建材秒知道
登录
建材号 > 乙酸 > 正文

乙酸苯乙酯的性质

大意的硬币
坚定的斑马
2022-12-31 14:22:46

乙酸苯乙酯的性质

最佳答案
健壮的鸭子
顺心的冬日
2026-01-23 23:41:26

又名醋酸苯乙酯。无色液体。带有密甜底香的玫瑰香气。沸点232℃。相对密度(25/25℃)1.030-1.034。折射率1.497-1.501(20℃)。美国FEMA登记号为2857。用于配制香皂、日用化妆香精中,可作为庚炔酸甲酯的代用品。常用于调配玫瑰、橙花、紫罗兰、晚香玉、野蔷薇等香精,以及果味香精,具有桃香香气。由乙酸酐和苯乙醇在乙酸钠存在下反应制得。

在香料工业中,乙酸苯乙酯的重要性远不如乙酸苄酯,在各种香精配方里出现的频率和总需求量都少得多,主要原因是乙酸苯乙酯的香气较为“逊色”——花香、果香都“不怎么样”,而价格虽然不高,但也比乙酸苄酯高一倍。

在苯乙醇使用量大的香精里,适当加点乙酸苯乙酯可以让显得“沉闷”、“呆滞”的香气

“活泼”起来,一如乙酸苄酯的作用,但乙酸苯乙酯的用量要控制好,多加了香气质量就不

行,会变调。在栀子花、桂花香精里乙酸苯乙酯可以多用一点,因为这两个花香都有“桃子

香”——乙酸苯乙酯带的“果香”就是“桃子香”。

高度稀释、淡弱的乙酸苯乙酯香气有“安神”、“镇定”、催眠的作用,这是“芳香疗法”研究取得的最新结果,通过脑波测试、小白鼠“活动性”实验等都证实了这一点,因此,乙酸苯乙酯今后有望在“芳香疗法”、“芳香养生”方面得到更多的应用。

最新回答
愤怒的金鱼
自信的酸奶
2026-01-23 23:41:26

乙酸乙酯的制取:先加乙醇,再加浓硫酸(加入碎瓷片以防暴沸),最后加乙酸, 然后加热(可以控制实验)

1:酯化反应是一个可逆反应。为了提高酯的产量,必须尽量使反应向有利于生成酯的方向进行。一般是使反应物酸和醇中的一种过量。在工业生产中,究竟使哪种过量为好,一般视原料是否易得、价格是否便宜以及是否容易回收等具体情况而定。在实验室里一般采用乙醇过量的办法。乙醇的质量分数要高,如能用无水乙醇代替质量分数为95%的乙醇效果会更好。催化作用使用的浓硫酸量很少,一般只要使硫酸的质量达到乙醇质量的3%就可完成催化作用,但为了能除去反应中生成的水,应使浓硫酸的用量再稍多一些。

2:制备乙酸乙酯时反应温度不宜过高,要保持在60 ℃~70 ℃左右,温度过高时会产生乙醚和亚硫酸或乙烯等杂质。液体加热至沸腾后,应改用小火加热。事先可在试管中加入几片碎瓷片,以防止液体暴沸。

3导气管不要伸到Na2CO3溶液中去,防止由于加热不均匀,造成Na2CO3溶液倒吸入加热反应物的试管中。 3.1:浓硫酸既作催化剂,又做吸水剂,还能做脱水剂。 3.2:Na2CO3溶液的作用是: (1)饱和碳酸钠溶液的作用是冷凝酯蒸气,减小酯在水中的溶解度(利于分层),除出混合在乙酸乙酯中的乙酸,溶解混合在乙酸乙酯中的乙醇。 (2)Na2CO3能跟挥发出的乙酸反应,生成没有气味的乙酸钠,便于闻到乙酸乙酯的香味。 3.3:为有利于乙酸乙酯的生成,可采取以下措施: (1)制备乙酸乙酯时,反应温度不宜过高,保持在60 ℃~70 ℃。不能使液体沸腾。 (2)最好使用冰醋酸和无水乙醇。同时采用乙醇过量的办法。 (3)起催化作用的浓硫酸的用量很小,但为了除去反应中生成的水,浓硫酸的用量要稍多于乙醇的用量。 (4)使用无机盐Na2CO3溶液吸收挥发出的乙酸。 3.4:用Na2CO3不能用碱(NaOH)的原因。 虽然也能吸收乙酸和乙醇,但是碱会催化乙酸乙酯彻底水解,导致实验失败。

粗心的野狼
生动的板栗
2026-01-23 23:41:26
不是的,

碳数高的是不溶于水的液体和固体。

酯类是由无机酸或有机酸与醇进行酯化反应缩去水而成。醇或酚与酰卤或酸酐、醇与烯酮类、游离酸与脂肪族重氮衍生物反应也可生成酯。酯分子中α-碳上的氢在碱性条件下与另一分子酯失去一分子醇,生成β-酮酯, 称酯缩合反应。如乙酸乙酯通过酯缩合反应生成乙酰乙酸乙酯。此反应在有机合成上极其重要。

酯的名称是根据相应的羧酸和醇或酚的名称而来,如“某酸某酯”。环状的酯称为内酯(Lactone)。酯的化学性质与酰卤酸酐相似,容易发生水解、醇解和氨解反应,低级的酯类是芳香易挥发的无色液体,高级酯则是固体。酯是重要的溶剂及合成原料,有的酯本身就是药品。根据酸的种类,酯可分为无机酸酯和有机酸酯,前者如硫酸氢甲酯CH3OSO3H,后者如乙酸乙酯CH3COOCH2CH3根据烃基的种类,酯又可分为脂肪酯和芳香酯及环酯,乙酸乙酯为脂肪酯,乙酸苯酯为芳香酯,糠酸甲酯则为环酯。

酯类一般是中性无色液体,脂肪族烃与饱和醇生成的酯具有果实香味,能溶于水,也有些难溶于水。有些酯的闪点低,常易燃烧。蒸气可经呼吸道吸收,液态酯类可经皮肤吸收。吸收后溶于血浆内,部分经肺和肾排出,部分水解后转入正常代谢过程。酯类化合物除少数几种为剧毒、高毒类外,大多均属微毒至中等毒类,也有很多是无毒的。茶叶香气组分中有38种酯。主要有:①脂肪酯:由醇与脂肪生成,例如醋酸乙酯,己烯基己烯酸酯。②芳香酯:由醇与芳香酸生成,例如顺-3-己烯基苯甲酸酯。③环酯:由醇与环酸生成,例如茉莉酮酸甲酯。酯类一般是中性物质,会水解而生成醇和酸。碳数低的通常是具有香味的液体,碳数高的是不溶于水的液体和固体。

感性的可乐
失眠的大象
2026-01-23 23:41:26
不是,乙酸乙酯是酯类

酯:羧酸的一类衍生物,由羧酸与醇(酚)反应失水而生成的化合物。广泛存在于自然界,例如乙酸乙酯存在于酒、食醋和某些水果中;乙酸异戊酯存在于香蕉、梨等水果中;苯甲酸甲酯存在于丁香油中;水杨酸甲酯存在于冬青油中。高级和中级脂肪酸的甘油酯是动植物油脂的主要成分;高级脂肪酸和高级醇形成的酯是蜡的主要成分。

酯是根据形成它的酸和醇(酚)来命名的,例如乙酸乙酯CH3COOC2H5、乙酸苯酯CH3COOC6H5、苯甲酸甲酯C6H5COOCH3等。

低分子量酯是无色、易挥发的芳香液体,高级饱和脂肪酸单酯常为无色无味的固体,高级脂肪酸与高级脂肪醇形成的酯为蜡状固体。酯的熔点和沸点要比相应的羧酸低。酯一般不溶于水,能溶于各种有机溶剂。低分子量的酯是许多有机化合物的溶剂,也是清漆的溶剂。

酯是中性物质。低级一元酸酯在水中能缓慢水解成羧酸和醇。酯的水解比酰氯、酸酐困难,须用酸或碱催化。许多天然的脂肪、油或蜡经水解可制得相应的羧酸,油脂碱性水解生成的高级脂肪酸钠就是肥皂,酯的醇解反应是酯中的烷氧基被另一醇的烷氧基所置换的反应,反应须在酸或碱催化下进行,此反应常用于从一类酯转变成另一类酯。酯可被催化还原成两分子醇,应用最广的催化剂是铜铬氧化物,反应在高温高压下进行,分子中如含有碳碳双键,可同时被还原。此反应广泛用于油脂的氢化。酯与格氏试剂反应,可合成具有两个相同取代基的三级醇。

脂肪是脂类

脂类:由脂肪酸和醇作用生成的酯及其衍生物统称为脂类,这是一类一般不溶于水而溶于脂溶性溶剂的化合物。

不溶于水而能被乙醚、氯仿、苯等非极性有机溶剂抽提出的化合物,统称脂类。脂类包括油脂(甘油三脂)和类脂(磷脂、蜡、萜类、甾类)。

脂类是机体内的一类有机大分子物质,它包括范围很广,其化学结构有很大差异,生理功能各不相同,其共同理化性质是不溶于水而溶于有机溶剂,再水中可相互聚集形成内部疏水的聚集体(如右图)。

负责的钢笔
孝顺的蓝天
2026-01-23 23:41:26

酯是指有机化学中醇与羧酸或无机含氧酸发生酯化反应生成的产物。广泛存在于自然界,例如乙酸乙酯存在于酒、食醋和某些水果中;乙酸异戊酯存在于香蕉、梨等水果中;苯甲酸甲酯存在于丁香油中;水杨酸甲酯存在于冬青油中。高级和中级脂肪酸的甘油酯是动植物油脂的主要成分,高级脂肪酸和高级醇形成的酯是蜡的主要成分。

中文名

外文名

ester

分子通式

R-COO-R'

官能团

-COO-

饱和一元酯

CnH2nO2(n≥2,n为正整数)

酯是根据形成它的酸和醇(酚)来命名的,例如乙酸甲酯C3H6O2、乙酸乙酯CH3COOC2H5、乙酸苯酯CH3COOC6H5、苯甲酸甲酯C6H5COOCH3、乙酸丁酯CH3COOC4H9、丙烯酸辛酯CH2CHCOOC8H17等。

酰胺是一种化学物质,在构造上,酰胺可看作是羧酸分子中羧基中的羟基被氨基或烃氨基(-NHR或-NR2)取代而成的化合物;也可看作是氨或胺分子中氮原子上的氢被酰基取代而成的化合物。

液体酰胺是有机物和无机物的优良溶剂。酰胺的沸点比相应的羧酸高。

有酰胺键的化合物称为酰胺。酰胺既可看作羧酸的含氮衍生物,也可看作氨或胺的衍生物。酰胺可根据其结构分为:酰胺、酰亚胺、内酰胺及N-取代酰胺。氨分子中的两个氢原子被酰基取代的产物叫做酰亚胺,含有酰胺键的环状结构的酰胺叫做内酰胺;酰胺分子中氮原子上的氢原子被烃基取代的产物叫做N-取代酰胺

-CONH2 or -CONHR or -CONR2

请采纳

勤恳的西装
完美的手套
2026-01-23 23:41:26
有羧基的酸类有什么共同性质

[编辑本段]物理性质

饱和一元羧酸中,甲酸、乙酸、丙酸具有强烈酸味和刺激性。含有4~9个C原子的具有腐败恶臭,是油状液体。含10个C以上的为石蜡状固体,挥发性很低,没有气味。 饱和一元羧酸的沸点甚至比相对分子质量相似的醇还高。例如:甲酸与乙醇的相对分子质量相同,但乙醇的沸点为78.5℃,而甲酸为100.7℃。这是由于甲酸分子间存在氢键。根据电子衍射等方法,由于氢键的存在,低级的酸甚至在蒸汽中也以二聚体的形式存在。甲酸分子间氢键键能为30KJ/mol,而乙醇分子间氢键为25KJ/mol。 直链饱和一元羧酸的熔点随分子中C原子数目的增加呈锯齿形的变化,含偶数C原子酸的熔点比相邻两个奇数C原子酸的熔点高,这是由于在含偶数C原子链中,链端甲基和羧基分在链的两边,而在奇数C原子链中,则在C链的同一边,前者具有较高的对称性,可使羧酸的晶格更紧密的排列,它们之间具有较大的吸引力,熔点较高。 羧基是亲水基,与水可以形成氢键,所以低级羧酸能与水任意比互溶;随着相对分子质量的增加,憎水基[1](烃基)愈来愈大,在水中的溶解度越来越小。 对长链的脂肪酸的X射线研究,证明了这些分子中C链按锯齿形排列,两个分子间羧基以氢键缔合,缔合的双分子是有规律的一层一层排列,每一层中间是相互缔合的羧基,引力很强,而层与层之间是以引力微弱的烃基相毗邻,相互间容易滑动,这也是高级脂肪酸具有润滑性的原因。

[编辑本段]化学性质

一、羧酸的化学描述

在羧酸分子中,羧基碳原子以sp2杂化轨道分别与烃基和两个氧原子形成3个σ键,这3个σ键在同一个平面上,剩余的一个p电子与氧原子形成π键,构成了羧基中C=O的π键,但羧基中的-OH部分上的氧有一对未共用电子,可与π键形成p-π共轭体系。由于p-π共轭,-OH基上的氧原子上的电子云向羰基移动,O-H间的电子云更靠近氧原子,使得O-H键的极性增强,有利于H原子的离解。所以羧酸的酸性强于醇。 当羧酸离解出H后,p-π共轭更加完全,键长发生平均化,-COOˉ基团上的负电荷不再集中在一个氧原子上,而是平均分配在两个氧原子上。

二、实用中羧酸的常见化学反应类型:

⑴羧酸是弱酸,可以跟碱反应生成盐和水。如:CH3COOH+NaOH→CH3COONa+H2O ⑵羧基上的OH的取代反应。如: ①酯化反应:R-COOH+R′OH→RCOOR′+H2O ②成酰卤反应:3RCOOH+PCl3→3RCOCl+H3PO3 ③成酸酐反应:RCOOH+RCOOH (加热)→R-COOCO-R+H2O ④成酰胺反应:CH3COOH+NH3→CH3COONH4 ; CH3COONH4(加热)→CH3CONH2+H2O ⑤与金属反应:2CH3COOH+2Na→2CH3COONa+H2↑ 2CH3COOH+Mg→(CH3COO)2Mg+H2↑ ⑶脱羧反应:除甲酸外,乙酸的同系物直接加热都不容易脱去羧基(失去CO2),但在特殊条件下也可以发生脱羧反应,如:无水醋酸钠与碱石灰混合强热生成甲烷:CH3COONa+NaOH(热熔)→CH4↑+Na2CO3(CaO做催化剂) HOOC-COOH(加热)→HCOOH+CO2↑ 注:脱羧反应是一类重要的缩短碳链的反应。

[编辑本段]酸的命名

早期发现的羧酸通常根据来源命名。例如,甲酸最初是由蒸馏赤蚁制得,称为蚁酸;乙酸最初由食醋中得到,称为醋酸;丁酸具有酸败牛奶气味,称为酪酸;己酸、辛酸、癸酸又分别称为羊油酸、羊脂酸、羊蜡酸,因为它们都存在于山羊的脂肪中;苯甲酸存在于安息香胶中,称为安息香酸 。一般,简单的羧酸按普通命名法命名,选含有羧基的最长碳链为主链,取代基的位置,从羧基邻接的碳原子开始,用希腊字母a、β、γ、δ等依次标明 ; 芳香酸当作苯甲酸的衍生物来命名;比较复杂的羧酸按国际命名法命名,选含有羧基的最长碳链为主链,从羧基碳原子开始编号,再加取代基的名称和位置;脂肪族二元羧酸的命名,取分子中含有两个羧基的最长碳链作为主链,加取代基的名称和位置。 低级脂肪酸C1~C3是液体,具有刺鼻的气味 , 溶于水。中级脂肪酸C4~C10也是液体,具有难闻的气味,部分溶于水。高级脂肪酸是蜡状固体,无味,不溶于水。二元脂肪酸和芳香酸都是结晶固体,芳香酸在水中溶解度较小,可从水中重结晶,饱和二元羧酸除高级同系物外,都易溶于水和乙醇 。羧酸的沸点比分子量相近的醇的沸点高。直链饱和一元羧酸和二元羧酸的熔点随碳原子数目增加而呈锯齿状上升,含偶数碳原子羧酸的熔点高于邻近两个含奇数碳原子的羧酸。羧酸最显著的性质是酸性,羧酸是一种弱酸,其酸性比碳酸强。羧酸能与金属氧化物或金属氢氧化物形成盐。羧酸的碱金属盐在水中的溶解度比相应羧酸大,低级和中级脂肪酸碱金属盐能溶于水,高级脂肪酸碱金属盐在水中能形成胶体溶液 ,肥皂就是长链脂肪酸钠。 低级脂肪酸是重要的化工原料,例如纯乙酸可制造人造纤维、塑料、香精、药物等。高级脂肪酸是油脂工业的基础。二元羧酸广泛用于纤维和塑料工业。某些芳香酸如苯甲酸 、水杨酸等都具有多种重要的工业用途。

?有醛基的醛类有什么共同性质?

分类

1.按照烃基的不同

醛可分为脂肪醛、酯环醛、芳香醛和萜烯醛。 脂肪醛是指分子中碳原子连接成链状的一种醛,呈开链状。脂环醛是指分子中碳原子连接成闭合的碳环。芳香醛的羰基直接连在芳香环上。萜烯醛是萜类化合物的一个分支。 1.1脂肪族化合物是指分子中碳原子间相互结合而成的碳链,不成环状。脂肪醛是脂肪族化合物的一种分类。 常见的无环脂肪醛有:辛醛、壬醛、癸醛、十一醛、月桂醛(十二醛)、十三醛、肉豆蔻醛(十四醛)、甲基己基乙醛、甲基辛基乙醛、甲基壬基乙醛、三甲基己醛、四甲基己醛、反-2-己烯醛、2-壬烯醛、反-4-癸烯醛、十一烯醛、壬二烯醛等。 1.2脂环族化合物可看作是由开链族化合物连接闭合成环而得。脂环醛是脂环族化合物的一种分类。 常见的脂环醛有:女贞醛、艾薇醛、异环柠檬醛、柑青醛、甲基柑青醛、新铃兰醛等。 1.3芳香醛的羰基直接连在芳香环上,这类醛可以看成是苯的衍生物。 常见的芳香醛有:苯甲醛、苯乙醛、苯丙醛、桂醛、铃兰醛、香兰素、乙基香兰素等。 1.4萜烯醛是指萜类化合物的一种分类,萜类化合物是指具有(C5H8)n通式以及其含氧和不同饱和程度的衍生物。 常见的萜烯醛有:柠檬醛、香茅醛、羟基香茅醛、紫苏醛、三甲基庚烯醛等。

2.按照醛基的数目

醛可以分为一元醛、二元醛和多元醛。

3.按烃基是否饱和

醛可以分为,饱和醛,不饱和醛。

[编辑本段]命名

简单的醛常用普通命名法。 芳香醛中芳基可作为取代基来命名。 多元醛命名时,应选取含醛基尽可能多的碳链作主链,并标明醛基的位置和醛基[1]的数目。 不饱和醛的命名除醛基的编号应尽可能小以外,还要表示出不饱和键所在的位置。 许多天然醛都有俗名,例如,肉桂醛(cinnamaldehyde),茴香醛(anisaldehyde),视黄醛等(retinal)。 (注:饱和一元脂肪醛的通式为Cn H2n O,分子式相同的醛、酮、烯醇互为异构体)

[编辑本段]重要反应

甲醛与苯酚发生缩聚反应生成酚醛树脂。甲醛发生银镜反应为: HCHO + 4Ag(NH3)2OH———(条件:水浴加热)—— → CO2↑+ 8NH3 + 4Ag↓+3H2O 银镜反应:【现象:试管内壁出现光亮的银镜】 R-CHO + 2Ag(NH3)2OH —(条件:水浴50~60℃加热)→ R-COONH4 + 2Ag↓ + 3NH3↑ + H2O 与新制氢氧化铜(斐林试剂、班氏试剂、本尼迪特试剂)反应:【现象:出现砖红色沉淀】 R-CHO + 2Cu(OH)2 —(条件:加热)→R-COOH + Cu2O↓ + 2H2O 与溴水反应: R-CHO + Br2 + H2O —→ R-COOH + 2HBr 加成反应: R-CHO + H2 —(条件:镍做催化剂,加热)→ R-CH2-OH 2R-CHO+O2—(条件:铜或者银做催化剂,加热)→ 2R-COOH 注:醛类也可通过和高锰酸钾反应(条件:加热)得到羧酸,方程式高中不需掌握

反应规律

在氧化还原反应中,醛类被氧化则生成酸,被还原则生成醇。

有酯基的酯类有什么共同性质?

详细释义

1.定义:酸(羧酸或无机含氧酸)与醇起反应生成的一类有机化合物叫做酯。 分子通式为R-COO-R'(R可以是烃基,也可以是氢原子,R'不能为氢原子,否则就是羧基) 酯的官能团是-COO-,饱和一元酯的通式为CnH2nO2(n≥2,n为正整数)。 2.物理性质:酯类都难溶于水,易溶于乙醇和乙醚等有机溶剂,密度一般比水小。低级酯是具有芳香气味的液体。 低分子量酯是无色、易挥发的芳香液体,高级饱和脂肪酸单酯常为无色无味的固体,高级脂肪酸与高级脂肪醇形成的酯为蜡状固体。酯的熔点和沸点要比相应的羧酸低。酯一般不溶于水,能溶于各种有机溶剂。低分子量的酯是许多有机化合物的溶剂,也是清漆的溶剂。 3.酯的命名:酯是根据形成它的酸和醇(酚)来命名的,例如乙酸乙酯CH3COOC2H5、乙酸苯酯CH3COOC6H5、苯甲酸甲酯C6H5COOCH3等。 4.化学性质:在有酸或有碱存在的条件下,酯能发生水解反应生成相应的酸或醇。 酸性条件下酯的水解不完全,碱性条件下酯的水解趋于完全。原因是因为碱能中和水解产生产生的羧酸,使反应完全进行到底。 酯是中性物质。低级一元酸酯在水中能缓慢水解成羧酸和醇。酯的水解比酰氯、酸酐困难,须用酸或碱催化。许多天然的脂肪、油或蜡经水解可制得相应的羧酸,油脂碱性水解生成的高级脂肪酸钠就是肥皂,酯的醇解反应是酯中的烷氧基被另一醇的烷氧基所置换的反应,反应须在酸或碱催化下进行,此反应常用于从一类酯转变成另一类酯。酯可被催化还原成两分子醇,应用最广的催化剂是铜铬氧化物,反应在高温高压下进行,分子中如含有碳碳双键,可同时被还原。此反应广泛用于油脂的氢化。酯与格氏试剂反应,可合成具有两个相同取代基的三级醇。

[编辑本段]形成

酯主要由羧酸与醇直接反应制得(酯化反应): 酯化反应RCOOH+R′OH---→RCOOR′+H2O这一反应在室温下进行时速率很慢,在酸的催化下可大大加速。其反应原理可以用口诀“酸脱羟基,醇脱氢”来方便记忆。酯化反应是一平衡反应,为了提高酯的产率,常用共沸蒸馏或加脱水剂把反应生成的水去掉,也可在反应时加过量的酸或醇,使反应向产物方向移动。酯还可用酰卤或酸酐与醇反应,或由羧酸盐与卤代烃反应制得。 低分子量的酯可用作溶剂,分子量较大的酯是良好的增塑剂。甲基丙烯酸甲酯是制造有机玻璃(聚甲基丙烯酸甲酯)的单体。聚酯树脂主要用于纤维和油漆工业,也可制成压塑粉。许多带有支链的醇形成的酯是优良的润滑油。酯还可用于香料、香精、化妆品、肥皂和药品等工业。

含蓄的煎蛋
活力的玉米
2026-01-23 23:41:26

挥发出的乙酸与Na2CO3反应生成易溶于水的盐,乙醇易溶于Na2CO3溶液,有利于苯甲酸乙酯与乙酸、乙醇的分离。

苯甲酸乙酯在饱和Na2CO3溶液中的溶解度较小,与饱和Na2CO3溶液混合时易分层,可用分液法分离。

注意浓度以及用量,Na2CO3溶液属于碱性溶液,在制备苯甲酸乙酯时要加入少量的浓硫酸进行催化,过多的碱性溶液被加入会使浓硫酸被中和从而导致溶液酸性减弱,反应速率过慢,因此在假如Na2CO3时,要控制用量