吲哚丁酸的俗名是什么?
生长素(auxin)是一类含有一个不饱和芳香族环和一个乙酸侧链的内源激素,英文简称IAA,国际通用,是吲哚乙酸(IAA)。4-氯-IAA、5-羟-IAA、萘乙酸(NAA)、吲哚丁酸等为类生长素。
俗名为我们常常说的秋水仙素.你可以去农药店里买到!
中威特别提示:
①吲哚丁酸钠和吲哚丁酸钾均系吲哚丁酸盐,其效果和用途与吲哚丁酸基本相同。
②在使用方法上的区别是,由于吲哚丁酸钠和吲哚丁酸钾易容于水,不必用酒精先进行溶解即可使用,三者使用剂量基本相同。
③在使用吲哚丁酸及其吲哚丁酸钠和吲哚丁酸钾促根时,提倡与奈乙酸钠或奈乙酸配合使用,在促根生长、诱导不定根条数、增粗增长、促进地上部分生长均具有很好的效果。
双氯苯胺乙酸钠
1.2 英文名称Diclofenac , Diclofenac Sodium, Cataflam, Dichronic, Kriplex,VOLTAREN
1.3 双氯苯胺乙酸钠的别名双氯芬酸;佳息;双氯灭痛;阿米雷尔;奥尔芬;待克菲那;迪克乐克;二氢芬酸钠;非炎;护他林;佳贝;双氯高灭酸钠;双氯灭酸钠;英太青;双氯苯胺乙酸钠钠;服他灵;迪弗纳;扶他林;凯扶兰;诺福丁;天新力德;英太青胶囊;Blesin;Diclofe;DiclofenacSodium
1.4 分类神经系统药物 >解热镇痛药 >其他
1.5 剂型1.片剂25mg,50mg,75mg;
2.缓释胶囊:100mg;
3.注射剂:75mg;
4.软膏剂:10mg;
5.乳胶剂:1%,10mg;
6.栓剂:25mg,50mg,100mg 。
7.滴眼剂:0.1%。
1.6 双氯苯胺乙酸钠的药理作用双氯苯胺乙酸钠作用机制为选择性切断花生四烯酸代谢系列中环氧合酶的作用环节,阻断前列腺素E2(PGE2)的合成途径。阻抑其致突变致痛作用。双氯苯胺乙酸钠为苯乙酸类抗炎镇痛药,具有显著的抗风湿、消炎、止痛及解热作用。其作用比吲哚美辛强2~2.5倍,比阿司匹林强26~50倍。其特点为药效强,不良反应轻,剂量小,个体差异小。双氯苯胺乙酸钠具有显著的抗风湿、镇痛、消炎和退热作用。能很好地解除关节疼痛改善其活动,并有良好的耐受性。双氯苯胺乙酸钠片剂有一层抗敏性的包衣,使药片内的活性物质在离开胃部之后才释放出来,因此,可用于胃部敏感的患者。双氯苯胺乙酸钠每天口服75~150mg,对风湿性关节炎、骨关节炎和关节粘连性脊椎炎的镇痛消炎效果与阿司匹林、布洛芬、吲哚美辛、酮洛芬、萘普生等相似。许多研究证明,双氯苯胺乙酸钠对机械、化学、生物等 *** 引起的血房水屏障崩溃有很强的抑制作用。近年来研究发现,双氯苯胺乙酸钠能降低角膜的知觉和敏感性,表现出角膜镇痛的效果,其详细机制尚不清楚。
1.7 双氯苯胺乙酸钠的药代动力学使用双氯苯胺乙酸钠口服液、直肠栓剂,或通过肌内注射双氯苯胺乙酸钠均可迅速被吸收。当使用肠溶片时,尤其与食物同服时,吸收则趋于缓慢。尽管口服双氯苯胺乙酸钠吸收迅速且完全,2h可达血药峰值,但首过代谢明显,进入全身循环的药物仅达50%。双氯苯胺乙酸钠也经皮吸收。在治疗浓度时,蛋白结合率高于99%。可渗进滑膜液中,一直可以保留到血药浓度下降时。可分布进入乳汁中,但量很低,不至于将危害带给接受哺乳的婴儿。终末血浆t1/2约为1~2h。主要的代谢物为羟双氯苯胺乙酸钠,代谢物葡萄糖醛酸和硫酸结合随尿和胆汁排出。健康受试者口服双氯苯胺乙酸钠100mg,Cmax4485ng/ml,tmax1.2h,t1/21.33h,每小时Ke0.56。肌内注射75mg,Cmax2.73μg/ml,tmax25.3min。双氯苯胺乙酸钠局部点眼具有很好的眼内通透性,且房水中药物滞留时间较长,约为氟比洛芬的3倍,其原因可能为角膜对双氯酚酸具有一定的蓄积作用。
1.8 双氯苯胺乙酸钠的适应证临床用于风湿性及类风湿性关节炎、强直性脊椎炎、骨关节病,适用于各种中等疼痛,如手术后及创伤后疼痛,急性肌肉骨骼疾病;以及各种炎症所致的发热等。也用于急性痛风及癌症、软组织损伤、手术后疼痛。用于白内障摘除术时预防术中缩瞳和治疗术后炎症。眼科的非感染炎症的抗感染治疗,包括手术及非手术因素引起的非感染性炎症,如葡萄膜炎、角膜炎、巩膜炎、巩膜外层炎;抑制角膜新生血管形成;抑制白内障手术中炎症性缩瞳反应;预防术后的炎症反应及黄斑囊样水肿形成,并可促进青光眼滤过手术后滤过泡的形成;对过敏性结膜炎亦具有治疗作用。
1.9 双氯苯胺乙酸钠的禁忌证1.有活动性消化性溃疡,或以往应用双氯苯胺乙酸钠引起过严重消化道病变如溃疡,出血、穿孔者;
2.因水杨酸或其他前列腺素合成酶抑制剂而诱发的哮喘发作、荨麻疹及过敏性鼻炎者。
3.对双氯苯胺乙酸钠或其他非甾体抗炎药(NSAIDs)过敏者禁用。
1.10 注意事项1.(1)哮喘;(2)心功能不全及高血压。因用药后可致水滞留,水肿;(3)血友病或其他出血性疾病(包括凝血障碍及血小板功能异常)。因用药后出血时间延长,出血倾向加重;(4)消化道溃疡病史。因用药后易出现胃肠道不良反应,包括产生新的溃疡;(5)皮疹病史;(6)荨麻疹;(7)肝卟啉症;(8)细胞外液丢失;(9)哺乳妇女;(10)肾功能不全;
2.因用药后肾脏不良反应增多,甚至导致肾衰竭,尤其是老年人,用药期间应常规随访检查肝肾功能。
3.对肝肾功能有潜在性损害者,慢性饮酒者服用双氯苯胺乙酸钠时也应密切注意肝肾功能变化。
4.长期服用双氯苯胺乙酸钠,应监测肝、肾功能及血象作为预防措施。
5.双氯苯胺乙酸钠对单纯发热者不适用。
6.最好在饭前服用双氯苯胺乙酸钠。50m *** 剂不宜儿童使用。
7.双氯苯胺乙酸钠与缩瞳剂不宜同时使用,青光眼患者术前3h停止滴用缩瞳剂。
1.11 双氯苯胺乙酸钠的不良反应1.胃肠道不适(如上腹疼痛、恶心、呕吐、腹泻等),头痛、头晕、眩晕,皮肤红斑或皮疹。
2.罕见:胃肠道出血,消化性溃疡,嗜睡,肝功能异常(包括黄疸型肝炎),水肿,过敏反应(如荨麻疹、皮疹、支气管痉挛等)或类过敏样反应包括低血压。
3.个别病例:感觉或视觉障碍(视觉模糊、复视)、耳鸣、失眠、烦躁、惊厥;疱疹、湿疹、多形性红斑、Lyell综合征、脱发、光敏反应等;急性肾功能不全、尿异常(如血尿)、间质性肾炎、肾病综合征;血小板减少、白细胞减少、粒细胞缺乏、溶血性贫血、再生障碍性贫血;暴发型肝炎。
4.局部使用后可有瞬间轻度刺痛烧灼感,无须处理,1min后自行消失。
1.12 双氯苯胺乙酸钠的用法用量1.每次25mg,每天3次,整片用水送下。
2.栓剂 *** 插入:每次50mg,每天2次。
3.肌注:每次75mg,每天1次,深部臀肌注射,必要时数小时后再注射1次。
4.儿童,每天1~3mg/kg。整片吞服。
5.眼科用药:(1)预防白内障摘除术中缩瞳,术前2h内滴眼4次,每次1滴;(2)治疗白内障摘除术后炎症,术后24h开始滴眼,每次1滴,每天4次,连续治疗10~14天。(3)眼科手术前:一般术前4次(3h前、2h前、1h前、30min前);(4)眼科手术后:每天1~4次,每次1滴;(5)其他非手术消炎用:每天4~6次,每次1滴。
1.13 药物相互作用1.双氯苯胺乙酸钠与锂盐或地高辛合用时,可使后两者血药浓度升高。
2.与非甾体抗炎药或糖皮质激素类药物全身性合并应用时,可能会增加不良反应。
3.与阿司匹林合用,可降低双氯苯胺乙酸钠的血药浓度。
4.与保钾利尿剂合用时,可能会产生血清钾水平升高,应注意监测。
5.与口服抗凝药合用时,应做有关的实验室检查,以确保疗效和用药安全。
6.用甲氨蝶呤前后24h内服用双氯苯胺乙酸钠,应当注意观察,甲氨蝶呤的血药浓度可能被提高,毒性也可能增强。
1.14 专家点评
L-色氨酸的生产最早主要是依靠化学合成法和蛋白质水解法制造。随对微生物法生产色氨酸的研究的不断发展,人们开始利用微生物法发酵生产色氨酸。现已走向实用并且处于主导地位。微生物法大体可分为微生物发酵法和酶促转化法。近年来还出现了直接发酵法和化学合成法,直接发酵法和转化法相结合生产色氨酸的研究。另外,基因工程、酶的固定化和高密度培养等技术在微生物育种和酶工业上的应用极大地推动了直接发酵法和酶法生产色氨酸的工业化进程。 化学合成法就是利用有机合成和化学工程相结合的技术生产或制备氨基酸的方法。DL-色氨酸的化学法合成,大致可分为以吲哚为原料的合成法和以苯肼为原料的合成法两种。Snydcr和MacDonald研究出了一种简单的合成DL-色氨酸的方法,即在乙酸和乙酸酐的存在下利用吲哚和α-乙酰氨基丙烯酸直接缩合,得到N-乙酞-DL-色氨酸,此物质在氢氧化钠溶液中水解即可得到DL-色氨酸,收率为57.7%。Moe和MacDonald报道以苯肼为原料合成色氨酸,即在乙酸钠存在下,将丙烯醛和乙酰氨基丙二酸二乙酯缩合,缩合体再与苯肼反应而生成苯腙,苯腙在H2S04或BF3水溶液中回流水解,环化得到化合物3-吲哚基-甲基-乙酰氨基-丙二酸二乙酯,将此化合物水解脱羧可得DL-色氨酸。
化学合成法的最大优点是在氨基酸品种上不受限制,既可制备天然氨基酸,又可制备各种特殊结构的非天然氨基酸。但这并不意味着具有工业生产价值,由于合成得到的氨基酸都是DL-型外消旋体,必须经过拆分才能得到人体能够利用的L-氨基酸。故用化学合成法生产DL-色氨酸时,除需考虑合成工艺条件外,还要考虑异构体的拆分与D-色氨酸异构体的消旋利用,三者缺一不可。因此,化学法合成L-色氨酸在工业上的应用也受到一定的限制。 酶法是利用微生物中L-色氨酸生物合成酶系的催化功能生产L-色氨酸的,能够利用化工合成的前体物为原料,既充分发挥了有机合成技术的优势,又具有产物浓度高、收率高、纯度高、副产物少、精制操作容易等优点,是一种成本较低的生产色氨酸的工业化生产方法。目前在L-色氨酸的生产中应用较为广泛。这些酶包括色氨酸酶、色氨酸合成酶、丝氨酸消旋酶等。根据提供这些酶的微生物种类数,可以分为双菌酶法和单菌酶法两种类型。
双菌酶法是利用两种菌分别提供酶促反应所需的色氨酸合成酶(TS)、丝氨酸消旋酶(SR),以吲哚和DL-丝氨酸为底物酶促转化L-色氨酸。这种方法可以将具有不同高活性的酶促转化色氨酸所需的酶结合在一起,实现菌种的优势互补,提高底物的转化率。Makiguchi等用大肠杆菌的色氨酸合成酶和恶臭假单胞菌的丝氨酸消旋酶,以吲哚和DL-丝氨酸为底物,在200L反应罐中反应24h,L-色氨酸产量可达到110g/L,对吲哚吸收率为100%(摩尔比,下同),对DL-丝氨酸收率为91%。单菌酶法是利用一种菌提供色氨酸合成所需的色氨酸酶、色氨酸合成酶、丝氨酸消旋酶等酶类酶促转化色氨酸。Won-giBang等对单酶菌法生产色氨酸进行了研究,利用大肠杆菌B10的高Ts活性转化吲哚和DL-丝氨酸,添加非离子表面活性Triton X-100,37℃反应60h,色氨酸产量可达至141.4g/L,对吲哚收率为93.2%,对DL-丝氨酸收率为93.6%.
由于底物吲哚对色氨酸合成酶抑制强烈,而对色氨酸酶抑制较弱,所以近年来人们更为倾向于将色氨酸酶用于L-色氨酸的生物合成。色氨酸酶正常情况下降解L-色氨酸生成丙酮酸、吲哚和氨,但在高浓度的丙酮酸和氨条件下也能有效地催化丙酮酸、吲哚和氨合成L-色氨酸。该酶还能催化L-丝氨酸或L-半胱氨酸和吲哚合成L-色氨酸。Nakazawa等以20g吲哚、30g丙酮酸钠、50g乙酸铵和4gProteus rettgeri(雷氏变形杆菌)菌体作为色氨酸酶源,37℃反应48h可积累23gL-色氨酸。Ujimaru等用Achromabacterliquidum(液形无色杆菌)色氨酸酶催化L-丝氨酸和吲哚合成L-色氨酸,L-丝氨酸转化率为82.4%,吲哚转化率为92.4%。
国内也有研究以L-半胱氨酸和吲哚为原料酶法生产L-色氨酸。韦平和等用色氨酸酶基因工程菌WWW-4催化L-半胱氨酸和吲哚合成L-色氨酸,80mL反应液(L-半胱氨酸0.75g,吲哚0.75g)37℃反应48h,可积累L-色氨酸1.18g,L-半胱氨酸转化率为93.2%,吲哚转化率为90.1%,产品总回收率达70%。另外,也有报道利用具有丙酮酸高产率和高活性色氨酸酶的菌株酶促转化L-色氨酸。
酶促转化法既可以直接利用高活性色氨酸合成酶、色氨酸酶,或者具有高活性色氨酸合成酶或色氨酸酶的菌体催化L色氨酸的合成,也可以将酶或菌体固定化后进行L-色氨酸的合成。菌体和酶固定化后具有提高酶的稳定性便于反复使用,便于实现生产连续化和自动化等优点。Won—Bang等利用聚丙烯酰胺固定具有高活性色氨酸合成酶的大肠杆菌Escherichia coli B10菌体细胞,在连续搅拌槽反应器中连续使用50天,色氨酸合成酶活性保持80%,最高产酸0.12g.L-1h-1。还有利用其它固定化技术进行酶促转化L-色氨酸。Eggers等报道了一种利用有机脂膜系统利用色氨酸酶酶促转化L-色氨酸。它是以环己烷作为有机相,有机脂膜将两水相和有机相分开,其中一水相构成酶促反应体系,另一水相构成反萃取体系,利用bis-tris-propane作为两水相的缓冲剂维持两水相的pH差值,从而影响反应体系中各物质在两水相的分配常数,再通过有机相中的阴离子交换剂Aliquat-336交换两水相中的丙酮酸和L-色氨酸。这种体系有利于L-色氨酸转运到反萃取水相中,而有助于色氨酸的提取和降低L-色氨酸对酶的抑制作用;而且,有机相还可以储存吲哚,使吲哚在酶促反应体系中的浓度低于对酶的抑制水平。Eggers等还建立了一种反胶团酶促转化L-色氨酸的反应体系,它是将色氨酸酶溶解在含有表面活性剂Brij56的环己烷和水构成的反胶团的水相中,利用吲哚和丝氨酸为底物,在有机相中添加阴离子交换剂Aliquat-336转运水相和有机相中的L-色氨酸。以bis-tris-propane作为两水相的缓冲剂,选择合适的含水量和pH值等参数条件,结果在1dm反应体积内,每g色氨酸酶经过lh反应可产酸10g。该系统除了上述脂膜反应体系的优点外,还可以提高色氨酸酶的稳定性。因此,在L-色氨酸的酶促转化中有着广阔的应用前景。 微生物发酵法包括直接发酵法和添加前体发酵法。
1直接发酵法
直接发酵法是以葡萄糖、甘蔗糖蜜等廉价原料为碳源,利用优良的色氨酸生产菌株,在合适的发酵条件下,直接发酵生产色氨酸。选育高产稳产的色氨酸优良菌株是直接发酵法研究的中心问题.在育种技术方面,传统的诱变育种国内外进行了大量的研究。Shiio等以黄色短杆菌酪氨酸缺陷型、对氟苯丙氨酸(4FP)抗性变异株为出发菌株,选育5-氟色氨酸(5-FT)抗性变异株No.187,该菌株可产L-色氨酸8.0 g/L。继续以No.187为亲株选育具有邻氨基苯甲酸结构类似的重氯丝氨酸(AsaSer)抗性变异株A100,其产酸率提高到lO.3 g/L,再从A-100选育磺胺胍(SG)抗性变异株S-225,其产酸率进一步提高到19g/L。国内的张素珍等人以亚硝基胍处理北京棒杆菌AS1.299,得到CG45突变株。该菌株具有5MT,6FT,4MP抗性标记,且以精氨酸和尿嘧啶为必需生长因子,在含12%葡萄糖的培养基中,30℃振荡培养5天。可积累色氨酸8g/L。该方法研究比较早,但在相当长的时间内无法达到工业化生产的要求。主要原因是从葡萄糖到色氨酸的生物合成途径比较长,其代谢流也比较弱,而且色氨酸的合成需要多种前体物质(PRPP、谷氨酰胺、L-丝氨酸等)。要想进一步提高L-色氨酸的产量还必须提高这些前体物的产量。另一方面色氨酸生物合成途径中的调节机制比较复杂,除了存在多重反馈调节外,还存在着弱化子系统。这使得色氨酸成为氨基酸发酵工业中最难发酵的氨基酸之一.随着DNA重组技术的在微生物育种中的应用,为优良色氨酸菌种的筛选提供了可靠的技术保证。使得产酸水平逐渐达到工业化生产的要求。Katsumata.R等将带有DAHP合成酶(DS)和色氨酸合成酶(TS) 基因的重组质粒引入产L-色氨酸43g/L的谷氨酸棒杆菌KY10-894中,使该工程菌株的L-色氨酸产量达到了66g/L产酸水平提高了54%。
2添加前体发酵法
该法又称为微生物转化法,它是使用葡萄糖作为碳源,同时添加合成色氨酸所需的前体物(如邻氨基苯甲酸、吲哚、L-丝氨酸等),利用微生物的色氨酸合成酶系转化前体来合成L-色氨酸。这种方法很早就投入了工业化生产,目前世界上最大的色氨酸生产厂家日本的昭和电工公司就是采用以邻氨基苯甲酸为前体物,利用Hansenula(汉逊氏酵母)或Bacillus(芽孢杆菌)菌种将其转化为色氨酸的生产方法,Yokozcnki等以DL-5-吲哚-甲基海因为原料,利用黄杆菌T-523分解其为色氨酸,可产L-色氨酸7.1 g/L。Fukui等由枯草杆菌选育5-氟色氨酸(5-FT)抗性突变株,在含l%葡萄糖和5%可溶性淀粉培养基中,连续流加邻氨基苯甲酸,可积累L-色氨酸9.6g/L。Nakayarna等进一步改造该突变株,使其具有5-FT和8-氮鸟嘌呤(8-AG)双重抗性,在含10%葡萄糖培养基中,连续流加邻氨基苯甲酸,可积累L-色氨酸15.6g/L。
微生物转化法的不足之处在于当转化液中前体物浓度较高时,转化率有所下降,但可以通过分批次少量流加前体减少其抑制作用。另外,前体物价格比较昂贵,不利于降低成本。因此,有人研究利用发酵法廉价提供一种前体物,再结合其它方法的优势进行色氨酸的生产。Hajimu MOrikota等利用黄色短杆菌P390直接发酵L-谷氨酸-β-半醛(GSA)达13.2g/L,然后将发酵液适当稀释后加入苯肼的1mol/LH2S04溶液中加热回流1小时之后,48%的GSA可转化为L-色氨酸。SMgeru oita等利用硫辛酸和硫胺素双重缺陷性菌株Enterobacter aetogene LT-94,在含5%的葡萄糖培养中产丙酮酸30g/L,然后再通过添加吲哚和氯化铵,利用该菌的色氨酸酶酶促转化L-色氨酸16.7%。
简单回复你的问题:
原料无定性,能达到目的就行,这是原则。
可行,常见配方,若是粉剂要解决好结块问题。
这是腐植酸钾的特性决定的,解决方法是用乳化或胶体磨精细研磨过滤。
同上
不需要加,IBA可以去掉。
这是离子导致的絮凝现象,不只是PH值影响。解决酸碱可以加缓冲剂。
可把二氢钾换成氢二钾
氨基酸的定性测定
一、氨基酸的一般显色反应
本节介绍三种显色反应:茚三酮法、吲哚醌法和邻苯二甲醛法。前二种是经典的常用显
色法,后一种是近年来发展起来的荧光显色法,具有灵敏度高的特点。
1. 茚三酮法
显色方法有下列数种:
①常用法:将点有样品的层析或电泳完毕的滤纸充分除尽溶剂,用 5g/L 茚三酮无水丙
酮溶液喷雾,充分吹干,置65℃烘箱中约30min(温度不宜过高,避免空气中氨,以免背
景泛红色),氨基酸斑点呈紫红色。
为了使各种氨基酸呈现不同颜色,可用下列方法:
②用 0.4g 茚三酮,10g 酚和90g 正丁醇的混合液显色。
③用 1g/L 茚三酮无水丙酮溶液显色完毕后,再用盐酸蒸汽熏1min。
④用 1g 茚三酮,600mL 无水乙醇,200mL 冰醋酸及80mL2,4,6-三甲基吡啶混合液80
℃染色5~10min。
为了使显色稳定,可用下列方法:
⑤配制含醋酸镉 2g 加蒸馏水200mL 及冰醋酸40mL 的贮存液。将上述贮存液加200mL
丙酮及2g 茚三酮,即为显色液。点有样品的滤纸上浸有此显色液后,放置于盛有一小杯浓
硫酸的密闭玻璃容器中,25℃,18h,或较高温度下适当缩短时间。背景色浅,氨基酸斑点
也比较稳定。
⑥用含 2g/LCoCl2(或CuSO4)的4g/L 茚三酮异丙酮溶液显色时,氨基酸斑点呈红色,也
可在茚三酮显色后喷以含钴、镉或铜等无机离子的异丙醇溶液,斑点自蓝紫色变成红色。
2.吲哚醌法
(1)原理
各种氨基酸与吲哚醌试剂能显示不同颜色,因此可借此辩认氨基酸。氨对吲哚醌显色没
有妨碍,但其灵敏度较茚三酮法稍差,显色不稳定,颜色只有在绝对干燥的环境中才能保存。
(2)试剂
①显色剂:1g 吲哚醌溶于100mL 乙醇及10mL 冰醋酸中(若冰醋酸用量减少则灵敏度
稍差)。
②底色褪色剂:在 100mL 200g/L 碳酸钠溶液中加入60g 硅酸钠(Na2SiO3•9H2O)在水
浴(60~70℃)中加热搅拌直至完全溶解,待溶液比较清澈为止。在溶解过程中,有时硅酸
钠会结成凝胶,此时只需继续搅拌即可溶解。配制时若硅酸钠用量多则褪色较快,但背景容
易变黄,硅酸钠用得少(40g),虽裉色较慢,但背景较为洁白。
显色步骤
层析或电泳后滤纸烘干后,仔细喷上或涂上显色剂,用电吹风迅速吹干,待醋酸气味不
太刺鼻时移置100℃烘箱烘5~15min,直至显色为止(温度不要太高,以免引起减色)注
意观察所显出的颜色,然后均匀地涂上底色褪色剂,纸的背景即由黄色变为绛红而后逐渐变
浅,待黄色背景几乎褪尽时,迅速用电吹风吹干,并随时观察颜色的变化。例如苏氨酸在褪
色前为浅红带褐色,褪色后则呈橙黄色或黄色:脯氨酸在褪色前为蓝色,吹干时很快褪成无
色。室温较低时,底色褪色很慢,此时可将褪色剂加温到30~40℃。温度过高也不宜,因
氨基酸斑点的褪色速度也同时加快,应该避免。
其他显色步骤:显色剂为 1g 吲哚醌,1.3g 醋酸锌溶解于70~80mL 热异丙醇中,冷却
后加1mL 吡啶。或者1g 吲哚醌,1.5g 醋酸锌溶解于95mL 热异丙醇中,加3mL 水,冷却
后加1mL 冰醋酸。点有样品的滤纸仔细喷以显色剂后,80~85℃放置10min,背景可用水
迅速浸洗去而不使氨基酸斑点退去
由于吲哚醌试剂配制方法不同,对同一种氨基酸所显颜色往往也有差异。
3.邻苯二甲醛法
邻苯二甲醛法是目前纸上层析、硅胶薄层层析荧光显色氨基酸最灵敏的方法之一,也可
用于氨基酸溶液定量,并推广应用于乙内酰苯硫脲氨基酸、多肽和蛋白质的检出和定量。根
据文献报道,氨基酸纸上层析灵敏度达0.5μmoL,在硅胶薄层层析上为0.05~0.2μmoL。
这里介绍在纸上层析显现氨基酸方法。(荧光胺是另一种常用的荧光试剂,由于荧光胺来源
比较困难,这里未作介绍)
(1)原理
邻苯二甲醛在 2-巯基乙醇存在下,在碱性溶液中与氨基酸作用产生荧光化合物,最适
的激发光和发射光波长分别为340nm 和455nm。
各种氨基酸显现的荧光强度不同,其相对荧光强度由大到小大致顺序如下:天门冬氨酸,
异亮氨酸,甲硫氨酸,精氨酸,组氨酸,亮氨酸,丝氨酸,缬氨酸,谷氨酸,苏氨酸,甘氨
酸,色氨酸,丙氨酸,苯丙氨酸,赖氨酸,酪氨酸,NH3,脯氨酸和半胱氨酸。
(2)试剂
邻苯二甲醛显色液:取0.1g 邻苯二甲醛,0.1mg 巯基乙醇,1mL 三乙胺,加丙酮+石油
醚(60℃~90℃)(1+1)的混合溶剂至100mL。放置0.5h 后使用。
显色步骤
将含有氨基酸样品的滤纸浸入邻苯二甲醛显色液中 1min,冷风吹干,在温度18℃以下,
湿度50%~90%之间显色0.5h,于紫外灯下观察荧光点。
说明
在滤纸上显现氨基酸时,邻苯二甲醛浓度以 0.1%为宜。显色时必须有一定的湿度,以
便氨基酸溶解,提高分子碰撞机率,并使极性基团解离,促进反应趋于完全。湿度太低,显
不出荧光。温度对显现的荧光延时有显著影响,温度高荧光延时短,温度低荧光延时长。
二、个别氨基酸的显色反应
利用个别氨基酸与某些试剂具有特殊的显色反应定性氨基酸。可应用于纸层析和纸电
泳显色,也可单独应用。方法很多,仅将常用的方法介绍如下:
1.精氨酸的显色——坂口(Sakaguchi)反应
(1)第一种方法
试剂:①5g 尿素溶解于100mL0.1g/Lα-萘酚乙醇中。使用前,每100mL 加约5g KOH。
②0.7mL 溴水溶解于100mL 5%NaOH 中。
显色步骤:在点有样品的滤纸上喷试剂①后,在空气中吹几分种,再喷试剂②。精氨
酸或含精氨酸的多肽显红色。此试剂对含精氨酸的蛋白质也适用。
(2)第二种方法:
试剂:①1g/L 8-羟基喹啉的丙酮溶液。②0.02mL 溴水溶解于100mL 0.5mol/LnaOH 溶
液中。
显色步骤:将点有样品的滤纸烘干后,喷上试剂①,吹干后,再喷试剂②。精氨酸或
其他胍类物质显桔红色。
2.胱氨酸和半胱氨酸的显色
试剂:①1.5g 亚硝基铁氰化钠(Na2Fe(CN)5NO2•5H2O)溶于5mL 2mol/L H2SO 4 溶液
中,加95mL 甲醇。此时会有沉淀产生,可保存一个月以上。使用时在每100mL 上述溶液
中加10mL 28%氨水,过滤除去沉淀,清液仅能保持一天左右。②2g 氰化钠溶于5mL 水中,
然后加95mL 甲醇。此时有沉淀产生,使用时只需摇匀即可。
显色步骤:半胱氨酸的显色:在滤纸上喷以试剂①的清液,5min 后半胱氨酸显红色。
胱氨酸的显色:先将滤纸浸入试剂②,迅速取出,稍等片刻再喷试剂甲的清液,5min 后胱
氨酸显红色。也可以把试剂②配制的浓度增加一倍,在显色前混和,再喷到滤纸上。
3.甘氨酸的显色
试剂;0.1g 邻苯二甲醛溶于100mL 77%乙醇中。
显色步骤:点有样品的滤纸喷上试剂,甘氨酸显墨绿色,在汞灯(365nm)下显巧克力
棕色。吲哚醌显色后,再用此试剂仍有效。以甘氨酸为N 端的小肽也能显色,但其N 端被
保护后,以及其他氨基酸均不显色。
4.脯氨酸的显色
试剂:1g 吲哚醌和1.5g 醋酸锌,1mL 醋酸,5mL 蒸馏水混和,再加入95mL 异丙醇。
新鲜配制。
显色步骤:层析滤纸除尽溶剂,喷上以上试剂,80℃~85℃烘箱内放置30min,脯氨酸
显蓝色,再以30℃温水漂洗除去多余的试剂后,背景为白色或浅黄色。
也可剪下脯氨酸斑点,在试管中加入5mL 水饱和酚,在黑暗中洗脱15min,间歇振摇,
于610nm 测定其吸光度。从已知标准曲线即可求得样品内脯氨酸含量,测定范围5~20μg。
5.丝氨酸和羟赖氨酸的显色
试剂:①0.035mol/L 过碘酸钠(748mgNaIO4 溶于数毫升甲醇中,加2 滴6mol/L 盐酸,
再用甲醇稀释至100mL)。②15g 醋酸铵加0.3mL 冰醋酸,加1mL 乙酰丙酮,用甲醇稀释到
100mL。
显色步骤:点有样品的滤纸吹干,先喷试剂①,近干后再喷试剂②,室温放置 2h,紫
外灯下照射0.5h,丝氨酸和羟赖氨酸呈黄色斑点,在紫外线下都有荧光。
6.羟脯氨酸的显色
试剂:①1g 吲哚醌溶于100mL 乙醇及10mL 冰醋酸。②1g 对二甲胺苯甲醛溶于100mL
的丙酮浓盐酸(9+1)混合液中。(此试剂不稳定,隔数日后溶液颜色增深发黑,灵敏度降
低,故用时新鲜少量配制。
显色步骤:将待鉴定的溶液点于小方块纸上,干后先点上试剂①,热风吹干。这时纯
羟脯氨酸呈墨绿色,纯脯氨酸呈深蓝色(极灵敏),对其他氨基酸呈程度不同的紫红色(不
太灵敏);然后再点上试剂②吹干,如溶液中含有羟脯氨酸即转变为玫瑰红色,而其他氨基
酸与吲哚醌所生成的颜色则褪去。
7.色氨酸的显色
(1)第一种方法
试剂:1g 对二甲氨基苯甲醛加90mL 丙酮,10mL 浓盐酸。新鲜配制。
显色步骤:点有样品的滤纸干燥后,喷上以上试剂,在室温下放置几分钟后,色氨酸
显蓝色或紫红色。茚三酮显色后,仍可使用本法。
(2)第二种方法:
试剂:10mL 35%甲醛加10mL25%盐酸,20mL 无水乙醇。
显色步骤:点有样品的滤纸喷上以上试剂后,100℃烘5min,色氨酸在长波长紫外光下
呈现荧光(黄-橙-带绿色)。
8.酪氨酸的显色
试剂:①0.1%α-亚硝基β-萘酚的95%乙醇溶液。②10%硝酸水溶液。
显色步骤:点有样品的滤纸喷上试剂①后,吹干,再喷试剂②,然后在100℃烘3min,
酪氨酸或含酪氨酸的多肽在浅灰绿色的背景上显红色,0.5h 后转变为桔红色,其后渐退去。
灵敏度1~2μg 酪氨酸。茚三酮显色后,再用此试剂处理,仍能显色,茚三酮所显出的紫红
色斑点变成红色。
9.酪氨酸和组氨酸的显色——pauly 反应
试剂:①4.5g 对氨基苯磺酸与45mL 12mol/L 盐酸共热溶解,以蒸馏水稀释至500mL。
用时取出30mL,在0℃与等体积的5%亚硝酸钠水溶液相混合。(室温放置太长会失效)
②10%碳酸钠水溶液。
显色步骤:点有样品的滤纸上喷试剂①,片刻后再喷试剂②。组氨酸及含组氨酸的多
肽显桔红色;酪氨酸及含酪氨酸的多肽显浅红色。
第六节 氨基酸定量测定
一、氨基酸的一般定量测定
(一)甲醛滴定法
1.原理
氨基酸具有酸性的-COOH 基和碱性的-NH2 基。它们相互作用而使氨基酸成为中性的内
盐。当加入甲醛溶液时,-NH2 基与甲醛结合,从而使其碱性消失。这样就可以用标准强碱
溶液来滴定-COOH 基,并用间接的方法测定氨基酸总量。反应式(有三种不同的推论)如
下:
2.方法特点及应用
此法简单易行、快速方便,与亚硝酸氮气容量法分析结果相近。在发酵工业中常用此
法测定发酵液中氨基氮含量的变化,来了解可被微生物利用的氮源的量及利用情况,并以此
作为控制发酵生产的指标之一。脯氨酸与甲醛作用时产生不稳定的化合物,使结果偏低;酪
氨酸含有酚羧基,滴定时也会消耗一些碱而致使结果偏高;溶液中若有铵存在也可与甲醛反
应,往往使结果偏高。
3.操作方法
吸取含氨基酸约 20mg 的样品溶液于100mL 容量瓶中,加水至标线,混匀后吸取20.0mL
置于200mL 烧杯中,加水60mL,开动磁力搅拌器,用0.05mol/L 氢氧化钠标准溶液滴定至
酸度计指示pH8.2,记录消耗氢氧化钠标准溶液mL 数,供计算总酸含量。
加入10.0mL 甲醛溶液,混匀。再用上述氢氧化钠标准溶液继续滴定至pH9.2,记录消
耗氢氧化钠标准溶液毫升数。
同时取 80mL 蒸馏水置于另一200mL 洁净烧瓶中,先用氢氧化钠标准溶液调至pH8.2,
(此时不计碱消耗量),再加入10.0mL 中性甲醛溶液,用0.05mol/L 氢氧化钠标准溶液滴定
至pH9.2,作为试剂空白试验。
4.结果计算
氨基酸态氮质量分数(%)=
式中:V1——样品稀释液在加入甲醛后滴定至终点(pH9.2)所消耗氢氧化钠标准溶液
的体积,mL;
V2——空白试验加入甲醛后滴定至终点所消耗的氢氧化钠标准溶液的体积,mL;
c——氢氧化钠标准溶液的浓度,mol/L;
m——测定用样品溶液相当于样品的质量,g;
0.014——氮的毫摩尔质量,g/mmoL。
5.说明
①本法准确快速,可用于各类样品游离氨基酸含量测定。②浑浊和色深样液可不经处
理而直接测定。
(二)茚三酮比色法
1.原理
氨基酸在碱性溶液中能与茚三酮作用,生成蓝紫色化合物(除脯氨酸外均有此反应),
可用吸光光度法测定。
该蓝紫色化合物的颜色深浅与氨基酸含量成正比,其最大吸收波长为 570nm,故据此
可以测定样品中氨基酸含量。
2.操作方法
(1)标准曲线绘制
准确吸取 200μg /mL 的氨基酸标准溶液0.0、0.5、1.0、1.5、2.0、2.5、3.0mL(相当于
0、100、200、300、400、500、600μg 氨基酸),分别置于25mL 容量瓶或比色管中,各加
水补充至容积为4.0mL,然后加入茚三酮溶液(20g/L)和磷酸盐缓冲溶液(pH 为8.04)各
1mL,混合均匀,于水浴上加热15min,取出迅速冷至室温,加水至标线,摇匀。静置15min
后,在570nm 波长下,以试剂空白为参比液测定其余各溶液的吸光度A。以氨基酸的微克
数为横坐标,吸光度A 为纵坐标,绘制标准曲线。
(2)样品测定
吸取澄清的样品溶液 1~4mL,按标准曲线制作步骤,在相同条件下测定吸光度A 值,
用测得的A 值在标准曲线上可查得对应的氨基酸微克数。
3.结果计算
氨基酸含量(mg/100g)=
式中:c——从标准曲线上查得的氨基酸的质量数,μg;
m——测定的样品溶液相当于样品的质量,g。
4.说明及注意事项
①通常采用的样品处理方法为:准确称取粉碎样品 5~10g 或吸取样液样品5~10mL,
置于烧杯中,加入50mL 蒸馏水和5g 左右活性炭,加热煮沸,过滤,用30~40mL 热水洗
涤活性炭,收集滤液于100mL 容量瓶中,加水至标线,摇匀备测。
②茚三酮受阳光、空气、温度、湿度等影响而被氧化呈淡红色或深红色,使用前须进行
纯化,具体操作可参阅黄伟坤等编著《食品检验与分析》。
(三)非水溶液滴定法
1.原理
氨基酸的非水溶液滴定法是氨基酸在冰醋酸中用高氯酸的标准溶液滴定其含量。根据酸
碱的质子学说:一切能给出质子的物质为酸,能接受质子的物质为碱;弱碱在酸性溶剂中碱
性显得更强,而弱酸在碱性溶剂中酸性显得更强,因此本来在水溶液中不能滴定的弱碱或弱
酸,如果选择适当的溶剂使其强度增加,则可以顺利地滴定。氨基酸有氨基和羧基,在水中
呈现中性,而在冰醋酸中就能接受质子显示出碱性,因此可以用高氯酸等强酸进行滴定。
本法适合于氨基酸成品的含量测定。允许测定的范围是几十毫克的氨基酸
2.测定
(1)直接法(适用于能溶解于冰醋酸的氨基酸):精确称取氨基酸样品50mg 左右,溶解
于20mL 冰醋酸中,加2 滴甲基紫指示剂,用0.100mol/L 高氯酸标准液滴定(用10mL 体积
的微量滴定管),终点为紫色刚消失,呈现蓝色。空白管为不含氨基酸的冰醋酸液,滴定至
同样终点颜色。
(2)回滴法(适用于不易溶解于冰醋酸而能溶解于高氯酸的氨基酸):精确称取氨基酸样
品30~40mg 左右,溶解于5mL0.1mol/L 高氯酸标准溶液中,加2 滴甲基紫指示剂,剩余的
酸以醋酸钠溶液滴定,颜色变化由黄,经过绿、蓝至初次出现不褪的紫色为终点。
3.说明
(1)能溶解于冰醋酸的氨基酸,可以用直接法测定的有:丙氨酸、精氨酸、甘氨酸、组
氨酸、亮氨酸、甲硫氨酸、苯丙氨酸、色氨酸、缬氨酸、异亮氨酸和苏氨酸。不易溶解于冰
醋酸,但能溶解于高氯酸可以回滴法测定的有:赖氨酸、丝氨酸、胱氨酸和半胱氨酸。
(2)谷氨酸和天冬氨酸在高氯酸溶液中也不能溶解,可以将样品溶解于2mL 甲酸中,再
加20mL 冰醋酸,直接用标准的高氯酸溶液滴定。
(四)邻苯二甲醛法(OPT 法)
1.原理
邻苯二甲醛在 2-巯基乙醇存在下,于碱性溶液中与氨基酸作用产生荧光化合物,最适
的激发光和发射光波长分别为340 和455nm。可能产物为:
各种氨基酸显现的荧光强度不同,其相对荧光强度由大到小大致顺序如下:天门冬氨酸,
异亮氨酸,甲硫氨酸,精氨酸,组氨酸,亮氨酸,丝氨酸,缬氨酸,谷氨酸,苏氨酸,甘氨
酸,色氨酸,丙氨酸,苯丙氨酸,赖氨酸,酪氨酸,NH3,脯氨酸,和半胱氨酸。
本法可用于测定游离氨基酸的含量。灵敏度较茚三酮法约高 100 倍以上,可测到0.1~
1×10-4mol 氨基酸。如用于血清中α-氨基氮的测定,每次血清用量只需5~10μL。与另一
种荧光试剂(萤光胺)一样,空白无荧光,只有与氨基酸结合才产生荧光。缺点是与脯氨酸
不产生荧光,邻苯二甲醛与半胱氨酸荧光值太低。荧光胺已有用于氨基酸自动分析定量分析,
但由于试剂昂贵及个别氨基酸反应不满意,目前还未普遍应用。
(五)三硝基苯磺酸法
三硝基苯磺酸(TNBS)是定量测定氨基酸的重要试剂之一。TNBS 在偏碱性的条件下
与氨基酸反应,先形成中间络合物,如下式所示:
中间络合物在光谱上有二个吸收值相近的高峰,分别位于355nm 和420nm 附近。然
而溶液一旦酸化,中间络合物转化成三硝基苯-氨基酸(TNP-氨基酸),420nm 处的吸收值
显著下降,而350nm 附近的吸收峰则移至340nm 处。
利用 TNBS 与氨基酸反应的这一特性,可在420nm 处(偏碱性溶液中)或在340nm
(偏酸性溶液中)对氨基酸进行定量测定。下表列出各种氨基酸与TNBS 反应后在不同条
件下测定的吸光度。在340nm 处,各氨基酸的吸收度大致相近,而在420nm 处的吸光度
因氨基酸种类而异;在加入适量SO3
2-时,吸收值升高。
本法允许的测定范围是 0.05~0.4μmol 氨基酸。
表 10-3 各种氨基酸与TNBS 反应后在不同条件下测定的吸光度
氨基酸种类 碱性溶液① 酸性溶液加 SO3
①取不同含量氨基酸液1mL,加4%NaHCO3 1mL,0.1%TNBS 1mL,于40℃反应2h,用水补充至4mL,
在420nm 处测定。制作氨基酸浓度—吸光度坐标图,从曲线中求得各氨基酸于1μmol 时的吸光度。
②条件同上,但在与TNBS 反应时加0.01mol/L Na2SO3 1mL,最后总体积也是4mL,同样在420nm 处
测定。
③条件同①,但与 TNBS 反应后加1mol/L HCl 1mL 酸化,在340nm 处测定。
(六)乙酰丙酮和甲醛荧光法
1.原理
氨基酸与乙酰丙酮和甲醛反应,生成 N-取代基2,6-二甲基-3,5-二乙酰基1,4-二氢吡啶,
产生黄-绿色荧光,可用荧光分析法检测。主要反应如下:
乙酰丙酮 甲醛 氨基酸 荧光物质
2.试剂
混合试剂:取1mol/L 乙酸钠溶液10mL,加入乙酰丙酮溶液0.4mL 和30%甲醛溶液1mL,
用水稀释至30mL。
3.测定
取氨基酸液 1mL,加入混合试剂1mL,用棉花塞满试管口,避光于100℃下加热10min,
冷却,加水2mL,然后测定荧光值。
表 10-4 各种氨基酸的发射波长和检测范围
化合物(激发波长405nm) 发射波长(nm) 检测范围(mg/L)
甘氨酸 485 2~10
苯丙氨酸 490 8~40
丝氨酸 485 5~25
半胱氨酸(盐酸盐) 500 20~100
谷氨酸 485 20~100
与标准相比较求出样品中的氨基酸含量。
二、个别氨基酸的定量测定
(一)赖氨酸的测定
1.原理
用铜离子阻碍游离氨基酸的α-氨基,使赖氨酸的ε-氨基可以自由地与1-氟-2,4 二硝基
苯(FDNB)反应,生成ε-DNP-赖氨酸。经酸化和用二乙基醚提取,在波长390nm 处有吸收峰,
从而求出样品中游离赖氨酸的含量.
2.试剂
(1)氯化铜液:称28.0g 无水氯化铜,用水稀释至1000mL。
(2)磷酸三钠溶液:称68.5g 无水磷酸钠,用水稀释至1000mL。
(3)硼酸盐缓冲液(pH9.1~9.2):称54.64g 带有10 结晶水的四硼酸钠,用水稀释至
1000mL 。
(4)磷酸铜悬浮液:搅拌情况下,把氯化铜液200mL,缓慢倒入400 mL 的磷酸三钠溶液
中,把悬浮液以2000r/min 速度离心5min ,用硼酸盐缓冲液再悬浮沉淀物,洗涤离心3 次,
把最后的沉淀物悬浮在硼酸盐缓冲液中,并用缓冲液稀释至1L。
(5)1-氟-2,4 二硝基苯(FDNB)溶液:吸取FDNB10mL 用甲醇稀释至100mL。
(6)赖氨酸-HCl 标准溶液:称取一定量赖氨酸-HCl,用水配成200mg/L 的工作标准液。
(7)100g/L 丙氨酸溶液。
3.测定
(1)称取通过40 目筛的均匀试样1.00g,置于100mL 烧瓶中。另吸取赖氨酸-HCl 标准工
作液5mL(相当1mg 赖氨酸-HCl),连同试剂空白同时进行试验。
(2)向各烧瓶中加入25mL 磷酸铜悬浮液,然后再加10%丙氨酸1.0mL,振摇15min。吸
取10%FDNB 溶液0.5mL.置于各处理烧瓶中,将烧瓶置沸水中加热15min。
(3)取出烧瓶,立即加入1mol/LHCl 溶液25mL,并不断摇动使之酸化和分散均匀。
(4)烧瓶中的溶液冷却至室温,用水稀释至100mL.取约40mL 悬浮液进行离心。
(5)用25mL 二乙基醚提取上清液3 次,除去醚。并将溶液收集于有刻度试管中,于65℃
水浴中加热15min,以除去残留的醚。并记录溶液的毫升数。
(6)吸取上述各处理液10mL,分别与95%乙醇溶液10mL 混合,用滤纸过滤。
(7)用试剂空白液凋零,测定样液A390nm,与赖氨酸-HCl 标准液对照,求出样品中赖氨
酸-HCl 的含量。
本法在 0~40mg/L 赖氨酸溶液范围内呈良好线性关系。
4.说明
(1)添加一定量的中性氨基酸如丙氨酸,增加总氨基酸的浓度,有助于赖氨酸-HCl 浓度
具有良好的线性关系。
(2)用醚提取酸性溶液,可将所有中性或酸性的DNP-氨基酸衍生物除去,并把FDWB
的产物破坏,否则这些产物在390nm 处存在干扰。
(二)色氨酸的测定
1.原理
样品中的蛋白质经碱水解后,游离的色氨酸与甲醛和含铁离子的三氯乙酸溶液作用,生
成哈尔满化合物(norharman),具有特征荧光值,可以进行定量测定。
2.试剂
(1)0.3mmol/L 三氯化铁-三氯乙酸溶液:称取三氯化铁(FeCl3•6H2O)41mg,加入10%三
氯乙酸溶液溶解并定溶至500mL。
(2)2%甲醛:量取甲醛溶液(36%~38%)5.5mL,加水至100mL。
(3)色氨酸标准溶液:称取10mg 色氨酸,用0.1mol/LNaOH 溶液溶解并定容至100mL,
置棕色瓶中备用,使用时用水稀释成1mg/L 的标准溶液.
3.测定
称取样品粉末 100~200mg 于离心管中,加入4mL 乙醚,摇匀后过夜,以3000r/min 速
度离心。将乙醚提取液移入试管内,并用乙醚洗涤残渣3 次,收集乙醚液于试管中,于40℃
水浴除去醚。残留物中加入6.25mol/L N aOH 4mL,火焰封口,于110℃水解16~24h。水
解液用4mol/L HCl 溶液调节至pH6~8 后,用水定容至50mL,过滤备用。
吸取滤液 0.2mL,加入2%甲醛0.2mL 和0.3mmol/L 三氯化铁-三氯乙酸混合液2mL,
摇匀后于100℃水浴中加热1h,取出,冷却后用水定容至10mL。在激发波长为365nm,发
射波长449nm 条件下,测定样品的荧光强度,与色氨酸标样作对照,求出样品中色氨酸含
量。
本法在 0~10mg/L 色氨酸溶液范围内呈良好线性关系。
1 适用范围
本标准适用于果品、蔬菜及其加工制品中还原型抗坏血酸的测定(不含二价铁、二价
锡、一价铜、二氧化硫、亚硫酸盐或硫代硫酸盐),不适用于深色样品。
2 测定原理
染料2,6-二氯靛酚的颜色反应表现两种特性,一是取决于其氧化还原状态,氧化态
为深蓝色,还原态变为无色二是受其介质的酸度影响,在碱性溶液中呈深蓝色,在酸性介
质中呈浅红色。
用蓝色的碱性染料标准溶液,对含维生素 C的酸性浸出液进行氧化还原滴定,染料被
还原为无色,当到达滴定终点时,多余的染料在酸性介质中则表现为浅红色,由染料用量
计算样品中还原型抗坏血酸的含量。
3 仪器设备
a. 高速组织捣碎机:8000~12000r/min。
b. 分析天平。
c. 滴定管:25ml、10ml。
d. 容量瓶:100ml。
e. 锥形瓶:100ml、50ml。
f. 吸管:10ml、5ml、2ml、1ml。
g. 烧杯:250ml、50ml。
h. 漏斗。
4 试剂(凡未加说明者均为分析纯)
4.1 浸提剂
4.1.1 偏磷酸:2%溶液(W/V)* ,
4.1.2 草酸:2%溶液(W/V)。
4.2 抗坏血酸标准溶液(1mg/ml):称取 100mg(准确至 0.1mg)抗坏血酸**,溶于浸提剂
中并稀至100ml。现配现用。
——————————
* 偏磷酸不稳定,切勿加热。
** 一般抗坏血酸纯度为99.5%以上,可不标定。如试剂发黄,则弃去不用。若要检查其
纯度,可按附录B方法标定。
4.3 2,6-二氯靛酚(2,6-二氯靛酚吲哚酚钠盐)溶液:称取碳酸氢钠 52mg溶解在200ml
热蒸馏水中,然后称取 2,6-二氯靛酚 50mg溶解在上述碳酸氢钠溶液中。冷却定容至
250ml,过滤至棕色瓶内,保存在冰箱中。每次使用前,用标准抗坏血酸标定其滴定度。即
吸取1ml抗坏血酸标准溶液于50ml锥形瓶中,加入10ml浸提剂,摇匀,用2 ,6-二氯靛酚溶
液滴定至溶液呈粉红色15s不褪色为止。同时,另取 10ml浸提剂做空白试验。
滴定度按式(1)计算:
C·V
滴定度 T(mg/ml)=—————………………………… (1)
V1-V2
式中: T——每毫升2,6-二氯靛酚溶液相当于抗坏血酸的毫克数
C——抗坏血酸的浓度,mg/ml
V——吸取抗坏血酸的体积, ml
V1——滴定抗坏血酸溶液所用 2,6-二氯靛酚溶液的体积,ml
V2——滴定空白所用2,6-二氯靛酚溶液的体积,ml。
4.4 白陶土(或称高岭土),对维生素C无吸附性。
5 测定步骤
5.1 样液制备:称取具有代表性样品的可食部分100g,放入组织捣碎机中,加 100ml浸
提剂,迅速捣成匀浆。称 10~40g浆状样品,用浸提剂将样品移入 100ml容量瓶,并稀释
至刻度,摇匀过滤。若滤液有色,可按每克样品加 0.4g白陶土脱色后再过滤。
5.2 滴定:吸取10ml滤液放入50ml锥形瓶中,用已标定过的 2,6-二氯靛酚溶液滴定,
直至溶液呈粉红色 15s不褪色为止。同时做空白试验。
6 结果计算
6.1 计算公式:
维生素 C按式(2)计算:
(V-V0)·T·A
维生素C(mg/100g)=————————-×100 …………………(2)
W
式中: V——滴定样液时消耗染料溶液的体积,ml
V0——滴定空白时消耗染料溶液的体积,ml
T——2,6-二氯靛酚染料滴定度,mg/ml
A——稀释倍数
W——样品重量,g。
6.2 平行测定的结果,用算术平均值表示,取三位有效数字,含量低的保留小数点后两
位数字。
6.3 平行测定结果的相对相差,在维生素C含量大于 20mg/100g时,不得超过 2%,小于
20mg/100g时,不得超过 5%。
附 录 A
二甲苯-二氯靛酚比色法
(补充法)
A.1 适用范围
测定深色样品中还原型抗坏血酸。
A.2 测定原理
用定量的 2,6-二氯靛酚染料与试样中的维生素 C进行氧化还原反应,多余的染料
在酸性环境中呈红色,用二甲苯萃取后比色,在一定范围内,吸光度与染料浓度呈线性相
关,收剩余染料浓度用差减法计算维生素 C含量。
A.3 仪器设备
A.3.1 分光光度计或比色计。
A.3.2 具塞试管:50ml。
A.4 试剂(皆为分析纯)
A.4.1 偏磷酸:2%溶液(W/V)。
A.4.2 乙酸钠缓冲溶液(pH4.0):500ml50%(W/V)的乙酸钠溶液与 500ml冰乙酸混合。
A.4.3 2,6-二氯靛酚溶液:参照 4.3条。
A.4.4 二甲苯。
A.5 测定步骤
A.5.1 标准曲线的绘制:用6只50ml具塞试管加入5ml2%偏磷酸和5mlpH4.0的乙酸钠缓
冲液,然后依次加入0.0 ,0.1,0.3,0.6,0.9,1.2及 1.5ml 2,6-二氯靛酚溶液,用
力摇动5s,再向各试管中加入10ml二甲苯,再激烈摇动20s,静置分层后与试样管同时比色
(无染料的试液作空白),以吸光度为纵坐标,2,6-二氯靛酚的毫升数为横坐标绘制标
准曲线。
A.5.2 吸取5ml2%偏磷酸样品浸出液(参照5.1条)于50ml具塞试管中,加5mlpH4.0的
乙酸钠缓冲液和2ml染料溶液,激烈摇动5s,立即加入10ml二甲苯,再激烈摇动20s,待静
置分层后,从二甲苯层中小心吸取一份,放入1cm比色杯中于500nm波长下进行比色。记
录吸光度A,在标准曲线上查出二甲苯层中 2,6-二氯靛酚的毫升数。整个操作应在30
min内完成。
A.6 计算公式
(2-V)·T·A
维生素 C(mg/100g)=——————×100
W
式中: 2——所用 2,6-二氯靛酚染料的体积,ml
V——查得 2,6-二氯靛酚溶液的体积,ml
A——稀释倍数
T——染料滴定度,mg/ml
W——样品重量,g。
附 录 B
抗坏血酸纯度检验法
(补充件)
B.1 称取100mg(准确至0.1mg)抗坏血酸待测样品,用 2%偏磷酸或 2%草酸溶液溶解稀
释至 100ml。
B.2 吸取抗坏血酸溶液1ml于盛 10ml 2%偏磷酸或2%草酸溶液的锥形瓶中,加入6%碘
化钾溶液 0.5ml和1%淀粉溶液五滴,摇匀。用 1.67×10**-4M碘酸钾标准溶液滴定,
终点为极淡蓝色。
B.3 计算公式
B.3.1 抗坏血酸浓度按式(B1)计算:
V1×0.088
抗坏血酸浓度=—————— ……………………………… (B1)
V2
式中: V1——滴定时消耗1.67×10**-4 M碘酸钾标准溶液的体积,ml
V2——所取抗坏血酸溶液的体积,ml
0.088——1 ml 1.67×10**-4 M碘酸钾溶液相当于抗坏血酸的重量,mg
B.3.2 抗坏血酸纯度(%)按式(B2)计算:
C·V
抗坏血酸纯度(%)=———×100 ……………………………(B2)
W
式中: C——所标定抗坏血酸的浓度,mg/ml
V——抗坏血酸溶液总体积,ml
W——抗坏血酸重量,mg。
2后肠微生物发酵类型为乙酸发酵型。
3甲氧基甲基萘乙酸是非固醇抗炎药的一种商标名.zaojv乙酸造句
4多效唑处理使花期提前,萘乙酸处理延迟了花期的到来。
5目的:测定乌药中的冰片乙酸脂的含量。
6由氰乙酸乙酯与氨反应生成氰乙酰胺
再经过消除反应制得丙二腈.
7考虑乙酸与丙酸于气相因结合作用在气相形成二聚体及三聚体。
8以冰醋酸、异丁醇为原料
硫酸高铈为催化剂合成乙酸异丁酯.
9研究了以硫酸氢钠为催化剂,乙酸和正己醇为原料合成乙酸正己酯,并考察了反应条件对酯化率的影响。
10目的:研究砂仁挥发油主要成分乙酸龙脑酯的药理作用.
11首次用路易斯酸作为催化剂,以水杨酸和乙酸酐为原料合成乙酰水杨酸。
12乙酸钠是一种在很多移动暖炉内发现的化学物质,如果你准备一瓶饱和溶液,将其倒在籽晶上,乙酸钠就会猛地变成晶体。
13结果鬼针草乙酸乙酯提取物能显著降低糖尿病大鼠的血糖值。
14以无水乙醇为浸提溶剂时,茄尼醇浸提率高于以冰乙酸为浸提溶剂时的溶剂。
15通过防腐剂抑菌实验,得出苯甲酸双乙酸钠复合防腐剂为一种可用于萝卜干防腐的高效防腐剂。
16水中无机硫化物的干扰用乙酸铜均匀沉淀法去除。
17在水溶液体系中
用苯羟乙酸直接与碳酸稀土作用
合成了十四种苯羟乙酸稀土配合物.
18萘乙酸处理对萌发后幼根、幼芽生长影响不明显。
19萘乙酸增加了红小豆的株高、叶面积和分枝数,略微降低了主茎节数,对茎粗的影响效果不明显。
20报道了甲醇羰基化反应制乙酸的高分子催化剂的反应介质对材质腐蚀的原因,比较了不同金属的抗腐实验结果。
21乙酰乙酸甲酯的工业化生产方法是双乙烯酮与甲醇在催化剂存在下进行酯化反应,再经粗分馏、精馏得成品。
22本文介绍了氯乙酸的合成技术进展情况以及可制造的下游产品,并对今后几年的市场消费进行了预测。
23相似的,柠檬酸循环逐步氧化乙酸盐为CO2,并产生能量。
24采用高氯酸电位滴定法,测定了乙酸酐非水体系中石油亚砜浓度。
25利用无水乙醇作为溶剂,比较了冰乙酸、氯化钙这两种添加剂对悬浮液以及沉积过程的影响。
26*弯扁柏心材丙酮萃取物之乙酸乙酯层,运用矽胶薄层分析、高效液相层析仪及再结晶等方法进行进一步的分离纯化。
27氯苯基甲氧基甲基吲哚乙酸是一种非固醇抗炎药物的商标名称.
28乙酸宫颈视检呈阳性的妇女立刻接受了进一步的治疗,这包括冷冻摘除所有癌变组织,如果怀疑癌症发生了扩散,她们将被安排转诊治疗。
29在这里二氧化碳不是与核酮糖二磷酸接合而是与磷酸烯醇式丙酮酸接合形成草酰乙酸,进一步还原为苹果酸,积累于液泡中。
30采用溶剂萃取法,以五倍子为原料,水为溶媒进行浸提,再用乙酸乙酯为溶剂进行萃取,通过脱色制备高纯度食品鞣酸。