建材秒知道
登录
建材号 > 甲苯 > 正文

油气污染监测的红外吸收光谱法

重要的睫毛
喜悦的柠檬
2022-12-31 16:22:27

油气污染监测的红外吸收光谱法

最佳答案
高兴的天空
酷炫的金针菇
2025-12-04 20:17:53

1800年英国天文学家赫谢尔(Hershl)用温度计测量太阳光可见光区内\外温度时,发现红色光以外黑暗部分的温度比可见光部分高,这种人类视觉看不见的红外光,称为红外辐射或红外线。

图9.2.1 地下污染区的探地雷达检测剖面图

红外线被发现后,逐渐被应用到各个方面,在化学上,利用不同物质对不同波长红外辐射的吸收程度不同,用来推断物质分子的组成和结构。这种方法称之为红外分子吸收光谱法,简称红外吸收光谱法或红外光谱法。常以IR(Infrared)为缩写。例如1892年就发现凡是含有甲基的物质,都会强烈地吸收3.4 μm波长的红外光。当不同波长(波数)的红外辐射依次照射到样品时。某些波长的辐射能被样品选择吸收而减弱,于是形成红外吸收光谱。一般纵坐标以百分透过率标度,定性分析多用这种标度,定量分析多用吸光度(A)标度。横坐标以波数ν(cm-1)标度。波数是指每cm长度上波的数目,它与波长成倒数关系,见如下关系式

环境地球物理学概论

由于不同物质具有不同的分子结构,就会吸收不同的红外辐射能量而产生相应的红外吸收光谱,用仪器测量物质的红外吸收光谱,然后根据这种物质的红外特征吸收峰位置、数目、相对强度和形状(峰宽)等参数,就可推断样品中有哪些基团,并确定其分子结构,这就是红外光谱的定性和结构分析的依据。同一物质不同浓度时,在同一吸收峰位置具有不同的吸收峰强度,在一定条件下,试样物质的浓度与吸收峰的强度成正比关系,这就是红外吸收光谱定量分析的依据。

红外光谱的范围很广,为0.75~1000 μm(13 300~10 cm-1)。按应用波段不同,红外光谱划分为三个区域,括号内数字为波数范围。

近红外(NIR)区:0.75~2.5 μm(13 300~4000 cm-1);

中红外(MIR)区:2.5~25 μm(4000~400 cm-1);

远红外(FIR)区:25~1000 μm(400~10 cm-1)。

近红外区是可见光红色末端的一段,只有X-H或多键振动的倍频和合频出现在该区,其应用有限,仅在研究含氢原子的官能团,如O-H,N-H和C-H的化合物,特别是醇、酚、胺和碳氢化合物上,以及研究末端亚甲基、环氧基和顺反双键等时比较重要。在研究化合物的氢键方面也很有用。

中红外区是红外光谱中应用最早和最广的一个区。波数范围在4000~1000 cm-1区内的吸收峰为化合物中各个键的伸缩和弯曲振动,故为双原子构成的官能团的特征吸收。伸缩和弯曲振动都是基团内部原子间化学键的振动。波数范围1400~650 cm-1区的吸收峰大多是整个分子中多个原子间键的复杂振动,可以得到官能团周围环境的信息,用于化合物的鉴定。

远红外区应是200~10 cm-1。由于一般红外仪的中红外范围是5000~650 cm-1或5000~400 cm-1,所以,650~200 cm-1也包括在远红外区。含重原子的化学键伸缩振动和弯曲振动的基频在远红外光区,如C-X键的伸缩振动频率为650~450 cm-1,弯曲振动频率为350~250 cm-1,均是强峰。

不同物质对红外光谱的吸收,是基于分子受到红外光的辐射,产生振动能级跃迁,在振动时伴有偶极距改变者就吸收红外光子,形成红外吸收光谱,若用单色的可见光照射,入射光被样品散射,在入射光垂直面方向测到的散射光,构成拉曼光谱。所以说,只有分子在振动时有偶极距(双键)改变时,才会产生明显的吸收峰。图9.2.2是水和二氧化碳的吸收光谱。分子吸收一定频率的红外光后,其振动能级由基态(υ=0)跃迁到第一激发态时产生的吸收峰称为基峰。而由基态跃迁到第二激发态、第三激发态所产生的吸收峰,称为二倍频峰、三倍频峰等。三倍频峰以上因其跃迁几率很小,一般都很弱而不能被检测。

图9.2.2 水和二氧化碳的吸收光谱

吸收峰的强度:分子吸收光谱的吸收峰强度,可用摩尔吸光系数ε表示。吸收峰的强弱取决于基团偶极距改变的难易程度。基团的极性越大,吸收峰越强。在红外光谱中,吸收峰的强度有以下4种表达式。

(1)透过率(percent transmission)

环境地球物理学概论

式中:T为透射比(transmittance);I0为入射光强度;I为透过光强度。

(2)吸收率(percent absorption)100-T

(3)吸光度(absorbance)

环境地球物理学概论

式中:A为吸光度;T0为波数υ处吸收峰基线的透射比;T为峰顶的透射比。

图9.2.3给出了甲苯的芳香烃吸收峰(3050 cm-1)强度的图。

图9.2.3 甲苯的芳香烃吸收峰(3050 cm-1)强度

(4)摩尔吸光系数(molar absorptivity)

根据比耳定律吸收强度与样品浓度和光穿透的距离成比例。

环境地球物理学概论

式中:c为溶液浓度,mol/L;l为吸收池厚度,cm;

lg(及lg(是在波数υ(cm-1)处的吸光度。

下面介绍一种非色散红外(NDIR)对大气中CO2的测量原理及方法

NDIR(Non-DispersiveInfraRed)非扩散红外气体分析方法是基于吸收光谱原理的一种分析方法。是一种先进的红外分析法,如图9.2.4所示为一般吸收光谱方法的基本原理图。

图9.2.4 一般吸收光谱法示意图

当激光发射一束光强为I0激光到吸收池,由于气体吸收使光强变小为I,探测器可以探测到这一变化。气体的吸收公式为

环境地球物理学概论

γ(ν)为吸收系数,C为吸收池内气体组分的浓度,L为吸收池长度。

γ(ν)当吸收池内的压力比较小的时候,γ(υ)近似为一洛仑兹线型(Lorentzian profile),严格来说为福依特线型(Voigt profile)。激光束到达探测器,探测器产生电信号,电信号可以被微机采集处理。经过对采集数据的Levenberg-Marquardt拟合,又由于L为已知量,可以求得吸收池内气体的浓度。非扩散红外气体分析方法正是基于上式来测量吸收池中气体组分浓度。

最新回答
腼腆的小蜜蜂
含蓄的母鸡
2025-12-04 20:17:53

基本工作原理:用一定频率的红外线聚焦照射被分析的试样,如果分子中某个基团的振动频率与照射红外线相同就会产生共振,这个基团就吸收一定频率的红外线,把分子吸收的红外线的情况用仪器记录下来,便能得到全面反映试样成份特征的光谱,从而推测化合物的类型和结构.IR光谱主要是定性技术,但是随着比例记录电子装置的出现,也能迅速而准确地进行定量分析.

特点和主要用途:一般的红外光谱是指2.5-50微米(对应波数4000--200厘米-1)之间的中红外光谱,这是研究研究有机化合物最常用的光谱区域.红外光谱法的特点是:快速,样品量少(几微克-几毫克),特征性强(各种物质有其特定的红外光谱图),能分析各种状态(气,液,固)的试样以及不破坏样品.红外光谱仪是化学,物理,地质,生物,医学,纺织,环保及材料科学等的重要研究工具和测试手段,而远红光谱更是研究金属配位化合物的重要手段.

红外分光光度计在有机分析方面的应用

在有机分析方面的应用

1.化合物中各原子团组合排列情况,是同红外光谱中出现的特征官能团来确定的.

(1)溴化四氯化对位甲酚的结构,过去实验认为它有三种可能的结构,但未能鉴别确定,现经过红外光谱证实只有一种结构.

(2)二分子醛缩合醇酮,应为(I)式.若(I)式R换成吡啶基,则化学性质和(I)却不相同了,它具有烯二醇式的反应如(II)式.可是在极烯的溶液中,也看不到自由羟基的3700cm(-1)-谱带,却在2750cm(-1)有缔全氢键出现.可知它已形成了分子内氢键. (I)羟酮式 (II)烯二醇式

2.异构体的测定——可鉴定立体异构体和同分异构体

(1)顺反异体的测定——顺反异构体原子团排列顺序因无对称中心,故C=C双键在1630cm(-1),724cm(-1),而反式的C=C在较高频率.

(2)同分异构体的鉴定——红外光谱900~660cm(-1)区内可看到苯环取代位置不同的同分体.

如二甲苯三个异构体的吸收谱带很不相同.邻位在742cm(-1),间位在770cm(-1),对位在 800cm(-1),且因对二甲苯对称性强,它的C=C双键(苯骨架)在1500cm(-1)变小,并且600cm(-1)谱带消失.

又如正丙基,异丙基,叔丁基由红外光谱中的甲基弯曲振动可以看出.在1375cm(-1)只出现一个吸收带,则表示为正丙基若在1375cm(-1)出现相等强度的双峰,则为异丙基若在`1390cm(-1)及1365cm(-1)出现一强一弱谱带,则为叔丁基.

乙醇和甲醚的分子式完全相同C2H6O,乙醇有羟基吸收带在3500cm(-1),C-0伸缩振动在1050~1250cm(-1),羟基弯曲振动在950cm(-1).甲醚在3500cm(-1)无羟基吸收.它的第一强1150~1250cm(-1),这两个同分异构体很容易区别.

3.化学反应的检查——一个化学反应是否已进行完全,可用红外光谱检查,这是因原料和预期的产品都有其特征吸收带. 例如氧化仲醇为酮时,原料仲醇的羟基吸收应消失,酮的羰基171cm(-1)应在产物中出现才反应进行完全.

4.未知物剖析——可先将未知物分离提纯,作元素分析,写出分子式,计算不饱和度.从红外光谱可得到此未知物主要官能团的信息,确定它是属于哪种化合物.结合紫外,核磁等可鉴定此化合物的结构.

重要的画笔
孤独的咖啡豆
2025-12-04 20:17:53

苯系物红外光谱特征峰有如下:

一、1,2取代(邻位):750cm-1左右(一个峰)。

二、1,3取代(间位):900~860cm-1 810~750cm-1 725~680cm-1(三个峰)。

三、1,4取代(对位):860~800cm-1(一个峰)。

相关检测

测定苯系物浓度首先需采集样品,根据采样装置和材料不同,苯系物的采样方法可分为容器捕集法、固相吸附法/溶剂洗脱法、固相微萃取法、固相吸附、热脱附法和低温采样法。容器捕集法优点是不采用吸附剂,因此可避免使用吸附剂时的穿透、分解及解吸,可多次分析同一样品成分。

勤劳的翅膀
自信的啤酒
2025-12-04 20:17:53
对甲基苯酚是对位二取代苯环,苯甲醇是单取代苯环,苯环的不同取代类型在红外光谱2000~1660cm^(-1)域内有很特征的弱峰组合花样:归属于苯环骨架与氢的面外弯曲(变形)振动的倍频及组合频(如mν1+nν2等)在2000~1660cm^(-1)域内有很特征的弱峰花样组合,虽然峰强较弱,但峰形很特征:(图片发不上来),可以区别两者。另外,在860~730cm^(-1)域内,单取代苯环的五相邻氢的面外弯曲振动和对二取代苯环的二连氢面外弯曲振动也有截然不同的可区分特征峰形。这是手机简短回答类型题目,只好简答如上。

潇洒的招牌
忧伤的背包
2025-12-04 20:17:53
800-860苯环对位取代

650-1000碳氢面外外弯曲振动

1350(也是甲基的显峰)甲基面内弯曲振动

1450-1560苯环骨架伸缩振动

1700左右(也是酮基的特征峰)芳香酮中酮基的碳氧键伸缩振动

碳氢伸缩震振动不明显3000左右

欢呼的黑米
耍酷的背包
2025-12-04 20:17:53
酚羟基一般在3200-3400左右

甲基伸缩振动在2900附近,变形振动在1380,1430附近

酯基在1600-1700有极强的吸收,主要是羰基的吸收峰

苯环骨架振动在1600,1580附近有吸收

紫外吸收峰在237.5nm

机智的便当
精明的鸭子
2025-12-04 20:17:53

1、吸收的波长不一样。红外吸收光谱法中,样品吸收的是红外波段的电磁辐射;紫外可见光谱法中,样品吸收的是紫外-可见波段的电磁辐射。

2、仪器原理有区别。红外光谱法应用的是傅立叶变换红外光谱,红外光经过迈克尔逊干涉仪发生干涉后照射样品,采集到样品的干涉图再经过傅立叶变换得到样品的光谱; 而紫外-可见吸收光谱是用双光路分别检测样品和参比的透过光强,然后做差得到的样品光谱。

3、光谱反映的意义不同。红外吸收光谱能给出样品分子的振-转结构信息,可以用于鉴定分子结构; 紫外-可见光谱给出的是分子的电子态跃迁信息,用于确定分子的激发性质。

扩展资料:

物质的紫外吸收光谱基本上是其分子中生色团及助色团的特征,而不是整个分子的特征。如果物质组成的变化不影响生色团和助色团,就不会显著地影响其吸收光谱,如甲苯和乙苯具有相同的紫外吸收光谱。

另外,外界因素如溶剂的改变也会影响吸收光谱,在极性溶剂中某些化合物吸收光谱的精细结构会消失,成为一个宽带。所以,只根据紫外光谱是不能完全确定物质的分子结构,还必须与红外吸收光谱、核磁共振波谱、质谱以及其他化学、物理方法共同配合才能得出可靠的结论。

参考资料来源:百度百科-紫外可见吸收光谱法    

参考资料来源:百度百科-红外吸收光谱法

典雅的雪碧
天真的发卡
2025-12-04 20:17:53
有苯环的甲基和羰基的红外光谱区别由于苯环的共扼体系,在氢上存在远程偶合,甲基分别与邻、对芳环上氢偶合的所以芳烃的红外吸收都是尖锐的针状谱带,而羰基在1640~1820cm-1区域内产生强吸收峰,往往是谱图中的最强峰,中等宽度。

疯狂的钢笔
火星上的电话
2025-12-04 20:17:53
近红外光谱仪器从分光系统可分为固定波长滤光片、光栅色散、快速傅立叶变换、声光可调滤光器和阵列检测五种类型。

滤光片型主要作专用分析仪器,如粮食水分测定仪。由于滤光片数量有限,很难分析复杂体系的样品。光栅扫描式具有较高的信噪比和分辨率。由于仪器中的可动部件(如光栅轴)在连续高强度的运行中可能存在磨损问题,从而影响光谱采集的可靠性,不太适合于在线分析。傅立叶变换近红外光谱仪是具有较高的分辨率和扫描速度,这类仪器的弱点同样是干涉仪中存在移动性部件,且需要较严格的工作环境。声光可调滤光器是采用双折射晶体,通过改变射频频率来调节扫描的波长,整个仪器系统无移动部件,扫描速度快。但目前这类仪器的分辨率相对较低,价格也较高。

随着阵列检测器件生产技术的日趋成熟,采用固定光路、光栅分光、阵列检测器构成的NIR仪器,以其性能稳定、扫描速度快、分辨率高、信噪比高以及性能价格比好等特点正越来越引起人们的重视。在与固定光路相匹配的阵列检测器中,常用的有电荷耦合器件(CCD)和二极管阵列(PDA)两种类型,其中Si基CCD多用于近红外短波区域的光谱仪,InGaAs基PDA检测器则用于长波近红外区域。

近红外光谱仪器的主要性能指标

在近红外光谱仪器的选型或使用过程中,考虑仪器的哪些指标来满足分析的使用要求,这是分析工作者需要考虑的问题。对一台近红外光谱仪器进行评价时,必须要了解仪器的主要性能指标,下面就简单做一下介绍。

1、仪器的波长范围

对任何一台特定的近红外光谱仪器,都有其有效的光谱范围,光谱范围主要取决于仪器的光路设计、检测器的类型以及光源。近红外光谱仪器的波长范围通常分两段,700~1100nm的短波近红外光谱区域和1100~2500nm的长波近红外光谱区域。

2、光谱的分辨率

光谱的分辨率主要取决于光谱仪器的分光系统,对用多通道检测器的仪器,还与仪器的像素有关。分光系统的光谱带宽越窄,其分辨率越高,对光栅分光仪器而言,分辨率的大小还与狭缝的设计有关。仪器的分辨率能否满足要求,要看仪器的分析对象,即分辨率的大小能否满足样品信息的提取要求。有些化合物的结构特征比较接近,要得到准确的分析结果,就要对仪器的分辨率提出较高的要求,例如二甲苯异构体的分析,一般要求仪器的分辨率好于1nm。[1]

3、波长准确性

光谱仪器波长准确性是指仪器测定标准物质某一谱峰的波长与该谱峰的标定波长之差。波长的准确性对保证近红外光谱仪器间的模型传递非常重要。为了保证仪器间校正模型的有效传递,波长的准确性在短波近红外范围要求好于0.5nm,长波近红外范围好于1.5nm。

4、波长重现性

波长的重现性指对样品进行多次扫描,谱峰位置间的差异,通常用多次测量某一谱峰位置所得波长或波数的标准偏差表示(傅立叶变换的近红外光谱仪器习惯用波数cm-1表示)。波长重现性是体现仪器稳定性的一个重要指标,对校正模型的建立和模型的传递均有较大的影响,同样也会影响最终分析结果的准确性。一般仪器波长的重现性应好于0.1nm。

5、吸光度准确性

吸光度准确性是指仪器对某标准物质进行透射或漫反射测量,测量的吸光度值与该物质标定值之差。对那些直接用吸光度值进行定量的近红外方法,吸光度的准确性直接影响测定结果的准确性。

6、吸光度重现性

吸光度重现性指在同一背景下对同一样品进行多次扫描,各扫描点下不同次测量吸光度之间的差异。通常用多次测量某一谱峰位置所得吸光度的标准偏差表示。吸光度重现性对近红外检测来说是一个很重要的指标,它直接影响模型建立的效果和测量的准确性。一般吸光度重现性应在0.001~0.0004A之间。

7、吸光度噪音

吸光度噪音也称光谱的稳定性,是指在确定的波长范围内对样品进行多次扫描,得到光谱的均方差。吸光度噪音是体现仪器稳定性的重要指标。将样品信号强度与吸光度噪音相比可计算出信噪比。

8、吸光度范围

吸光度范围也称光谱仪的动态范围,是指仪器测定可用的最高吸光度与最低能检测到的吸光度之比。吸光度范围越大,可用于检测样品的线性范围也越大。

9、基线稳定性

基线稳定性是指仪器相对于参比扫描所得基线的平整性,平整性可用基线漂移的大小来衡量。基线的稳定性对我们获得稳定的光谱有直接的影响。

10、杂散光

杂散光定义为除要求的分析光外其它到达样品和检测器的光量总和,是导致仪器测量出现非线性的主要原因,特别对光栅型仪器的设计,杂散光的控制非常重要。杂散光对仪器的噪音、基线及光谱的稳定性均有影响。一般要求杂散光小于透过率的0.1%。

11、扫描速度

扫描速度是指在一定的波长范围内完成1次扫描所需要的时间。不同设计方式的仪器完成1次扫描所需的时间有很大的差别。例如,电荷耦合器件多通道近红外光谱仪器完成1次扫描只需20ms,速度很快;一般傅立叶变换仪器的扫描速度在1次/s左右;传统的光栅扫描型仪器的扫描速度相对较慢,目前较快的扫描速度也不过2次/s左右。

12、数据采样间隔

采样间隔是指连续记录的两个光谱信号间的波长差。很显然,间隔越小,样品信息越丰富,但光谱存储空间也越大;间隔过大则可能丢失样品信息,比较合适的数据采样间隔设计应当小于仪器的分辨率。

13、测样方式

测样方式在此指仪器可提供的样品光谱采集形式。有些仪器能提供透射、漫反射、光纤测量等多种光谱采集形式。

14、软件功能

软件是现代近红外光谱仪器的重要组成部分。软件一般由光谱采集软件和光谱化学计量学处理软件两部分构成。前者不同厂家的仪器没有很大的区别,而后者在软件功能设计和内容上则差别很大。光谱化学计量学处理软件一般由谱图的预处理、定性或定量校正模型的建立和未知样品的预测三大部分组成,软件功能的评价要看软件的内容能否满足实际工作的需要。