性质和新颖的作用方式,对各种螨类的各生育期均有速效和高效,持效期长、毒性低、无内吸性,具有优异的越层渗透活性,对目标物具有极佳的选择性,能控制经药剂处理的植株中未接触药剂部位上的害螨,这是其他杀螨剂所没有的功能。与常用的杀螨剂无交互抗性,对蚜虫、叶蝉、粉虱及鳞翅目、半翅目害虫也有一定防治效果。

吡螨胺主要从吡唑甲酰氯与对叔丁基苄胺反应得到,其中对叔丁基苄胺是关键中间体。

有关对叔丁基苄胺的合成文献报道比较多,主要有:①日本三菱化成公司主要采用对叔丁基苯甲醛与氨在催化剂作用下发生还原反应得到,该法可以制得高纯度对叔丁基苄胺,但是反应需要在高压下进行,对设备要求比较高,投资也比较大;②国内研究人员开发Delepine反应,以对叔丁基苄氯与乌洛托品反应,形成的季铵盐在甲醇-盐酸中水解生成对叔丁基苄胺,该法反应条件相对温和,适合工业化生产。

国内浙江大学及浙江工业大学研究人员对Delepine反应进行反复实验,具体工艺过程如下,对叔丁基苄氯与乌洛托品在仲丁醇作为溶剂下进行反应,然后加入盐酸和甲醇继续反应,反应混合物冷却过滤,滤液浓缩得到土黄色固体后,加入一定量的水溶解,再用氢氧化钠进行碱化,析出大量的黄色液体,然后用氯仿萃取黄色液体得到对叔丁基苄胺。优化反应条件为:反应温度40℃,对叔丁基苄氯与乌洛托品投料比为1:1.2(m:m)。

8 烯啶虫胺(nitenpyram)

该品种由日本武田公司开发,获得中国专利授权(CN88104801.1),该专利将于2008年8月1日到期。国内相关登记企业有江苏南通江山农药化工股份有限公司和江苏连云港立本农药化工有限公司,未查到外国公司在中国登记。

烯啶虫胺属于烟酰亚胺类杀虫剂,具有独特的化学和生物性质,对害虫的突触受体具有神经阻断作用,对各种蚜虫、粉虱、水稻叶蝉显示卓越的活性,并同时具有高效、低毒、内吸、无交互抗性、对作物无药害等优点,广泛用于水稻、果树、蔬菜和茶防治多种害虫。

烯啶虫胺合成是以2-氯-5-甲基吡啶为原料经过N-乙基-2-氯-5-吡啶甲基胺,然后与1,1-二甲硫基-2-硝基乙烯和乙醇混合液进行反应,再与甲胺水溶液反应得到。其中关键中间体为2-氯-5-氯甲基吡啶。

2-氯-5-氯甲基吡啶是重要的农药中间体,不仅用于合成烯啶虫胺,还是其他重要烟碱类农药吡虫啉、啶虫脒、噻虫啉等的中间体。2-氯-5-氯甲基吡啶的研究与生产随着吡虫啉、烯啶虫胺的研究而兴起。国内外工业化生产的主要方法有:①以3-甲基吡啶为原料经过N-氧化物反应得到3-氯甲基吡啶,然后定向氯化得到;②环合法,以苄胺和丙醛反应,经过环氯化得到3-氯甲基吡啶,再经过氯化得到;③国内研究人员在美国瑞利公司开发的环戊二烯直接环合基础上,开发了以环戊二烯为原料通过关环反应直接制备2-氯-5-氯甲基吡啶,该路线原料易得,生产成本比较低,目前国内大连凯飞化工股份有限公司、江苏化工农药集团公司、江苏克胜股份有限公司多采用该法生产;④江苏农药研究所开发了以吗啉为原料的生产路线,以吗啉为原料经过N-丙烯基吗啉、1-氯-2-(4-吗啉)-3-甲基环丁基腈、2-氯-4-甲酰基戊腈、2-氯-5-甲基吡啶等中间体合成2-氯-5-氯甲基吡啶,该法具有原料成本低、反应条件温和等优点,具有工业化前景。

9 双草醚(bispyribac-sodium)

该品种由日本组合化合物公司开发,获中国专利授权(CN88108904.4),该专利将于2008年12月22日到期。日本组合化学公司还在中国获得双草醚原药(PD20040015)和10%双草醚悬浮剂(PD20040014)登记。国内相关登记企业有江苏激素研究所有限公司和上海菱农化工有限公司等。

双草醚是一种嘧啶型水杨酸类广谱除草剂,通过阻碍支链氨基酸的生物合成而起作用,主要在水稻直接田中使用,能有效防除一年生及多年生禾本科和阔叶杂草,特别能防除1~7叶期的稗草,且用量极低,具有广阔的应用前景。该农药在日本、欧美等国家已申请登记。

双草醚的合成主要有两条路线,一是非酯基保护法,由2,6-二羟基苯甲酸和2-取代-4,6-二甲氧基嘧啶在碱性条件下反应生成双草醚;二是酯基保护法,由2,6-二羟基苯甲酸先酯化,然后酯化物与2-取代-4,6-二甲氧基嘧啶在碱性条件下反应生成双草醚的酯,再经过催化加氢、中和得到双草醚。其中关键的中间体为2-取代-4,6-二甲氧基嘧啶,通常选用4,6-二甲氧基-2-甲硫基嘧啶。

文献报道4,6-二甲氧基-2-甲硫基嘧啶的合成路线主要有:①碘甲烷法,碘甲烷与4,6-二羟基-2-甲硫基嘧啶反应制备,该法收率不高,同时磺甲烷价格昂贵;②硫酸二甲酯法,硫酸二甲酯与4,6-二羟基-2-巯基嘧啶反应,该法收率比较低,且''三废''排放量较大;③3-氨基-1,3-二甲氧基-2-甲磺酰基嘧啶与过氧化氢氧化制备,该法原料来源困难;④浙江工业大学研究人员开发以丙二酸二乙酯和硫脲为原料的合成路线,在甲醇钠存在下缩合成4,6-二羟基-2-嘧啶硫酸钠,再经过甲基化、氯化、甲氧基化等一系列反应得到4,6-二甲氧基-2-甲硫基嘧啶,尽管步骤较多,但是反应条件温和,原料价廉易得,具有工业化应用前景。

上面介绍了部分农药及其中间体的合成,这些农药具有一些共同特点,就是国外公司开发,且在中国取得专利授权,同时这些品种都在中国已经或曾经登记过,同时专利已经到期或即将到期。专利一旦到期可以进行仿制,同时由于在国内取得登记或者临时登记,具有一定推广应用基础,产品开发生产后比较容易被市场所接受,可以大大缩短进入市场的时间。而这些农药开发的关键在于重要中间体的开发与研究,因此国内相关科研机构和农药生产企业,应积极跟踪国外专利农药法律保护状态,加强中间体开发研究,期待改进和完善中间体合成工艺,降低中间体生产成本,为生产这些高效低毒具有良好市场前景的农药打下坚实基础。

感性的玫瑰
紧张的黑裤
2025-12-04 20:18:33

胜肽的主要功能是让肌肤抗衰老,修复受伤的肌肤,抗氧化,抗水肿等。

胜肽是蛋白质分子的细小片段,分子量小,更能深入肌底对抗深层纹路。胜肽种类很多可以分为二胜肽,四胜肽,五胜肽等等,结合不同功效的胜肽分子,可以达到绝佳的抗皱效果,协同刺激胶原蛋白增生并激活细胞,让效果加乘,效用加倍。

肽简介

肽(peptide)是α-氨基酸以肽键连接在一起而形成的化合物,它也是蛋白质水解的中间产物。

一般肽中含有的氨基酸的数目为二到九,根据肽中氨基酸的数量的不同,肽有多种不同的称呼:分别叫二肽、三肽、四肽、五肽等。由三个或三个以上氨基酸分子组成的肽叫多肽,它们的分子量低于10,000Da,能透过半透膜,不被三氯乙酸及硫酸铵所沉淀。

也有文献把由2~10个氨基酸组成的肽称为寡肽(小分子肽);10~50个氨基酸组成的肽称为多肽;由50个以上的氨基酸组成的肽就称为蛋白质,换言之,蛋白质有时也被称为多肽。多肽也简称为肽,是20世纪被发现的。

以上内容参考 百度百科--胜肽