建材秒知道
登录
建材号 > 乙酸 > 正文

由甘氨酸(H2NCH2-COOH)和羟基乙酸(HO-CH2-COOH)

明亮的手链
笨笨的火
2022-12-31 13:58:18

由甘氨酸(H2NCH2-COOH)和羟基乙酸(HO-CH2-COOH)

最佳答案
搞怪的鸡翅
开心的向日葵
2026-01-24 06:28:14

两分子间脱水的直链产物,可能有两种:

1:H2NCH2-CO-O-CH2-COOH,这个是羧基和羟基的酯化反应

2:HOOC-CH2-NH-CO-CH2-OH,这个是羧基和氨基脱水,生成的肽键,

两分子间脱水的直链产物,应该就这两种吧

最新回答
奋斗的期待
稳重的小熊猫
2026-01-24 06:28:14

HOCH3COOH + HOCHOHCH2CH2COOH 生成的产物是这我不好写 我就说下吧 就是羟基和羧基的s-脱水缩合 第一个羟基和最后一个羧基反应第一个羧基和第二个开头的羟基反应 最后还剩下一个羟基,但按照原则应该还会有可能是这样的 那就是二羟基丙酸自己会脱水缩合生成一个环状物同样羟基乙酸也会(但这要看反应条件) 总之这个反应你最好是将两个反应物上下写这样你会很容易发现它的反应机理就是脱水然后生成一个环状物。

平淡的狗
愤怒的航空
2026-01-24 06:28:14
所述式(ⅰ)所示的羟基乙酸二价盐可以为一般市售,也可以按照以下方法制备:

a)羟基乙酸与碱反应生成羟基乙酸盐;

b)羟基乙酸盐与醇的金属盐反应生成羟基乙酸二价盐。

反应式如下:

hoch2cooh+mx→hoch2coom;

hoch2coom+rom'→m'och2coom+roh;

其中,mx为碱,所述碱可以为本领域技术人员熟知的碱性化合物,本发明优选为氢氧化钠、氢氧化钾、碳酸钠、碳酸钾、碳酸氢钠或碳酸氢钾,更优选为氢氧化钠、碳酸钠或碳酸氢钠,最优选为氢氧化钠。

rom'为醇的金属盐,所述醇的金属盐优选为c1~8的醇的钾盐或钠盐,更优选为甲醇钠、甲醇钾、乙醇钠、乙醇钾、叔丁醇钠、叔丁醇钾、异辛醇钠或异辛醇钾。

步骤a)中,当碱为一元碱时,羟基乙酸与碱的摩尔比优选为1:(0.98~1.02),更优选为1:1;当碱为二元碱时,羟基乙酸与碱的摩尔比优选为1:(0.49~0.51),更优选为1:0.5。

羟基乙酸与碱的反应温度优选为20~60℃,更优选为20~40℃。所述反应的时间优选为0.2~1h,更优选为0.4~0.6h。

羟基乙酸与碱反应完毕,优选减压蒸出其中的水。本发明优选的,将反应液减压蒸干至水分≤0.3%。

步骤b)中,羟基乙酸盐与醇的金属盐的摩尔比优选为1:(1~1.2),更优选为1:(1~1.1),最优选为1:(1.02~1.04);羟基乙酸盐与醇的金属盐中的金属阳离子,即m和m',可以相同也可以不同,为便于生产处理通常选用相同的金属阳离子。

所述羟基乙酸盐与醇的金属盐的反应温度优选为20~60℃,更优选为20~40℃。所述反应的时间优选为0.5~1.5h。

然后将所述羟基乙酸二价盐与1,2,4-三氯苯在催化剂的作用下,进行反应,制备2,4-二氯苯氧乙酸盐,反应方程式如下:

所述催化剂优选为四丁基溴化铵、三辛基氯化铵、十六烷基三甲基溴化铵和三乙基苄基氯化铵中的一种或多种,更优选为三乙基苄基氯化铵。

所述1,2,4-三氯苯与羟基乙酸二价盐的摩尔比优选为1:(1~1.4),更优选为1:(1~1.1),最优选为1:(1.02~1.06)。

所述催化剂的用量优选为1,2,4-三氯苯重量的0.1%~1%。

所述1,2,4-三氯苯与羟基乙酸二价盐的反应温度优选为40~160℃,更优选为60~120℃。所述反应的时间优选为2~4h。

制备得到2,4-二氯苯氧乙酸盐后,对其进行酸化,即可得到2,4-二氯苯氧乙酸。

具体的,将2,4-二氯苯氧乙酸盐与酸反应即可。

所述酸可以为盐酸、硫酸、硝酸、甲酸等本领域常规酸性化合物,优选为盐酸或硫酸,最优选为硫酸。

所述酸化的温度优选为40~100℃,更优选60~80℃。

所述酸化中,反应液的ph值优选为0~2。

即加入酸至反应液ph值为0~2。

与现有技术相比,本发明提供了一种2,4-二氯苯氧乙酸的制备方法,包括以下步骤:a)式(ⅰ)所示的羟基乙酸二价盐与1,2,4-三氯苯在催化剂的作用下,反应生成式(ⅱ)所示的2,4-二氯苯氧乙酸盐;b)2,4-二氯苯氧乙酸盐酸化,得到2,4-二氯苯氧乙酸。本发明创造性的使用1,2,4-三氯苯代替苯酚和氯代苯酚,与羟基乙酸盐经过缩合反应,制得2,4-二氯苯氧乙酸盐,然后水解制得2,4-二氯苯氧乙酸,该方案有效避免了苯酚或氯代苯酚的使用,解决了操作场所和产出的三废存在的异味问题,大幅改善了生产场所的操作环境,具有良好的环保效益,同时反应具有较高的收率和纯度。

图1为本发明实施例1制备的2,4-二氯苯氧乙酸的核磁共振氢谱图。

具体实施方式

为了进一步说明本发明,下面结合实施例对本发明提供的2,4-二氯苯氧乙酸的制备方法进行详细描述。

实施例1:

称取130.4g70%的羟基乙酸(1.2mol)水溶液,于20℃下缓慢滴加入97.9g50%的氢氧化钠(1.224mol),滴加完毕于此温度下保温反应0.5h,反应完毕将反应液减压蒸干至水分≤0.3%,得羟基乙酸钠待用。向制得的羟基乙酸钠中加入98.2g99.8%的乙醇钠(1.44mol),然后加入300g无水乙醇,搅拌下于40℃保温反应1h,得羟基乙酸二钠盐的乙醇溶液。向其中加入1.8g四丁基溴化铵,加入183.8g99%的1,2,4-三氯苯(1mol),升温至60℃反应3h。反应完毕,减压蒸馏回收乙醇,加入300g水,升温至60℃,加入50%的稀硫酸至ph为0.7,降温至室温过滤、烘干得2,4-二氯苯氧乙酸217.7g,含量98.2%,以1,2,4-三氯苯计反应总收率97.6%。

对制备的2,4-二氯苯氧乙酸结构进行表征,其核磁共振谱图如图1所示,由图1可知,本发明制备得到2,4-二氯苯氧乙酸。

实施例2:

称取113.0g70%的羟基乙酸(1.04mol)水溶液,于40℃下缓慢滴加入116.7g50%的氢氧化钾(1.04mol),滴加完毕于此温度下保温反应0.5h,反应完毕将反应液减压蒸干至水分≤0.3%,得羟基乙酸钾待用。向制得的羟基乙酸钾中加入252.5g30%的甲醇钾(1.08mol)的甲醇溶液,搅拌下于20℃保温反应1h,得羟基乙酸二钾盐的甲醇溶液。向其中加入0.72g十六烷基三甲基溴化铵,加入183.8g99%的1,2,4-三氯苯(1mol),升温至40℃反应3h。反应完毕,减压蒸馏回收甲醇,加入300g水,升温至40℃,加入30%的盐酸至ph为0.2,降温至室温过滤、烘干得2,4-二氯苯氧乙酸217.9g,含量98.4%,以1,2,4-三氯苯计反应总收率97.9%。

实施例3:

称取152.1g70%的羟基乙酸(1.4mol)水溶液,于60℃下缓慢滴加入190.7g50%的碳酸钾(0.69mol),滴加完毕于此温度下保温反应0.5h,反应完毕将反应液减压蒸干至水分≤0.3%,得羟基乙酸钾待用。向制得的羟基乙酸钾中加入576.0g30%的叔丁醇钾(1.54mol)的叔丁醇溶液,搅拌下于40℃保温反应1h,得羟基乙酸二钾盐的叔丁醇溶液。向其中加入1.3g三乙基苄基氯化铵,加入183.8g99%的1,2,4-三氯苯(1mol),升温至90℃反应3h。反应完毕,减压蒸馏回收叔丁醇,加入300g水,升温至80℃,加入30%的盐酸至ph为1.3,降温至室温过滤、烘干得2,4-二氯苯氧乙酸216.5g,含量98.1%,以1,2,4-三氯苯计反应总收率97.3%。

实施例4:

称取141.2g70%的羟基乙酸(1.3mol)水溶液,于60℃下缓慢滴加入344.5g20%的碳酸钠(0.65mol),滴加完毕于此温度下保温反应0.5h,反应完毕将反应液减压蒸干至水分≤0.3%,得羟基乙酸钠待用。向制得的羟基乙酸钠中加入659.7g30%的异辛醇钠(1.3mol)的异辛醇溶液,搅拌下于60℃保温反应1h,得羟基乙酸二钠盐的异辛醇溶液。向其中加入0.2g三辛基氯化铵,加入183.8g99%的1,2,4-三氯苯(1mol),升温至120℃反应3h。反应完毕,减压蒸馏回收异辛醇,加入300g水,升温至100℃,加入30%的盐酸至ph为1.9,降温至室温过滤、烘干得2,4-二氯苯氧乙酸218.8g,含量98.5%,以1,2,4-三氯苯计反应总收率98.5%。

由上述实施例可知,本发明以1,2,4-三氯苯为原料,成功制备得到2,4-二氯苯氧乙酸,且反应具有较高的收率,产物具有较高的纯度。

以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

洁净的豆芽
强健的柚子
2026-01-24 06:28:14
微囊微球质量评价指标有:

1.微囊的形态与粒径及分布

2.微囊的载药量与包封率

3.微囊药物的释放速率

4.有机溶剂残留量

微囊与微球的载体材料

常用的载体材料:

1.天然高分子材料

(1)明胶

明胶是由氨基酸与肽交联形成的直链聚合物。

明胶分酸法明胶(A型)和碱法明胶(B型)。A型明胶等电点为7~9,B型明胶稳定而不易长菌,等电点为4.7~5.0。两者的成囊性无明显差别,作囊材的用量为20~100g/L 。

可生物降解,几乎无抗原性。

(2) 阿拉伯胶

一般常与明胶等量配合使用,作囊材的用量为20~100g/L,亦可与白蛋白配合作复合材料。

(3) 海藻酸盐

系多糖类化合物,常用稀碱从褐藻中提取而得。海藻酸钠可溶于不同温度的水中,不溶于乙醇、乙醚及其它有机溶剂;不同Mav产品的粘度有差异。可与甲壳素或聚赖氨酸合用作复合材料。因海藻酸钙不溶于水,故海藻酸钠可用CaCl2固化成囊。

(4) 壳聚糖

壳聚糖是由甲壳素脱乙酰化后制得的一种天然聚阳离子型多糖,可溶于酸或酸性水溶液,无毒、无抗原性,在体内能被溶菌酶等酶解,具有优良的生物降解性和成膜性,在体内可溶胀成水凝胶。

2.半合成高分子材料

作囊材的半合成高分子材料多系纤维素衍生物,其特点是毒性小、粘度大、成盐后溶解度增大。

(1) 羧甲基纤维素盐(CMC-Na)

常与明胶配合作复合囊材,一般分别配1~5g/L CMC-Na及30g/L明胶,再按体积比2:1混合。CMC-Na遇水溶胀,体积可增大10倍,在酸性液中不溶。水溶液粘度大,有抗盐能力和一定的热稳定性,不会发酵,也可以制成铝盐CMC-A1单独作囊材。

(2)醋酸纤维素酞酸酯(CAP)

在强酸中不溶解,可溶于pH>6的水溶液,在二氧六环、丙酮中溶解,水、乙醇中不溶。用作囊材时可单独使用,用量一般在30g/L左右,也可与明胶配合使用。

(3)乙基纤维素(EC)

化学稳定性高,适用于多种药物的微囊化,不溶于水、甘油或丙二醇,可溶于乙醇,易溶于乙醚,遇强酸易水解,故对强酸性药物不适宜。用乙基纤维素为囊材时,可加入增塑剂改善其可塑性。

(4)甲基纤维素(MC)

在水中溶胀成澄清或微浑浊的胶体溶液,在无水乙醇、氯仿或乙醚中不溶。用作囊材的用量为10~30g/L,亦可与明胶、CMC-Na、聚维酮(PVP)等配合作复合囊材。

(5)羟丙甲纤维素(HPMC)

冷水中能溶胀成澄清或微浑浊的胶体溶液,pH值4.0~8.0(1%溶液,25℃) ,无水乙醇、乙醚 或丙酮中几乎不溶。

3.合成高分子材料

有生物不降解的和生物降解的两类。

生物不降解、且不受pH影响的囊材有聚酰胺、硅橡胶等。

生物不降解、但可在一定pH条件下溶解的囊材有聚丙烯酸树脂类、聚乙烯醇等。

生物降解的材料:聚碳酸酯、聚氨基酸、聚乳酸(PLA)、乙交酯丙交酯共聚物(PLGA)、聚乳酸-聚乙二醇嵌段共聚物(PLA-PEG)ε-己内酯与丙交酯共聚物等。特点:无毒、成膜性好、化学稳定性高,可用于注射。

聚酯类是迄今研究最多、应用最广的生物降解的合成高分子,它们基本上都是羟基酸或其内酯的聚合物。

常用的羟基酸是乳酸(1actic acid)和羟基乙酸(glycolic acid)。乳酸缩合得到的聚酯称聚乳酸,用PLA表示,由羟基乙酸缩合得的聚酯称聚羟基乙酸,用PGA表示;由乳酸与羟基乙酸缩合而成的,用PLGA表示,亦可用PLG表示。有的共聚物经美国FDA批准,也作注射用微球、微囊以及组织埋植剂的载体材料。