乙酸乙酯皂化反应速率常数的测定标准值是多少?
乙酸乙酯皂化反应速率常数的标准值:25℃时是6.42l/molmin;35℃时是11.9411l/molmin。
乙酸乙酯的皂化反应是一个典型的二级反应:ch3cooc2h5+oh-→ch3coo-+c2h5oh
设反应物乙酸乙酯与碱的起始浓度相同,则反应速率方程为:
r
=
=kc2
积分后可得反应速率系数表达式:
式中:为反应物的起始浓度;c为反应进行中任一时刻反应物的浓度。为求得某温度下的k值,需知该温度下反应过程中任一时刻t的浓度c。测定这一浓度的方法很多,本实验采用电导法。
用电导法测定浓度的依据是:
(1)
溶液中乙酸乙酯和乙醇不具有明显的导电性,它们的浓度变化不致影响电导的数值。同时反应过程中na+的浓度始终不变,它对溶液的电导有固定的贡献,而与电导的变化无关。因此参与导电且反应过程中浓度改变的离子只有oh-和ch3coo-。
(2)
由于oh-的导电能力比ch3coo-大得多,随着反应的进行,oh-逐渐减少而ch3coo-逐渐增加,因此溶液的电导随逐渐下降。
(3)
在稀溶液中,每种强电解质的电导与其浓度成正比,而且溶液的总电导等于溶液中各离子电导之和。
乙酸乙酯的皂化反应是一个典型的二级反应:
CH3COOC2H5+OH-→CH3COO-+C2H5OH
设反应物乙酸乙酯与碱的起始浓度相同,则反应速率方程为:
r = =kc2
为反应物的起始浓度;c为反应进行中任一时刻反应物的浓度。为求得某温度下的k值,需知该温度下反应过程中任一时刻t的浓度c。测定这一浓度的方法很多,本实验采用电导法。
水解反应
乙酸乙酯容易水解,常温下有水存在时,也逐渐水解生成乙酸和乙醇。添加微量的酸或碱能促进水解反应。乙酸乙酯的碱性水解与酸性水解最大的差别在于,碱性水解是不可逆的,也就是反应机制中可逆的进程与不可逆的进程。乙酸与乙醇发生可逆反应会生成乙酸乙酯。陈酒很好喝,就是因为酒中少量的乙酸与乙醇反应生成具有果香味的乙酸乙酯。
以上内容参考:百度百科-乙酸乙酯
2、乙酸乙酯又称醋酸乙酯,低毒性,有甜味,浓度较高时有刺激性气味,易挥发,是一种用途广泛的精细化工产品。具有优异的溶解性、快干性,用途广泛,是一种重要的有机化工原料和工业溶剂。
乙酸乙酯皂化反应速率常数是:
仪器:皂化反应实验装置,电子天平(规格1200g/0.1g),电子天平(规格110g/0.1mg),纯水机(UPT-I-20T),单通道移液器(规格10-100μL),磁力搅拌器(78HW-1),计时器,恒温反应器(自制),碱式滴定管(50.00mL)。
试剂:氢氧化钠(分析纯),乙酸乙酯(分析纯),邻苯二甲酸氢钾(分析纯),纯水,酚酞指示剂。
通过实验测定起始溶液的电导率κ0和不同时间t溶液的电导率κt,以κt对(κ0-κt)/t作图,得一直线,从直线的斜率可求出反应速率数k值。使用Origin软件处理实验数据,可得到直线斜率和相关系数R。
扩展资料:
如果使用氢氧化钾水解,得到的肥皂是软的。向溶液中加入氯化钠可以减小脂肪酸盐的溶解度从而分离出脂肪酸盐,这一过程叫盐析。高级脂肪酸盐是肥皂的主要成分,经填充剂处理可得块状肥皂。
肥皂分子有一端由许多碳和氢所组成的长链,另一端则为亲水性的原子团。使用肥皂时,油污被亲油端吸附着,再由亲水端牵入水中,达到洗净效果。
乙醇的质量分数要高,如能用无水乙醇代替质量分数为95%的乙醇效果会更好。催化作用使用的浓硫酸量很少,一般只要使硫酸的质量达到乙醇质量的3%就可完成催化作用,但为了能除去反应中生成的水,应使浓硫酸的用量再稍多一些。
制备乙酸乙酯时反应温度不宜过高,在保持在60℃~70℃之间,温度过高时会产生乙醚和亚硫酸或乙烯等杂质。液体加热至沸腾后,应改用小火加热。事先可在试管中加入几片碎瓷片,以防止液体暴沸。
参考资料来源:百度百科--乙酸乙酯
参考资料来源:百度百科--皂化反应
活化能与温度无关,主要与反应物本身的身份以及有没有加入催化剂有关,基本上每个反应的活化能是一定的。温度只影响反应的速度
不同温度下乙酸乙酯皂化反应速率常数文献值
http://www.jlict.edu.cn/hxsyzx/show.aspx?id=112&cid=31
去看看
电导法测定乙酸乙酯皂化反应的速率常数是常数。
乙酸乙酯皂化反应: CH3COOC2H5 +NaOH → CH3COONa +C2H5OH t = 0: c c 0 0
t = t: c-x c-x x xt →∞: → → →c →c反应速率方程为积分得:只要测出反应进程中t时的x值,再将c代入上式,就可以算出反应速率常数k值。
本实验的误差主要有一下几方面:
1、实验过程中,恒温槽的温度不稳定,致使实验的结果存在一定的误差。
2、乙酸乙酯配置太久,部分挥发掉了,致使实验出现较大的偏差。
3、经过多次读数,误差比较大。
4、系统本身存在的偶然误差。
乙酸乙酯皂化反应速率常数的测定: CH3COOC2H5 +NaOH → CH3COONa +C2H5OH t = 0: c c 0 0。
t = t: c-x c-x x xt →∞: → → →c →c反应速率方程为积分得:只要测出反应进程中t时的x值,再将c代入上式,就可以算出反应速率常数k值。
用二级反应的方法测定乙酸乙酯皂化反应速率常数,要保证强电解质浓度与电导为正比例关系需要NaOH的浓度足够低,乙酸乙酯浓度如果低了,配制浓度的误差会增大,如果采用准一级反应的方法可以改善实验的结果。
相关内容:
二级反应的反应速度方程式为:dx/dt=k(a-x)(b-x),a与b分别为反应物开始时的浓度,x为生成物的浓度。二级反应的半衰期为1/(k*a) (只适用于只有一种反应物的二级反应。
两种反应物的二级反应的半衰期公式比较复杂,除包含速率常数k外,还与反应物起始浓度有关),即开始时反应物浓度愈大,则完成浓度减半所需的时间愈短。
二级反应最为常见,如乙烯、丙烯、异丁烯的二聚反应,乙酸乙酯的水解,甲醛的热分解等,都是二级反应。
2、用乳胶管连接恒温水浴,开启恒温水浴,设定温度。
3、用大肚移液管准确量取50.00mL氢氧化钠溶液置于反应器中,磁力搅拌器缓慢搅拌,温度恒定后,测定电导率κ0。
4、计算出所需乙酸乙酯的用量,用量程为10~100μL的移液器量取。
5、磁力搅拌器速度开到最大,取下橡胶塞加入乙酸乙酯,同时计时,然后塞上橡胶塞。
6、持续快速搅拌约1min后,将搅拌速度减慢,保持慢速均匀搅拌。然后依次记录2,4,6,8,10,12,15,20,15,20,25,30,35,40min时刻的电导率κt。
7、清洗实验用品,用Origin软件处理实验数据。