紫外可见吸收光谱原理
紫外可见吸收光谱原理:
在有机化合物分子中有形成单键的σ电子、有形成双键的π电子、有未成键的孤对n电子。当分子吸收一定能量的辐射能时,这些电子就会跃迁到较高的能级,此时电子所占的轨道称为反键轨道,而这种电子跃迁同内部的结构有密切的关系。
在紫外吸收光谱中,电子的跃迁有σ→σ*、n→σ*、π→π*和n→π*四种类型,
各种跃迁类型所需要的能量依下列次序减小: σ→σ*>n→σ*>π→π*>n→π*
由于一般紫外可见分光光度计只能提供190~850nm范围的单色光,因此,我们只能测量n→σ*的跃迁,n→π*跃迁和部分π→π*跃迁的吸收,而对只能产生200nm以下吸收的σ→σ*的跃迁则无法测量。
扩展资料:
在数值上等于1mol/L的吸光物质在1cm光程中的吸光度,ε= A/CL,与入射光波长、溶液的性质及温度有关。
(1)吸光物质在特定波长和溶剂中的一个特征常数,定性的主要依据。
(2)值愈大,方法的灵敏度愈高。
物质的紫外吸收光谱基本上是其分子中生色团及助色团的特征,而不是整个分子的特征。如果物质组成的变化不影响生色团和助色团,就不会显著地影响其吸收光谱,如甲苯和乙苯具有相同的紫外吸收光谱。
另外,外界因素如溶剂的改变也会影响吸收光谱,在极性溶剂中某些化合物吸收光谱的精细结构会消失,成为一个宽带。所以,只根据紫外光谱是不能完全确定物质的分子结构,还必须与红外吸收光谱、核磁共振波谱、质谱以及其他化学、物理方法共同配合才能得出可靠的结论。
吸收与色散是相互依赖的,这是一种普遍的物理规律。有吸收就有色散,远离共振的低频区,吸收弱,则是正常色散;在共振区,有强烈吸收,表现为反常色散。经典电子论解释了色散与吸收的规律,定性地与实验结果一致。但是,定量的关系应当建立在量子论的基础之上。
当苯环引入烷基时,由于烷基的C-H与苯环产生超共轭效应,使苯环的吸收带红移(向长波移动),吸收强度增大
对于二甲苯来说,取代基的位置不同,红移和吸收增强效应不同,通常顺序为:对位>间位>邻位。
∧max/nm(εmax) ∧max/nm(εmax)
苯 204(7900) 256(200) 己烷
甲苯206(7000) 261(225) 己烷
乙苯没有找到
物质吸收波长范围在200~760nm区间的电磁辐射能而产生的分子吸收光谱称为该物质的紫外可见吸收光谱,利用紫外可见吸收光谱进行物质的定性、定量分析的方法称为紫外可见分光光度法。其光谱是由于分子之中价电子的跃进而产生的,因此这种吸收光谱决定于分子中价电子的分布和结合情况。
其在饲料加工分析领域应用相当广泛,特别是在测定饲料中的铅、铁、铅、铜、锌等离子的含量中的应用。荧光分析也是近年来发展迅速的痕量分析方法,该方法操作简单、快速、灵敏度高、精密度和准确度好,并且线形范围宽,检出限低。
扩展资料
紫外光谱
准确测定有机化合物的分子结构,对从分子水平去认识物质世界,推动近代有机化学的发展是十分重要的。采用现代仪器分析方法,可以快速、准确地测定有机化合物的分子结构。在有机化学中应用最广泛的测定分子结构的方法是四大光谱法:紫外光谱、红外光谱、核磁共振和质谱。紫外和可见光谱,简写为UV。
参考资料来源:百度百科-紫外吸收光谱法
参考资料来源:百度百科-光谱分析法